Chain Rule

January 11, 2006

The chain rule in one variable

Suppose that x is differentiable at t_{0} and f is differentiable at x_{0}, then the composite function $f \circ x$ is differentiable at t_{0} and, moreover,

$$
(f \circ x)^{\prime}\left(t_{0}\right)=f^{\prime}\left(x_{0}\right) x^{\prime}\left(t_{0}\right)
$$

or

$$
\frac{d f}{d t}\left(t_{0}\right)=\frac{d f}{d x}\left(x_{0}\right) \frac{d x}{d t}\left(t_{0}\right)
$$

The chain rule in two variables

Let $f: X \subseteq \mathbb{R}^{2} \rightarrow \mathbb{R}$ is differentiable at $\mathbf{x}_{0}=$ (x_{0}, y_{0}) and $\mathbf{x}: T \subseteq \mathbb{R} \rightarrow \mathbb{R}^{2}$ is differentiable at t_{0}. Then

$$
\frac{d f}{d t}\left(t_{0}\right)=\frac{\partial f}{\partial x}\left(\mathrm{x}_{0}\right) \frac{d x}{d t}\left(t_{0}\right)+\frac{\partial f}{\partial y}\left(\mathrm{x}_{0}\right) \frac{d y}{d t}\left(t_{0}\right)
$$

can be rewritten:

$$
\frac{d f}{d t}\left(t_{0}\right)=\left(\frac{\partial f}{\partial x}\left(\mathrm{x}_{0}\right), \frac{\partial f}{\partial y}\left(\mathrm{x}_{0}\right)\right) \cdot\left(\frac{d x_{1}}{d t}\left(t_{0}\right), \frac{d x_{2}}{d t}\left(t_{0}\right)\right)
$$

Generalization to functions $f: X \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}$

Let $\mathrm{x}: T \subseteq \mathbb{R} \rightarrow \mathbb{R}^{n}$

$$
\begin{aligned}
\frac{d f}{d t}\left(t_{0}\right) & =D f\left(\mathbf{x}_{0}\right) D \mathbf{x}\left(t_{0}\right) \\
& =\nabla f\left(\mathbf{x}_{0}\right) \cdot \mathbf{x}^{\prime}\left(t_{0}\right)
\end{aligned}
$$

Generalization when x is a surface

$$
\begin{aligned}
f: X \subseteq \mathbb{R}^{3} & \rightarrow \mathbb{R} \text { and } \mathrm{x}: T \subseteq \mathbb{R}^{2} \rightarrow \mathbb{R}^{3} \\
\frac{\partial f}{\partial s} & =\frac{\partial f}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial s}+\frac{\partial f}{\partial z} \frac{\partial z}{\partial s} \\
\frac{\partial f}{\partial t} & =\frac{\partial f}{\partial x} \frac{\partial x}{\partial t}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial t}+\frac{\partial f}{\partial z} \frac{\partial z}{\partial t}
\end{aligned}
$$

The general chain rule
$\mathbf{f}: X \subseteq \mathbb{R}^{m} \rightarrow \mathbb{R}^{p}$ and $\mathbf{x}: T \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$.

$$
D(\mathbf{f} \circ \mathbf{x})\left(\mathbf{t}_{0}\right)=D \mathbf{f}\left(\mathbf{x}_{0}\right) D \mathbf{x}\left(\mathbf{t}_{0}\right)
$$

