Chain Rule

January 11, 2006

The chain rule in one variable

Suppose that x is differentiable at t_0 and f is differentiable at x_0 , then the composite function $f \circ x$ is differentiable at t_0 and, moreover,

$$(f \circ x)'(t_0) = f'(x_0)x'(t_0)$$

or

$$\frac{df}{dt}(t_0) = \frac{df}{dx}(x_0)\frac{dx}{dt}(t_0)$$

1

The chain rule in two variables

Let $f : X \subseteq \mathbb{R}^2 \to \mathbb{R}$ is differentiable at $\mathbf{x}_0 = (x_0, y_0)$ and $\mathbf{x} : T \subseteq \mathbb{R} \to \mathbb{R}^2$ is differentiable at t_0 . Then

$$\frac{df}{dt}(t_0) = \frac{\partial f}{\partial x}(\mathbf{x}_0)\frac{dx}{dt}(t_0) + \frac{\partial f}{\partial y}(\mathbf{x}_0)\frac{dy}{dt}(t_0)$$

can be rewritten:

$$\frac{df}{dt}(t_0) = \left(\frac{\partial f}{\partial x}(\mathbf{x}_0), \frac{\partial f}{\partial y}(\mathbf{x}_0)\right) \cdot \left(\frac{dx_1}{dt}(t_0), \frac{dx_2}{dt}(t_0)\right)$$

Generalization to functions $f: X \subseteq \mathbb{R}^n \to \mathbb{R}$

Let $\mathbf{x}: T \subseteq \mathbb{R} \to \mathbb{R}^n$

$$\frac{df}{dt}(t_0) = Df(\mathbf{x}_0)D\mathbf{x}(t_0)$$
$$= \nabla f(\mathbf{x}_0) \cdot \mathbf{x}'(t_0)$$

Generalization when \boldsymbol{x} is a surface

$$f: X \subseteq \mathbb{R}^3 \to \mathbb{R} \text{ and } \mathbf{x}: T \subseteq \mathbb{R}^2 \to \mathbb{R}^3$$
$$\frac{\partial f}{\partial s} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial s} + \frac{\partial f}{\partial z} \frac{\partial z}{\partial s}$$
$$\frac{\partial f}{\partial t} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial t} + \frac{\partial f}{\partial z} \frac{\partial z}{\partial t}$$

The general chain rule

 $\mathbf{f}: X \subseteq \mathbb{R}^m \to \mathbb{R}^p \text{ and } \mathbf{x}: T \subseteq \mathbb{R}^n \to \mathbb{R}^m.$

$D(\mathbf{f} \circ \mathbf{x})(\mathbf{t}_0) = D\mathbf{f}(\mathbf{x}_0)D\mathbf{x}(\mathbf{t}_0)$