The Gradient and Directional Derivatives

January 11, 2006

The gradient

Let $f: X \subseteq \mathbb{R}^n \to \mathbb{R}$ be a scalar valued function. Then the gradient

$$\nabla f = \left(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \dots, \frac{\partial f}{\partial x_n}\right).$$

1

Directional Derivative

Consider a scalar-valued function f, a point a in the domain of f and v any unit vector then the directional derivative of f in the direction of v, denoted $D_v f(a)$, is

$$D_{\mathbf{v}}f(\mathbf{a}) = \lim_{h \to 0} \frac{f(\mathbf{a} + h\mathbf{v}) - f(\mathbf{a})}{h}$$

provided the limit exists.

Computing the directional derivative using the gradient

Let f be a differentiable function and \mathbf{a} be a point in the domain of f then

$$D_{\mathbf{v}}f(\mathbf{a}) = \nabla f(\mathbf{a}) \cdot \mathbf{v},$$

where $\ensuremath{\mathbf{v}}$ is a unit vector.

Maximum and minimum values of $D_{\mathbf{v}}f(\mathbf{a})$

- $D_{\mathbf{v}}f(\mathbf{a})$ is maximized when \mathbf{v} points in the same direction of the gradient, $\nabla f(\mathbf{a})$.
- $D_{\mathbf{v}}f(\mathbf{a})$ is minimized when \mathbf{v} points in the **opposite direction** of the gradient, $-\nabla f(\mathbf{a})$.
- Furthermore, the maximum and minimum values of $D_{\mathbf{v}}f(\mathbf{a})$ are $\|\nabla f(\mathbf{a})\|$ and $-\|\nabla f(\mathbf{a})\|$, respectively.

Tangent planes to level surfaces: $f(\mathbf{x}) = c$

Let c be any constant.

If \mathbf{x}_0 is a point on the level surface $f(\mathbf{x}) = c$, then the vector $\nabla f(\mathbf{x}_0)$ is perpendicular to the surface at \mathbf{x}_0 .

Computing Tangent plane for level surfaces

Given the equation of a level surface f(x, y, z) = c and a point x_0 , then the equation of the tangent plane is

$$\nabla f(\mathbf{x}_0) \cdot (\mathbf{x} - \mathbf{x}_0) = 0$$

or if $\mathbf{x}_0 = (x_0, y_0, z_0)$ then

 $f_x(\mathbf{x}_0)(x-x_0)+f_y(\mathbf{x}_0)(y-y_0)+f_z(\mathbf{x}_0)(z-z_0)=0.$