The Gradient and Directional Derivatives

January 11, 2006

The gradient

Let $f: X \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a scalar valued function. Then the gradient

$$
\nabla f=\left(\frac{\partial f}{\partial x_{1}}, \frac{\partial f}{\partial x_{2}}, \ldots, \frac{\partial f}{\partial x_{n}}\right)
$$

Directional Derivative

Consider a scalar-valued function f, a point a in the domain of f and \mathbf{v} any unit vector then the directional derivative of f in the direction of \mathbf{v}, denoted $D_{\mathbf{v}} f(\mathbf{a})$, is

$$
D_{\mathbf{v}} f(\mathbf{a})=\lim _{h \rightarrow 0} \frac{f(\mathbf{a}+h \mathbf{v})-f(\mathbf{a})}{h}
$$

provided the limit exists.

Computing the directional derivative using the gradient

Let f be a differentiable function and a be a point in the domain of f then

$$
D_{\mathbf{v}} f(\mathbf{a})=\nabla f(\mathbf{a}) \cdot \mathbf{v},
$$

where \mathbf{v} is a unit vector.

Maximum and minimum values of $D_{\mathbf{v}} f(\mathbf{a})$

- $D_{\mathbf{v}} f(\mathbf{a})$ is maximized when v points in the same direction of the gradient, $\nabla f(\mathbf{a})$.
- $D_{\mathbf{v}} f(\mathbf{a})$ is minimized when \mathbf{v} points in the opposite direction of the gradient, $-\nabla f(\mathbf{a})$.
- Furthermore, the maximum and minimum values of $D_{\mathbf{v}} f(\mathbf{a})$ are $\|\nabla f(\mathbf{a})\|$ and $-\|\nabla f(\mathbf{a})\|$, respectively.

Tangent planes to level surfaces: $f(\mathrm{x})=c$

Let c be any constant.

If x_{0} is a point on the level surface $f(\mathrm{x})=c$, then the vector $\nabla f\left(\mathrm{x}_{0}\right)$ is perpendicular to the surface at x_{0}.

Computing Tangent plane for level surfaces

Given the equation of a level surface $f(x, y, z)=$ c and a point x_{0}, then the equation of the tangent plane is

$$
\nabla f\left(\mathrm{x}_{0}\right) \cdot\left(\mathrm{x}-\mathrm{x}_{0}\right)=0
$$

or if $\mathbf{x}_{0}=\left(x_{0}, y_{0}, z_{0}\right)$ then
$f_{x}\left(\mathrm{x}_{0}\right)\left(x-x_{0}\right)+f_{y}\left(\mathrm{x}_{0}\right)\left(y-y_{0}\right)+f_{z}\left(\mathrm{x}_{0}\right)\left(z-z_{0}\right)=0$.

