Vector Fields, Divergence and Curl

January 20, 2006

Vector Fields

Definition: A vector field on \mathbb{R}^n is a mapping

$$\mathbf{F}: X \subseteq \mathbb{R}^n \to \mathbb{R}^n.$$

1

Most important vector field: Gradient field

The most important example of a vector field is the gradient of a scalar valued function, $f: X \subseteq \mathbb{R}^n \to \mathbb{R}$

$$\nabla f(x_1,\ldots,x_n) = \left(\frac{\partial f}{\partial x_1},\frac{\partial f}{\partial x_2},\ldots,\frac{\partial f}{\partial x_n}\right).$$

f is called **potential function**.

Question: Given a vector field \mathbf{F} is it possible to find an f such that

$$F = \nabla f?$$

Conservative Vector Field

Let \mathbf{F} be a vector field. Then \mathbf{F} is called conservative if there is a differentiable function f such that

$$\nabla f = \mathbf{F}$$

f is called the potential function for \mathbf{F} .

Flow Lines

A flow line of a vector field ${\bf F}$ is a differentiable path ${\bf x}$ such that

$$\mathbf{x}'(t) = \mathbf{F}(\mathbf{x}(t)).$$

The Del Operator

$$\nabla = \mathbf{i}\frac{\partial}{\partial x} + \mathbf{j}\frac{\partial}{\partial y} + \mathbf{k}\frac{\partial}{\partial z}.$$

In general

$$\nabla = \left(\frac{\partial}{\partial x_1}, \frac{\partial}{\partial x_2}, \dots, \frac{\partial}{\partial x_n}\right).$$

5

The Divergence

Let $\mathbf{F}: X \subseteq \mathbb{R}^n \to \mathbb{R}^n$ then the **divergence** is

div
$$\mathbf{F} = \nabla \cdot \mathbf{F} = \left(\frac{\partial F_1}{\partial x_1}, \frac{\partial F_2}{\partial x_2}, \dots, \frac{\partial F_n}{\partial x_n}\right),$$

where F_i 's are the component functions of the vector field **F**.

The Curl

Let $\mathbf{F}: X \subseteq \mathbb{R}^3 \to \mathbb{R}^3$ then the **curl** of \mathbf{F} is

curl
$$\mathbf{F} = \nabla \times \mathbf{F} = \det \begin{pmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ F_1 & F_2 & F_3 \end{pmatrix}$$

Incompressible vector fields

A vector field F is called **incompressible** if div F = 0.

If $\mathbf{F}: X \subset \mathbb{R}^3 \to \mathbb{R}^3$ is a differentiable vector field. Then

div (curl F) = 0.

This says that curl \mathbf{F} is an incompressible vector field.

Irrotational vector fields

A vector field F in \mathbb{R}^3 is called **irrotational** if curl $\mathbf{F} = \mathbf{0}$.

If $f: X \subseteq \mathbb{R}^3 \to \mathbb{R}$ is differentiable, then curl $(\nabla f) = 0$.

This says that the gradient of f is irrotational.