Iterated Integrals and Double

 IntegralsJanuary 25, 2006

Double Integration

This is an operation that assigns to a function $f(x, y)$ defined and continuous on a region D in the plane a number

$$
\iint_{D} f(x, y) d x d y
$$

NOTE: If $f(x, y) \geq 0$ for all (x, y) in D, then we can think of this number as the volume under the graph of f.

Rectangles

The notation used for rectangles is
$R=\left\{(x, y) \in \mathbb{R}^{2} \mid a \leq x \leq b, c \leq y \leq d\right\}$
or
$[a, b] \times[c, d]-$ Cartesian Product

Cavalieri's Principle

The Slicing Method-

Let S be a solid and P_{x} a family of parallel planes such that
(1) S lies between P_{a} and P_{b};
(2) the area of the slice of S cut by P_{x} is $A(x)$.
Then the volume of S is equal to

$$
\int_{a}^{b} A(x) d x
$$

Iterated Integrals

If f is a continuous function and non-negative on a rectangle R,

$$
\begin{aligned}
\iint_{R} f(x, y) d A & =\int_{a}^{b}\left[\int_{c}^{d} f(x, y) d y\right] d x \\
& =\int_{c}^{d}\left[\int_{a}^{b} f(x, y) d x\right] d y
\end{aligned}
$$

Partition of a rectangle

Suppose $R=[a, b] \times[c, d]$, a partition of R is a subdivision of R into smaller rectangles. You divide $[a, b]$ into n equally spaced points $a=x_{1}<x_{2}<\ldots<x_{n}=b$ and $[c, d$] into n equally spaced points $c=y_{1}<y_{2}<\ldots, y_{n}=$ d and

$$
x_{j+1}-x_{j}=\frac{b-a}{n} \quad y_{k+1}-y_{k}=\frac{d-c}{n}
$$

Double Integral over a rectangle

The double integral is defined by

$$
\iint_{R} f d A=\lim _{\Delta x_{i}, \Delta y_{j} \rightarrow 0} \sum_{i, j=1}^{n} f\left(\mathbf{c}_{\mathbf{i j}}\right) \Delta x_{i} \Delta y_{j}
$$

provided the limit exists. If the limit exists we say that f is integrable on R.

Integrability

- If f is continuous on the closed interval R, then $\iint_{R} f(x, y) d A$ exists.
- If f is bounded on R and the set of discontinuities of f has zero area, then $\iint_{R} f(x, y) d A$ exists.

Fubini's Theorem

Let f be integrable on a rectangle $R=[a, b] \times$ $[c, d]$, then $\iint_{R} f(x, y) d A$ can be computed using the method of iterated integrals.

Properties of the Double Integral

- If $f+g$ is integrable, then
$\iint_{R}(f+g) d A=\iint_{R} f d A+\iint_{R} g d A ;$
- If c is a scalar, then $\iint_{R} c f d A=c \iint_{R} f d A$
- If $f(x, y) \leq g(x, y)$ in R, then $\iint_{R} f(x, y) d A \leq \iint_{R} g(x, y) d A$;
- If $|f|$ is integrable on R then $\left|\iint_{R} f(x, y) d A\right| \leq \iint_{R}|f(x, y)| d A$.

