Iterated Integrals and Double Integrals

January 25, 2006

Double Integration

This is an operation that assigns to a function f(x,y) defined and continuous on a region D in the plane a number

$$\iint_D f(x,y) \, dx dy$$

NOTE: If $f(x, y) \ge 0$ for all (x, y) in D, then we can think of this number as the **volume under the graph of** f.

Rectangles

The notation used for rectangles is

$$R = \{(x, y) \in \mathbb{R}^2 | a \le x \le b, c \le y \le d\}$$

or

 $[a,b]\times [c,d]$ - Cartesian Product

Cavalieri's Principle

The Slicing Method-

Let *S* be a solid and P_x a family of parallel planes such that (1) *S* lies between P_a and P_b ; (2) the area of the slice of *S* cut by P_x is A(x). Then the volume of *S* is equal to

 $\int_a^b A(x) dx.$

Iterated Integrals

If f is a continuous function and non-negative on a rectangle R,

$$\iint_{R} f(x,y) dA = \int_{a}^{b} \left[\int_{c}^{d} f(x,y) \, dy \right] dx$$
$$= \int_{c}^{d} \left[\int_{a}^{b} f(x,y) \, dx \right] dy$$

Partition of a rectangle

Suppose $R = [a, b] \times [c, d]$, a **partition of** Ris a subdivision of R into smaller rectangles. You divide [a, b] into n equally spaced points $a = x_1 < x_2 < \ldots < x_n = b$ and [c, d] into nequally spaced points $c = y_1 < y_2 < \ldots, y_n =$ d and

$$x_{j+1} - x_j = \frac{b-a}{n}$$
 $y_{k+1} - y_k = \frac{d-c}{n}$.

5

Double Integral over a rectangle

The double integral is defined by

$$\iint_{R} f \, dA = \lim_{\Delta x_i, \Delta y_j \to 0} \sum_{i,j=1}^{n} f(\mathbf{c_{ij}}) \Delta x_i \Delta y_j$$

provided the limit exists. If the limit exists we say that f is **integrable** on R.

Integrability

- If f is continuous on the closed interval R, then $\iint_R f(x, y) dA$ exists.
- If f is bounded on R and the set of discontinuities of f has zero area, then $\iint_R f(x, y) dA$ exists.

Fubini's Theorem

Let f be integrable on a rectangle $R = [a, b] \times [c, d]$, then $\iint_R f(x, y) dA$ can be computed using the method of iterated integrals.

Properties of the Double Integral

- If f + g is integrable, then $\iint_R (f + g) \, dA = \iint_R f \, dA + \iint_R g \, dA;$
- If c is a scalar, then $\iint_R c f \, dA = c \iint_R f \, dA$
- If $f(x,y) \leq g(x,y)$ in R, then $\iint_R f(x,y) dA \leq \iint_R g(x,y) dA$;
- If |f| is integrable on R then $|\iint_R f(x,y) dA| \leq \iint_R |f(x,y)| dA.$