Review of vectors

January 5, 2009

Vectors in \mathbb{R}^n

In this class a **scalar** is simply a real number. An element in \mathbb{R} .

A vector in \mathbb{R}^2 is an ordered pair (x, y) of real numbers.

A vector in \mathbb{R}^3 is an ordered triple (x, y, z) of real number.

A vector in \mathbb{R}^n is an ordered *n*-tuple (x_1, x_2, \ldots, x_n) of *n* real numbers.

1

Operations on vectors

Vector Addition: Let $\mathbf{a} = (a_1, a_2, \dots, a_n)$ and $\mathbf{b} = (b_1, b_2, \dots, b_n)$ in \mathbb{R}^n then their sum is

$$\mathbf{a} + \mathbf{b} = (a_1 + b_1, a_2 + b_2, \dots, a_n + b_n)$$

Scalar Multiplication: Let $\mathbf{a} = (a_1, a_2, \dots, a_n)$ be a vector in \mathbb{R}^n and k any scalar then

$$k\mathbf{a} = (ka_1, ka_2, \dots, ka_n)$$

The standard basis vectors

The standard basis vectors in \mathbb{R}^2 are $\mathbf{i} = (1,0)$ and $\mathbf{j} = (0,1)$.

The standard basis vectors in \mathbb{R}^3 are $\mathbf{i} = (1,0,0)$ and $\mathbf{j} = (0,1,0)$ and $\mathbf{k} = (0,0,1)$.

The standard basis vectors in \mathbb{R}^n are $e_1 = (1, 0, ..., 0), e_2 = (0, 1, 0, ..., 0), ..., e_n = (0, ..., 0, 1).$

3

Vector equation for a line in \mathbb{R}^3

The vector parametric equation for a line through the point $P(b_1, b_2, b_3)$, with position vector $\vec{OP} = \mathbf{b} = (b_1, b_2, b_3)$, and parallel to $\mathbf{a} = (a_1, a_2, a_3)$ is

 $\mathbf{r}(t) = \mathbf{b} + t\mathbf{a}$

The Dot Product

Let $\mathbf{a} = (a_1, \dots, a_n)$ and $\mathbf{b} = (b_1, \dots, b_n)$ be two vectors in \mathbb{R}^n . The **dot product** of a and b is

$$\mathbf{a} \cdot \mathbf{b} = a_1 b_1 + a_2 b_2 + \ldots + a_n b_n$$

When n = 3, $\mathbf{a} = (a_1, a_2, a_3)$ and $\mathbf{b} = (b_1, b_2, b_3)$ and $\mathbf{a} \cdot \mathbf{b} = a_1b_1 + a_2b_2 + c_1c_2$.

Length, Angle and Projection

The length of a vector is $\|a\| = \sqrt{a \cdot a}$

The **angle** between two vectors \mathbf{a} and \mathbf{b} is

$$\theta = \cos^{-1} \left(\frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{a}\| \|\mathbf{b}\|} \right)$$

The projection of vector **b** onto **a** is

$$\operatorname{proj}_{a} b = \left(\frac{a \cdot b}{a \cdot a}\right) a$$

 $\frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{a}\|}$ is called the **scalar projection**.

The Cross Product for vectors in \mathbb{R}^3

For two vectors \mathbf{a} and \mathbf{b} in \mathbb{R}^3 , the **cross product** of \mathbf{a} and \mathbf{b} is the vector $\mathbf{a} \times \mathbf{b}$ such that:

• The length is $\|\mathbf{a} \times \mathbf{b}\| = \|\mathbf{a}\| \|\mathbf{b}\| \sin\theta$.

• The direction is determined by extending the fingers of your right hand along the vector \mathbf{a} and curling them towards the vector \mathbf{b} , the thumb points in the direction of $\mathbf{a} \times \mathbf{b}$

Note: If a is parallel to b, then $a \times b = 0$.

Determinants

Recall that a matrix is an array of numbers (in our case of real numbers).

The determinant of a 2 × 2 matrix $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is det(A) = |A| = ad - bc.

The determinant of a 3 × 3 matrix $A = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix}$ is det(A) = |A| = aei+bfg+cdh-ceg-afh-bdi.

Equation of a plane

A plane in \mathbb{R}^3 is determined by a point in the plane $P_0(x_0, y_0, z_0)$ and a vector $\mathbf{n} = (A, B, C)$ that is perpendicular (normal) to the plane.

$$\vec{n} \cdot \vec{P_0 P} = (A, B, C) \cdot (x - x_0, y - y_0, z - z_0) = A(x - x_0) + B(y - y_0) + C(z - z_0) = 0$$