Matrices and Coordinates

January 7, 2009

Operations on Matrices

An $m \times n$ matrix is an array of real numbers with m rows and n columns.

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} = (a_{ij})$$

The sum of two $m \times n$ matrices A and B is the $m \times n$ matrix C obtained by adding the corresponding entries in A and in B, that is $C = A + B = (a_{ij} + b_{ij})$.

Matrix Multiplication

If A is an $m \times n$ matrix and B is an $n \times p$ matrix then the **product** AB is the matrix where the ij-th entry is obtained by taking the dot product of the i-th row of A with the j-th column of B.

NOTE: In order to define the product of A and B we require that the number of columns of A be equal to the number or rows of B. Otherwise, the product is undefined.

Coordinate Systems

The **coordinates** of a point are the components of a tuple of numbers used to represent the location of the point in the plane or space.

For 2-dimensions:

- Choose an "origin" (0,0).
- Cartesian or rectangular coordinates

x-horizontal and y-vertical direction

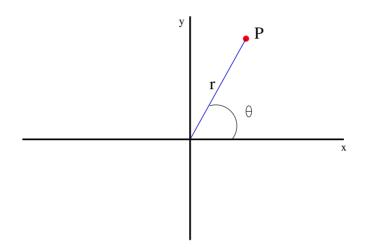
Polar coordinates

 (\mathbf{r},θ) : r -distance from origin and θ -angle from positive x-axis, $0 \le \theta < 2\pi$. If we want to describe every point uniquely we require that r > 0 and $0 < \theta < 2\pi$.

NOTE: In polar coordinates you think that every point except the origin is on a circle of radius r.

Polar coordinates are useful in doing computations with curves that have symmetry around the origin.

Relation between polar and cartesian coordinates



Polar to Cartesian:

$$x = r \cos \theta$$

$$y = r \sin \theta$$

Cartesian to Polar:

$$r = \sqrt{x^2 + y^2}$$
$$\tan(\theta) = \frac{y}{x}$$

Cylindrical Coordinates

These are for 3D: (r, θ, z) and we usually think that every point in space not on the z-axis is on a cylinder.

They are good for studying objects possessing an axis of symmetry.

Cartesian to Cylindrical

$$x = r\cos\theta$$

$$y = r \sin \theta$$

$$z = z$$

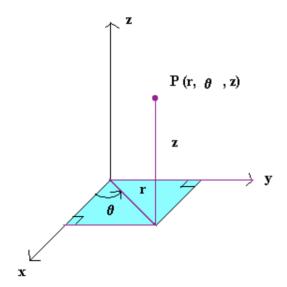
Cylindrical to Cartesian

$$r = \sqrt{x^2 + y^2}$$

$$tan(\theta) = \frac{y}{x}$$

$$z = z$$

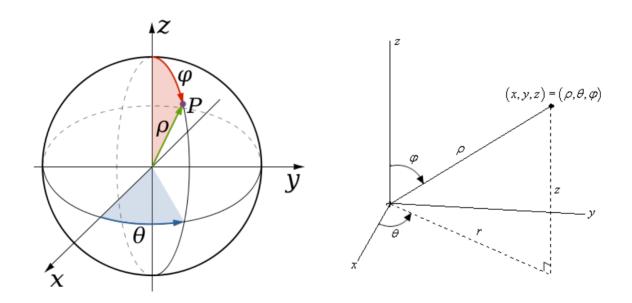
Cylindrical Coordinates



Spherical Coordinates

- These coordinates are also to describe a point in 3D: (ρ, ϕ, θ) . They are useful to study objects that have a center of symmetry.
- Here we think as every point except (0,0,0)
 lies on a sphere.
- \bullet ρ distance from the origin.
 - ϕ longitude and takes values $0 < \phi < \pi$.
 - θ latitude and takes values $0 \le \theta < 2\pi$.

Spherical Coordinates



Relation between cartesian and spherical

Spherical to cartesian:

$$x = \rho \sin \phi \cos \theta$$

$$y = \rho \sin \phi \sin \theta$$

$$z = \rho \cos \phi$$

Cartesian to spherical:

$$\rho = \sqrt{x^2 + y^2 + z^2}$$

$$\tan(\phi) = \sqrt{x^2 + y^2}/z$$

$$\tan(\theta) = \frac{y}{x}.$$

Relation between cylindrical and spherical

Spherical to cylindrical:

$$r = \rho \sin \phi$$
$$z = \rho \cos \phi$$
$$\theta = \theta.$$

Cylindrical to spherical:

$$\rho = \sqrt{r^2 + z^2}$$

$$\tan(\phi) = \frac{r}{z}$$

$$\theta = \theta.$$