The Chain Rule and Directional Derivatives

January 14, 2009

The chain rule in two variables

 $f: X \subseteq \mathbb{R}^2 \to \mathbb{R}$ differentiable at $\mathbf{x_0} = (a, b)$ $\mathbf{x}: T \subseteq \mathbb{R} \to \mathbb{R}^2$ differentiable at $t = t_0$.

$$\frac{df}{dt}(t_0) = \frac{\partial f}{\partial x}(\mathbf{x}_0)\frac{dx}{dt}(t_0) + \frac{\partial f}{\partial y}(\mathbf{x}_0)\frac{dy}{dt}(t_0)$$

This can be rewritten (vector notation):

$$\frac{df}{dt}(t_0) = \left(\frac{\partial f}{\partial x}(\mathbf{x}_0), \frac{\partial f}{\partial y}(\mathbf{x}_0)\right) \cdot \left(\frac{dx}{dt}(t_0), \frac{dy}{dt}(t_0)\right)$$

Or using the gradient:

$$\frac{df}{dt}(t_0) = \nabla f(\mathbf{x}_0) \cdot \mathbf{x}'(t_0)$$

1

Generalization to functions $f: X \subseteq \mathbb{R}^n \to \mathbb{R}$

Let
$$\mathbf{x}: T \subseteq \mathbb{R} \to \mathbb{R}^n$$

$$\left|\frac{df}{dt}(t_0) = \nabla f(\mathbf{x}_0) \cdot \mathbf{x}'(t_0)\right|$$

And in matrix notation:

$$\frac{df}{dt}(t_0) = Df(\mathbf{x}_0)D\mathbf{x}(t_0)$$

The general chain rule

Let
$$f : X \subseteq \mathbb{R}^m \to \mathbb{R}^p$$
 and $\mathbf{x} : T \subseteq \mathbb{R}^n \to \mathbb{R}^m$
$$\boxed{D(f \circ \mathbf{x})(\mathbf{t_0}) = Df(\mathbf{x_0})D\mathbf{x}(\mathbf{t_0})}$$

Here: $\mathbf{x_0} = (x_1(\mathbf{t_0}), x_2(\mathbf{t_0}), \dots, x_n(\mathbf{t_0})).$

The gradient

Let $f: X \subseteq \mathbb{R}^n \to \mathbb{R}$ be a scalar valued function. Then the gradient

$$\nabla f = \left(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \dots, \frac{\partial f}{\partial x_n}\right).$$

Directional Derivative

Consider a scalar-valued function f, a point a in the domain of f and \mathbf{v} any **unit** vector then the **directional derivative of** f **in the direction of** \mathbf{v} , denoted $D_{\mathbf{v}}f(\mathbf{a})$, is

$$D_{\mathbf{v}}f(\mathbf{a}) = \lim_{h \to 0} \frac{f(\mathbf{a} + h\mathbf{v}) - f(\mathbf{a})}{h}$$

provided the limit exists.

Computing the directional derivative using the gradient

Let f be a differentiable function and \mathbf{a} be a point in the domain of f then

$$D_{\mathbf{v}}f(\mathbf{a}) = \nabla f(\mathbf{a}) \cdot \mathbf{v}$$

where \mathbf{v} is a unit vector.

Maximum and minimum values of $D_{\mathbf{v}}f(\mathbf{a})$

- $D_{\mathbf{v}}f(\mathbf{a})$ is maximized when \mathbf{v} points in the same direction of the gradient, $\nabla f(\mathbf{a})$.
- $D_{\mathbf{v}}f(\mathbf{a})$ is minimized when \mathbf{v} points in the **opposite direction** of the gradient, $-\nabla f(\mathbf{a})$.
- Furthermore, the maximum and minimum values of $D_{\mathbf{v}}f(\mathbf{a})$ are $\|\nabla f(\mathbf{a})\|$ and $-\|\nabla f(\mathbf{a})\|$, respectively.

Tangent planes to level surfaces: $f(\mathbf{x}) = c$ Let c be any constant. and $f : X \subseteq \mathbb{R}^3 \to \mathbb{R}$ If \mathbf{x}_0 is a point on the level surface

 $f(\mathbf{x}) = c,$

then the vector $\nabla f(\mathbf{x}_0)$ is perpendicular to the level surface at \mathbf{x}_0 .

Computing Tangent plane for level surfaces

Given the equation of a level surface

$$f(x, y, z) = c$$

and a point $\mathbf{x}_0 = (x_0, y_0, z_0)$, then the equation of the tangent plane is

$$\nabla f(\mathbf{x}_0) \cdot (\mathbf{x} - \mathbf{x}_0) = \mathbf{0}$$

or if $x_0 = (x_0, y_0, z_0)$ then

 $f_x(\mathbf{x}_0)(x-x_0)+f_y(\mathbf{x}_0)(y-y_0)+f_z(\mathbf{x}_0)(z-z_0)=0.$