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1. STOKES’ THEOREM

We now discuss the last of the three great theorems in this class: Stokes’ Theorem.
Before we state the theorem, we need to explain how an oriented surface can induce
an orientation on its boundary.

Recall that an orientation for a surface S is a continuous choice of unit normal
vector on the entire surface, and intuitively corresponds to a choice of one of the two
sides of the surface. Suppose S has a boundary which is a curve S = C. Then
the orientation S induces on C' is the orientation of C' which is compatible with the
right-hand rule: that is, if we point our thumb in the direction of the orientation of
S at points near C', then the orientation on C' which is obtained is the direction in
which the other four fingers point along C'. Another way of saying this is that if you
walk along C' in the direction of the orientation induced by S with your head pointed
in the direction of the unit normal for S, then S will be on your left-hand side. The
textbook sometimes calls this the positive orientation of C induced by S.

Examples.

e If S is a region in the zy-plane, as in Green’s Theorem, with upward pointing
orientation, then the orientation induced by S on its boundary curve C'is ex-
actly the same with this definition as in the definition we used when discussing
Green’s Theorem. Indeed, we said that a simple closed curve was positively
oriented if we moved in the counterclockwise direction along C'; which was
identical to saying that the interior of C' always stayed on the left hand side
of motion along C. This is compatible with the more general definition above,
as one can check.

e Let S be the hemisphere 22 + y* + 22 = 1,2 > 0, with orientation pointing
radially outward. Then the orientation induced on the boundary circle C'
(which is 22 + y?> = 1,2 = 0) is the counterclockwise orientation.

Theorem. (Stokes’ Theorem) Let F be a C! vector field defined on an open set U in
R3. Let S be a piecewise oriented surface contained entirely within U with boundary
0S5 = C which carries the orientation induced by S. Then
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Again, notice that this theorem has the same qualitative flavor as Green’s Theorem,
the Divergence Theorem, and the Fundamental Theorem of Calculus. The theorem
says that, under suitable hypotheses, the surface integral of some function (V x F)
over a surface S is equal to the integral of a related function (F) on the boundary of
S.

Stokes’ Theorem is not quite as easy to use as the Divergence Theorem, simply
because it is harder to compute V x F than V - F. In general, it is easier to calculate
a line integral than it is to calculate the surface integral of a curl, but in certain
situations (namely, when V x F is equal to 0), Stokes’ Theorem can be used to
simplify the calculation of a line integral.

Example. Let F = (siny+e¢*, x cosy, xe®). Evaluate the line integral of F across the
curve C' given by the ellipse 22 + y?/4 = 1, z = 2, with counterclockwise orientation.

Directly calculating this line integral would be fairly difficult, because of the some-
what complicated definition of F. Instead, we will try using Stokes’ Theorem. We
start by computing V x F:

i ik
VxF=| 0, 8, 0. |=1(0,0,0).

siny +e* xcosy xe?

If we choose S to be any surface with C' as boundary (such as 22 +¢y*/4 < 1,z = 2),
then Stokes’ Theorem says
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When applying Stokes’ Theorem you should be sure to check that F is C'* throughout
all of S, as it is in this case.

If it seems difficult to use Stokes’ Theorem for calculations, this is more than made
up for by the fact that Stokes” Theorem has great theoretical significance. In the
above example, notice that F is C' on R?, and V x F = 0. Recall that this means
that F is conservative on R?; as a matter of fact, f(z,y, 2) = x sin y+ze® is a potential
function for F. If we knew this, we could have obtained the above result using the
fact that the line integral of a conservative vector field around any closed path equals
0.

This seems to make even the above application of Stokes” Theorem obsolete, but
it turns out that Stokes” Theorem is used to prove the fact that V x F = 0 on R? (or
more generally, any simply connected region in R?) implies that F is conservative!

Examples. (Three theoretical applications of Stokes” Theorem)

e We want to use Stokes’ Theorem to show that if V x F = 0 for a C* vector
field F on a simply-connected region D in R3, then F is conservative on D.
Let C' be any closed path contained in D; because D is simply connected it
is possible to find a surface S which lies entirely in D whose boundary is C'.
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Then Stokes” Theorem applied to this choice of S, C gives
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That D is simply connected is needed to ensure that we can find a surface S
entirely contained in D whose boundary is C. For example, if D is instead
a solid torus (literally, in the shape of a donut), then one can check that
D is not simply connected — for example, a circle wrapped once around the
inner ring of the solid torus cannot be continually deformed to a point. If you
think of various surfaces S with this circle C' as boundary, you will find that
every choice of S which you can think of will have to leave D somewhere, and
therefore you will be unable to apply Stokes” Theorem to C' since you cannot
find S for which you know V x F = 0 over all of S. (For proofs of these
topological facts, you will want to take a course in topology.)

Stokes” Theorem can be used to prove Green’s Theorem. Recall the state-
ment of Green’s Theorem: if C is a simple closed curve in R? with positive
orientation, D is the interior of C, and F = (P, Q) is a C"! vector field on D,

then
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To apply Stokes’ Theorem to this setup, we embed this copy of R? into R? by
declaring it to have z coordinate 0; i.e., we call this copy of R? the xy plane.
We can then think of S as D, with upward pointing orientation (to ensure that
the induced orientation is the positive orientation on C), and F = (P, @, 0)
as a vector field defined on S. In particular, n = (0,0, 1). Thinking of F as
now being a vector field in R?, we can compute V x F:

i j k
VxF=|0, 9, 0. |=(Q.— Pk
P @ 0
(We use the fact that P, @ are functions only of x,y, so that P, = @, = 0.)
Therefore, Stokes” Theorem applied to S = D and C' gives
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Stokes” Theorem is powerful indeed if it contains Green’s Theorem as a special
case!
Much like how we used the Divergence Theorem to formalize the notion of
V - F as measuring the divergence of a point, we can use Stokes’ Theorem
to formalize the idea of curl as measuring the rotational tendency of a vector
field at a point.

If we are interested in the value of V x F at a point P, let S be a small
circular disc of raidus r centered at P with unit normal everywhere given by
a vector pointing in the same direction as V x F. Because r is small, the
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value of V X F across S is well approximated by V x F(P). Then the surface
integral of V x F across S is approximated by

{/VxF-ndS%{/WxF(PNdS: IV % F(P)|rr?.

On the other hand, if C' is the boundary of .S, then Stokes” Theorem tells us
the above surface integral also equals
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Therefore, V x F(P) is approximately equal to

VXF(P)zL/F.dr.
C

r?
This approximation is accurate in the limit; that is, as r — 0 the above
approximation becomes an equality. The line integral on the right can be
thought of as a measure of the rotational tendency of the vector field F in a
plane orthogonal to V x F(P).

There is a sometimes a clever way of using Stokes’ Theorem to simplify the calcu-
lation of surface integrals. First, we will use the fact (not proven in this class) that
if a C! vector field F on R3 satisfies V - F = 0, then there exists another vector field
G such that V x G = F.

Suppose we are asked to evaluate the surface integral of such a vector field F across
a surface S7. It may happen that S; is very complicated, but that we can find another,
simpler surface Sy with identical boundary curve C'. Then Stokes’ Theorem tells us
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That is, the value of the surface integral of F is independent of the choice of surface
S, as long as all surfaces have the same boundary curve.

Example. Let F = (—2x,y, z), and let S; be the hemisphere 2% +y? = 1,z > 0 with
radially outward pointing orientation. Evaluate the integral of F across 5.

Directly calculating this integral would be annoying since we would have to use
spherical coordinates to parameterize S;. First, we check that V-F = -2+1+4+1 =0,
and of course F is C! on R3. S; induces the counterclockwise orientation on its
boundary 22 + y? = 1,z = 0. We let S, be the unit disc 2% + 3? < 1,z = 0 with
upward pointing orientation; then one immediately sees that Sy induces the same
orientation on C' as S;. Then the above discussion tells us that we can replace the
evaluation of the integral across S; with evaluation of the integral across Sy, which
is geometrically much simpler. As a matter of fact, since n = (0,0,1) on S, on S,
we have

F-n=(-2zxy92)-(0,0,1)=2=0.
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Therefore, we will be integrating the 0 function on Sy, so the value of the surface
integral of F along either S or S, is equal to 0.

If you remember how we used the Divergence Theorem, though, you will notice
that we already had a method of reducing the evaluation of the integral across Sy
to the surface S;. Since S; and Sy together bound a solid E, we can apply the
Divergence Theorem to E/, and since V - E = 0, the Divergence Theorem also tells us
that the integral across S, Sy are equal to each other. Nevertheless, this shows how
there seems to be a subtle relationship between Stokes” Theorem and the Divergence
Theorem, despite the fact that they seem to be somewhat different from each other.
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