Math 13 Winter 20, Practice Exam I
 Elements of solution

(1) Let f be a function of three variables x, y and z. For each of the following assertions, select the correct answer.
(a) The integral

$$
\int_{0}^{2 t} \int_{0}^{x} \int_{0}^{x z} f(x, y, z) d y d z d x
$$is a constant.

\boxtimes is a function of t.is a function of y.is not well-defined.none of the above.
(b) The integral

$$
\int_{0}^{1} \int_{x}^{0} \int_{0}^{x z} f(x, y, z) d y d x d z
$$is a constant.is a function of x and z.is a function of y.

\boxtimes is not well-defined.none of the above.
(c) The integral

$$
\int_{0}^{1} \int_{0}^{2} f(x, y, z) d x d z
$$is a constant.is a function of x and z.

\boxtimes is a function of y.is not well-defined.none of the above.
(2) Calculate the double integral

$$
\iint_{\mathcal{R}}\left(\frac{x}{y}+\frac{y}{x}\right) d A
$$

where $\mathcal{R}=[1,4] \times[1,2]$.

$$
\begin{aligned}
\iint_{\mathcal{R}}\left(\frac{x}{y}+\frac{y}{x}\right) d A & =\int_{y=1}^{2} \int_{x=1}^{4}\left(\frac{x}{y}+\frac{y}{x}\right) d x d y \\
& =\int_{y=1}^{2}\left[\frac{1}{y} \frac{x^{2}}{2}+y \ln x\right]_{x=1}^{4} d y \\
& =\int_{y=1}^{2}\left(\frac{15}{2 y}+2 y \ln 2\right) d y \\
& =\left[\frac{15}{2} \ln y+y^{2} \ln 2\right]_{y=1}^{2}=\frac{21 \ln 2}{2} .
\end{aligned}
$$

(3) Evaluate the integral $\int_{0}^{1} \int_{3 y}^{3} e^{x^{2}} d x d y$.

No antiderivative of $e^{x^{2}}$ can be expressed in terms of ordinary functions so we reverse the order of integration:

$$
\begin{aligned}
\int_{0}^{1} \int_{3 y}^{3} e^{x^{2}} d x d y & =\int_{0}^{3} \int_{0}^{\frac{x}{3}} e^{x^{2}} d y d x \\
& =\int_{0}^{3}\left[y e^{x^{2}}\right]_{0}^{\frac{x}{3}} d x \\
& =\int_{0}^{3} \frac{x}{3} e^{x^{2}} d x \\
& =\frac{1}{3} \int_{u=0}^{9} e^{u} \frac{d u}{2}=\frac{e^{9}-1}{6}
\end{aligned}
$$

(4) Calculate the triple integral $\int_{0}^{\sqrt{\pi}} \int_{0}^{x} \int_{0}^{x z} x^{2} \cos (y) d y d z d x$.

$$
\begin{aligned}
\int_{0}^{\sqrt{\pi}} \int_{0}^{x} \int_{0}^{x z} x^{2} \cos (y) d y d z d x & =\int_{0}^{\sqrt{\pi}} \int_{0}^{x} x^{2} \sin (x z) d z d x \\
& =\int_{0}^{\sqrt{\pi}}[-x \cos (x z)]_{z=0}^{x} d x \\
& =\int_{0}^{\sqrt{\pi}}\left(-x \cos \left(x^{2}\right)+x\right) d x \\
& =-\int_{0}^{\pi} \cos (u) \frac{d u}{2}+\frac{\pi}{2}=\frac{\pi}{2}
\end{aligned}
$$

(5) Find the volume of the solid that lies below the surface $z^{2}=9 x^{2}+9 y^{2}$, above the $x y$-plane, and inside the cylinder $x^{2}+y^{2}=2 y$.

The base of the cylinder is the circle in the $x y$-plane with center $(0,1)$ and radius 1 . In polar coordinates, it is described by $r=2 \sin \theta$ for $0 \leq \theta \leq \pi$. Since z is assumed nonnegative, the upper boundary of the solid has equation $z=3 r$ in cylindrical coordinates. It follows that

$$
\begin{aligned}
\text { Volume } & =\int_{0}^{\pi} \int_{0}^{2 \sin \theta} \int_{0}^{3 r} r d z d r d \theta \\
& =\int_{0}^{\pi} \int_{0}^{2 \sin \theta} 3 r^{2} d r d \theta \\
& =8 \int_{0}^{\pi} \sin ^{3} \theta d \theta=\frac{32}{3}
\end{aligned}
$$

(6) The volume of the solid bounded by the surfaces with equations

$$
y=x^{2}+\frac{z^{2}}{4} \quad \text { and } \quad y=5-4 x^{2}-z^{2}
$$

is given by an integral of the form

$$
\int_{a}^{b} \int_{u_{1}(z)}^{u_{2}(z)} \int_{x^{2}+\frac{z^{2}}{4}}^{5-4 x^{2}-z^{2}} d y d x d z
$$

Determine $u_{1}(z), u_{2}(z), a$ and b.
To identify the projection onto the $x z$-plane of the solid, we determine the intersection curve of the paraboloids:

$$
y=x^{2}+\frac{z^{2}}{4}=5-4 x^{2}-z^{2}
$$

implies $x^{2}+\frac{z^{2}}{4}=1$, which is the equation of an ellipse in the $y=0$ plane. It follows that

$$
a=-2 \quad, \quad b=2 \quad, \quad u_{1}(z)=-\sqrt{1-\frac{z^{2}}{4}} \quad, \quad u_{2}(z)=\sqrt{1-\frac{z^{2}}{4}} .
$$

(7) Let \mathcal{W} be the solid region lying:

- inside the cone $z=\sqrt{x^{2}+y^{2}}$
- inside the sphere $x^{2}+y^{2}+z^{2}=5$
- outside the sphere $x^{2}+y^{2}+z^{2}=3$
- in the second octant: $x \leq 0, y \geq 0, z \geq 0$.

Convert the integral $\iiint_{\mathcal{W}} x d V$ into a triple integral in spherical coordinates.
In spherical coordinates, \mathcal{W} consists of the points (ρ, θ, φ) such that

$$
\sqrt{3} \leq \rho \leq \sqrt{5} \quad, \quad \frac{\pi}{2} \leq \theta \leq \pi \quad, \quad 0 \leq \varphi \leq \frac{\pi}{4}
$$

Therefore,

$$
\iiint_{\mathcal{W}} x d V=\int_{\frac{\pi}{2}}^{\pi} \int_{0}^{\frac{\pi}{4}} \int_{\sqrt{3}}^{\sqrt{5}} \rho^{3} \sin ^{2} \varphi \cos \theta d \rho d \varphi d \theta
$$

(8) Express the volume of the region bounded by the surfaces with equations

- $z=x^{2}-1$
- $x=y^{2}$
- $z=0$
by a triple integral in the prescribed order:
(a) $d z d y d x$
(b) $d y d x d z$

Volume $=\int_{x=0}^{1} \int_{y=-\sqrt{x}}^{\sqrt{x}} \int_{z=x^{2}-1}^{0} d z d y d x=\int_{z=-1}^{0} \int_{x=0}^{\sqrt{z+1}} \int_{y=-\sqrt{x}}^{\sqrt{x}} d y d x d z$.
(9) A lamina has the shape of a half-disk of radius 2 , centered at the origin and lying in the upper-half plane. Its density function is $\delta(x, y)=k \sqrt{x^{2}+y^{2}}$, where k is a constant. The center of mass of the lamina has coordinates $\left(0, y_{0}\right)$. Determine y_{0}.

Observe that the density only depends on the distance to the origin: $\delta(r, \theta)=k r$. The total mass of the lamina is

$$
M=\int_{0}^{\pi} \int_{0}^{2} k r^{2} d r d \theta=\frac{8 k \pi}{3}
$$

The vertical moment is

$$
M_{x}=\int_{0}^{\pi} \int_{0}^{2} k r^{3} \sin \theta d r d \theta=8 k
$$

It follows that

$$
y_{0}=\frac{M_{x}}{M}=\frac{3}{\pi} .
$$

