## Math 13 Winter 20, Practice Exam II <br> Elements of solution

(1) For each of the following assertions, select the correct ending.
(a) Let $\mathbb{D}$ be the disk with radius 1 and center at the origin in the $u v$-plane and $G$ the mapping defined by

$$
G(u, v)=(u+2 v,-u+4 v)
$$

The area of $G(\mathbb{D})$ is...
$\boxtimes 6 \pi$.
$\square \frac{\pi}{6}$.$\pi$.$2 \pi$.$\frac{\pi}{2}$.none of the above.
(b) Let $f(x, y, z)=y^{3}$. Then $\operatorname{grad}(\operatorname{div}(\operatorname{grad} f))=\ldots$
$\boxtimes 6 \mathbf{j}$.6.$6 y$.$\left\langle 0,3 y^{2}, 0\right\rangle$.none of the above.
(c) Let $\mathbf{F}$ be a vector field. Then $\operatorname{grad}(\operatorname{curl} \mathbf{F})$ is...a potential for $\mathbf{F}$.the divergence of $\mathbf{F}$.a vector field.
$\boxtimes$ not well-defined.none of the above.
(2) Determine the image of the triangular region with vertices $(0,0),(1,1)$ and $(0,1)$ under the transformation $G(u, v)=\left(u^{2}, v\right)$.

The transformation is given by $x=u^{2}$ and $y=v$ and the original region is bounded by the lines with equations $u=0, v=1$ and $u=v$ which transform under $G$ to $x=0$, $y=1$ and $y^{2}=x$.


(3) The mapping $G(u, v)=\left(\frac{1}{2}(u+v), \frac{1}{2}(u-v)\right)$ transforms the trapezoidal region $\mathcal{S}$ with vertices $(-2,2),(2,2),(1,1)$ and $(-1,1)$ in the $u v$-plane into the trapezoidal region $\mathcal{R}$ with vertices $(1,0),(2,0),(0,-2)$ and $(0,-1)$ in the $x y$-plane.

Use this change of variables to evaluate the integral $\iint_{\mathcal{R}} e^{\frac{x+y}{x-y}} d A$.


Observing that $x+y=u$ and $x-y=v$ and that $\operatorname{Jac}(G)=-\frac{1}{2}$, we obtain

$$
\begin{aligned}
\iint_{\mathcal{R}} e^{\frac{x+y}{x-y}} d A & =\frac{1}{2} \iint_{\mathcal{S}} e^{\frac{u}{v}} d u d v \\
& =\frac{1}{2} \int_{1}^{2} \int_{-v}^{v} e^{\frac{u}{v}} d u d v \\
& =\frac{1}{2} \int_{1}^{2} v\left(e-\frac{1}{e}\right) d v \\
& =\frac{3}{4}\left(e-\frac{1}{e}\right)
\end{aligned}
$$

(4) The volume of the solid ellipsoid $\mathcal{E}: \quad \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}} \leq 1$ is given by:

$$
\operatorname{Vol}(\mathcal{E})=\iiint_{\mathcal{E}} 1 d V
$$

Use one of the following changes of variables and the fact that the ball with center at the origin and radius 1 has volume $\frac{4}{3} \pi$ to determine $\operatorname{Vol}(\mathcal{E})$.

$$
\begin{gathered}
G_{1}(u, v, w)=\left(\frac{u}{a}, \frac{v}{b}, \frac{w}{c}\right) \\
G_{2}(u, v, w)=(a u, b v, c w) \\
G_{3}(u, v, w)=(\sqrt{u}, \sqrt{v}, \sqrt{w})
\end{gathered}
$$

Let us use $G_{2}$ and set $x=a u, y=b v$ and $z=c w$. Then,

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}} \leq 1 \quad \Leftrightarrow \quad u^{2}+v^{2}+w^{2} \leq 1
$$

and the Change of Variables Formula gives

$$
\operatorname{Vol}(\mathcal{E})=\iiint_{\mathcal{B}} 1 \cdot\left|\operatorname{Jac}\left(G_{2}\right)\right| d u d v d w
$$

where $\mathcal{B}$ denotes the unit ball in the $u v w$-space and, assuming $a, b, c>0$,

$$
\operatorname{Jac}\left(G_{2}\right)=\left|\begin{array}{ccc}
a & 0 & 0 \\
0 & b & 0 \\
0 & 0 & c
\end{array}\right|=a b c
$$

It follows that

$$
\operatorname{Vol}(\mathcal{E})=a b c \iiint_{\mathcal{B}} 1 d u d v d w=a b c \cdot \operatorname{Vol}(\mathcal{B})=\frac{4 a b c}{3} \pi \text {. }
$$

(5) Evaluate the integral

$$
\int_{\mathcal{C}} 18 y^{3} d s
$$

where $\mathcal{C}$ is the curve in the plane parameterized by $x(t)=t^{3}, y(t)=t$ with $0 \leq t \leq 1$.

By definition,

$$
\begin{aligned}
\int_{\mathcal{C}} 18 y^{3} d s & =18 \int_{0}^{1} y(t)^{3} \sqrt{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}} d t \\
& =18 \int_{0}^{1} t^{3} \sqrt{9 t^{4}+1} d t
\end{aligned}
$$

The change of variables $u=9 t^{4}+1$ with $d u=36 t^{3} d t$ further leads to

$$
\int_{\mathcal{C}} 18 y^{3} d s=\frac{1}{2} \int_{1}^{10} \sqrt{u} d u=\frac{10 \sqrt{10}-1}{3} .
$$

(6) Evaluate the integral $\int_{\mathcal{L}} x e^{y z} d s$ where $\mathcal{L}$ is the segment from $(0,0,0)$ to $(1,2,3)$.

We can parametrize $\mathcal{L}$ by $\mathbf{r}(t)=\langle t, 2 t, 3 t\rangle$ for $0 \leq t \leq 1$ so that $d s=\sqrt{14} d t$ and

$$
\int_{\mathcal{L}} x e^{y z} d s=\sqrt{14} \int_{0}^{1} t e^{6 t^{2}} d t=\frac{\sqrt{14}}{12} \int_{0}^{6} e^{u} d u=\frac{\sqrt{14}\left(e^{6}-1\right)}{12} .
$$

(7) Evaluate the integral of the vector field

$$
\mathbf{F}(x, y, z)=\left(x+y+\frac{z}{4}\right) \mathbf{i}+\left(y-x^{3}\right) \mathbf{j}+\ln \left(\frac{x+z}{y+1}\right) \mathbf{k}
$$

along the curve $\Gamma$ given by $\mathbf{r}(t)=t \mathbf{i}+t^{3} \mathbf{j}+4 \mathbf{k}$ for $0 \leq t \leq 1$.

$$
\begin{aligned}
\int_{\Gamma} \mathbf{F} \cdot d \mathbf{r} & =\int_{0}^{1} \mathbf{F}(x(t), y(t), z(t)) \cdot \mathbf{r}^{\prime}(t) d t \\
& =\int_{0}^{1}\left\langle t+t^{3}+1,0, \ln \left(\frac{t+4}{t^{3}+1}\right)\right\rangle \cdot\left\langle 1,3 t^{2}, 0\right\rangle d t \\
& =\int_{0}^{1}\left(t+t^{3}+1\right) d t=\frac{7}{4} .
\end{aligned}
$$

(8) The vector field $\mathbf{F}(x, y)=(3+2 x y) \mathbf{i}+\left(x^{2}-3 y^{2}\right) \mathbf{j}$ is conservative. Find a potential.

A potential for $\mathbf{F}$ is a function $f(x, y)$ satisfying

$$
\frac{\partial f}{\partial x}(x, y)=3+2 x y \quad \text { and } \quad \frac{\partial f}{\partial y}(x, y)=x^{2}-3 y^{2}
$$

The first identity implies that

$$
f(x, y)=3 x+x^{2} y+K(y)
$$

where $K(y)$ is a function of $y$ only. Differentiating this identity with respect to $y$ gives

$$
\frac{\partial f}{\partial y}(x, y)=x^{2}+K^{\prime}(y)
$$

and the second potential relation implies that $K^{\prime}(y)=-3 y^{2}$, so that $K(y)=-y^{3}+C$ where $C$ is any real constant. As a conclusion, any potential for $\mathbf{F}$ is of the form

$$
3 x+x^{2} y-y^{3}+C \text {. }
$$

(9) Let $f(x, y)=x e^{y}$ and $\mathbf{F}=\nabla f$. Evaluate $\int_{\Gamma} \mathbf{F} \cdot d \mathbf{r}$, where $\Gamma$ is given by

$$
\mathbf{r}(t)=t e^{t} \mathbf{i}+\sqrt{1+3 t} \mathbf{j}
$$

for $0 \leq t \leq 1$.
The Fundamental Theorem of Calculus for line integrals gives

$$
\int_{\Gamma} \mathbf{F} \cdot d \mathbf{r}=f(\mathbf{r}(1))-f(\mathbf{r}(0))=f(e, 2)-f(0,1)=e^{3} .
$$

