Math 13 Winter 20, Practice Exam II Elements of solution

(1) For each of the following assertions, select the correct ending.

(a) Let \mathbb{D} be the disk with radius 1 and center at the origin in the *uv*-plane and G the mapping defined by

$$G(u, v) = (u + 2v, -u + 4v).$$

The area of $G(\mathbb{D})$ is...

 $\boxtimes 6\pi.$ $\Box \frac{\pi}{6}.$ $\Box \pi.$ $\Box 2\pi.$ $\Box \frac{\pi}{2}.$ $\Box \text{ none of the above.}$

(b) Let
$$f(x, y, z) = y^3$$
. Then grad (div (grad f)) = ...

- ⊠ 6**j**.
- \Box 6.

 $\Box 6y.$

 $\Box \langle 0, 3y^2, 0 \rangle.$

 \Box none of the above.

(c) Let \mathbf{F} be a vector field. Then grad (curl \mathbf{F}) is...

- \Box a potential for ${\bf F}.$
- \Box the divergence of **F**.
- \Box a vector field.
- \boxtimes not well-defined.
- \Box none of the above.

(2) Determine the image of the triangular region with vertices (0,0), (1,1) and (0,1) under the transformation $G(u,v) = (u^2, v)$.

The transformation is given by $x = u^2$ and y = v and the original region is bounded by the lines with equations u = 0, v = 1 and u = v which transform under G to x = 0, y = 1 and $y^2 = x$.

(3) The mapping $G(u,v) = \left(\frac{1}{2}(u+v), \frac{1}{2}(u-v)\right)$ transforms the trapezoidal region \mathcal{S} with vertices (-2,2), (2,2), (1,1) and (-1,1) in the *uv*-plane into the trapezoidal region \mathcal{R} with vertices (1,0), (2,0), (0,-2) and (0,-1) in the *xy*-plane.

Use this change of variables to evaluate the integral $\iint_{\mathcal{R}} e^{\frac{x+y}{x-y}} dA$.

Observing that x + y = u and x - y = v and that $Jac(G) = -\frac{1}{2}$, we obtain

$$\iint_{\mathcal{R}} e^{\frac{x+y}{x-y}} dA = \frac{1}{2} \iint_{\mathcal{S}} e^{\frac{u}{v}} du dv$$
$$= \frac{1}{2} \int_{1}^{2} \int_{-v}^{v} e^{\frac{u}{v}} du dv$$
$$= \frac{1}{2} \int_{1}^{2} v \left(e - \frac{1}{e}\right) dv$$
$$= \frac{3}{4} \left(e - \frac{1}{e}\right).$$

(4) The volume of the solid ellipsoid $\mathcal{E}: \quad \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} \le 1$ is given by:

$$\operatorname{Vol}(\mathcal{E}) = \iiint_{\mathcal{E}} 1 \, dV$$

Use one of the following changes of variables and the fact that the ball with center at the origin and radius 1 has volume $\frac{4}{3}\pi$ to determine $Vol(\mathcal{E})$.

$$G_1(u, v, w) = \left(\frac{u}{a}, \frac{v}{b}, \frac{w}{c}\right)$$
$$G_2(u, v, w) = (au, bv, cw)$$
$$G_3(u, v, w) = (\sqrt{u}, \sqrt{v}, \sqrt{w})$$

Let us use G_2 and set x = au, y = bv and z = cw. Then,

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} \le 1 \quad \Leftrightarrow \quad u^2 + v^2 + w^2 \le 1$$

and the Change of Variables Formula gives

$$\operatorname{Vol}(\mathcal{E}) = \iiint_{\mathcal{B}} 1 \cdot |\operatorname{Jac}(G_2)| \, du \, dv \, dw$$

where \mathcal{B} denotes the unit ball in the *uvw*-space and, assuming a, b, c > 0,

$$\operatorname{Jac}(G_2) = \left| \begin{array}{ccc} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{array} \right| = abc.$$

It follows that

$$\operatorname{Vol}(\mathcal{E}) = abc \iiint_{\mathcal{B}} 1 \, du \, dv \, dw = abc \cdot \operatorname{Vol}(\mathcal{B}) = \frac{4abc}{3}\pi$$

(5) Evaluate the integral

$$\int_{\mathcal{C}} 18y^3 \, ds$$

where C is the curve in the plane parameterized by $x(t) = t^3$, y(t) = t with $0 \le t \le 1$.

By definition,

$$\int_{\mathcal{C}} 18y^3 \, ds = 18 \int_0^1 y(t)^3 \sqrt{x'(t)^2 + y'(t)^2} \, dt$$
$$= 18 \int_0^1 t^3 \sqrt{9t^4 + 1} \, dt.$$

The change of variables $u = 9t^4 + 1$ with $du = 36t^3 dt$ further leads to

$$\int_{\mathcal{C}} 18y^3 \, ds = \frac{1}{2} \int_1^{10} \sqrt{u} \, du = \boxed{\frac{10\sqrt{10} - 1}{3}}$$

(6) Evaluate the integral $\int_{\mathcal{L}} x e^{yz} ds$ where \mathcal{L} is the segment from (0,0,0) to (1,2,3).

We can parametrize \mathcal{L} by $\mathbf{r}(t) = \langle t, 2t, 3t \rangle$ for $0 \leq t \leq 1$ so that $ds = \sqrt{14} dt$ and

$$\int_{\mathcal{L}} x e^{yz} \, ds = \sqrt{14} \int_0^1 t e^{6t^2} \, dt = \frac{\sqrt{14}}{12} \int_0^6 e^u \, du = \boxed{\frac{\sqrt{14}(e^6 - 1)}{12}}.$$

(7) Evaluate the integral of the vector field

$$\mathbf{F}(x, y, z) = \left(x + y + \frac{z}{4}\right)\mathbf{i} + (y - x^3)\mathbf{j} + \ln\left(\frac{x + z}{y + 1}\right)\mathbf{k}$$

along the curve Γ given by $\mathbf{r}(t) = t\mathbf{i} + t^3\mathbf{j} + 4\mathbf{k}$ for $0 \le t \le 1$.

$$\int_{\Gamma} \mathbf{F} \cdot d\mathbf{r} = \int_{0}^{1} \mathbf{F}(x(t), y(t), z(t)) \cdot \mathbf{r}'(t) dt$$

= $\int_{0}^{1} \left\langle t + t^{3} + 1, 0, \ln\left(\frac{t+4}{t^{3}+1}\right) \right\rangle \cdot \left\langle 1, 3t^{2}, 0 \right\rangle dt$
= $\int_{0}^{1} (t + t^{3} + 1) dt = \boxed{\frac{7}{4}}.$

(8) The vector field $\mathbf{F}(x, y) = (3+2xy)\mathbf{i}+(x^2-3y^2)\mathbf{j}$ is conservative. Find a potential. A potential for \mathbf{F} is a function f(x, y) satisfying

$$\frac{\partial f}{\partial x}(x,y) = 3 + 2xy$$
 and $\frac{\partial f}{\partial y}(x,y) = x^2 - 3y^2$.

The first identity implies that

$$f(x,y) = 3x + x^2y + K(y)$$

where K(y) is a function of y only. Differentiating this identity with respect to y gives

$$\frac{\partial f}{\partial y}(x,y) = x^2 + K'(y)$$

and the second potential relation implies that $K'(y) = -3y^2$, so that $K(y) = -y^3 + C$ where C is any real constant. As a conclusion, any potential for **F** is of the form

$$3x + x^2y - y^3 + C$$

(9) Let $f(x,y) = xe^y$ and $\mathbf{F} = \nabla f$. Evaluate $\int_{\Gamma} \mathbf{F} \cdot d\mathbf{r}$, where Γ is given by $\mathbf{r}(t) = te^t \mathbf{i} + \sqrt{1+3t} \mathbf{j}$

for $0 \le t \le 1$.

The Fundamental Theorem of Calculus for line integrals gives

$$\int_{\Gamma} \mathbf{F} \cdot d\mathbf{r} = f(\mathbf{r}(1)) - f(\mathbf{r}(0)) = f(e, 2) - f(0, 1) = e^{3}$$