Instructors: Bo Su Choi, Lizuo Liu, Misha Temkin

Course on canvas.dartmouth.edu.

Syllabus

Week Day Date Section Topic
1 1 Wed Jan 3 Introduction and Review
1 2 Fri Jan 5 5.1 Double Integrals over Rectangular Regions
2 3 Mon Jan 8 5.2 Double Integrals over General Regions
2 4 Wed Jan 10 5.3 Double Integrals in Polar Coordinates
2 5 Fri Jan 12 5.4 Triple Integrals
3 6 X-hour* 5.5 Triple Integrals in Cylindrical Coordinates
3 7 Wed Jan 17 5.5 Triple Integrals in Spherical Coordinates 1
3 8 Fri Jan 19 5.5 Triple Integrals in Spherical Coordinates 2
4 9 Mon Jan 22 5.7 Change of Variables in Multiple Integrals 1
4 10 Wed Jan 24 5.7 Change of Variables in Multiple Integrals 2
4 11 Fri Jan 26 6.1 Vector Fields
5 12 Mon Jan 29 6.2 Line Integrals 1
5 13 Wed Jan 31 6.2 Line Integrals 2
5 14 Fri Feb 2 6.3 Conservative Vector Fields 1
6 15 Mon Feb 5 6.3 Conservative Vector Fields 2
6 16 Wed Feb 7 6.4 Green's Theorem 1
6 17 Fri Feb 9 6.4 Green's Theorem 2
7 18 Mon Feb 12 6.5 Divergence and Curl 1
7 19 Wed Feb 14 6.5 Divergence and Curl 2
7 20 Fri Feb 16 6.6 Surface Integrals 1
8 21 Mon Feb 19 6.6 Surface Integrals 2
8 22 Wed Feb 21 6.6 Surface Integrals 3
8 23 Fri Feb 23 6.7 Stokes' Theorem 1
9 24 Mon Feb 26 6.7 Stokes' Theorem 2
9 25 Wed Feb 28 6.8 The Divergence Theorem 1
9 26 Fri Mar 1 6.8 The Divergence Theorem 2
10 27 Mon Mar 4 Review of The Fundamental Theorems