
MATH 146
Current Problems in Applied Mathematics:

Dynamical Systems and Quantum Information

Dimitris Giannakis
dimitrios.giannakis@dartmouth.edu

Dartmouth College
Winter Term 2022



Section 1

Introduction



Ergodic theory

Ergodic theory studies the statistical behavior of measurable actions of
groups or semigroups on spaces.

Definition 1.1.
A left action, or flow, of a (semi)group G on a set ⌦ is a map
G ⇥ ⌦ ! ⌦ with the following properties:

1 �(e,!) = !, for the the identity element e 2 G and all ! 2 ⌦.
2 �(gh,!) = �(g ,�(h,!)), for all g , h 2 G and ! 2 ⌦.

The set ⌦ is called the state space.

In this course, G will be an abelian group or semigroup that represents
the time domain. Common choices include:

N, Z, R+, R.

We write �g ⌘ �(g , ·), n 2 N,Z, and t 2 R+,R.

e. g. Hamiltonian mechanics
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Ergodic theory

Ludwig Boltzmann James Clerk Maxwell

Ergodic theory has its origin in the mid 19th century with the work of
Boltzmann and Maxwell on statistical mechanics.

The term ergodic is an amalgamation of the Greek words ergo (Ërgo),
which means work, and odos (odÏc), which means street.



Ergodic theory

George David Birkhoff
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The mathematical foundations of the subject were established by
Koopman, von Neumann, Birkhoff, and many others, in work dating to
the 1930s.

Modern ergodic theory is a highly diverse subject with connections to
functional analysis, harmonic analysis, probability theory, topology,
geometry, number theory, and other mathematical disciplines.



Observables and ergodic hypothesis

Rather than studying the flow � directly, ergodic theory focuses on its
induced action on linear spaces of observables, e.g.,

F = {f : ⌦ ! Y},

for a vector space Y (oftentimes, Y = R or C).

Drawing on intuition from mechanical systems, Boltzmann postulated
that time averages of observables should well-approximate expectation
values with respect to a reference distribution, µ.

This is encapsulated in the ergodic hypothesis,
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which is stipulated to hold for typical initial conditions ! 2 ⌦ and
observables f : ⌦ ! Y in a suitable class.

F- is a linear space :
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Operator-theoretic perspective

Definition 1.2.
1 For every g 2 G , the composition operator, or Koopman operator is

the linear map U
g : F ! F defined as

U
g = f � �g .

2 The transfer operator Pg : F 0 ! F 0 is the adjoint of Ug , defined as

P
g⌫ = ⌫ � Ug .

Koopman and transfer operators allow the study of nonlinear dynamics
using techniques from linear operator theory.
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Quantum mechanics

Niels Bohr Albert Einstein Max Planck

Quantum mechanics arose in the late 19th to early 20th century when it
was realized that classical physics do not adequately describe phenomena
such as the blackbody radiation spectrum, the photoelectric effect, and
atomic spectral lines.



Quantum mechanics

Paul Dirac Werner Heisenberg Emmy Noether Erwin Schrödinger

The mathematical formalism of quantum mechanics was developed by
Schrödinger, Heisenberg, Dirac, Noether, von Neumann, and many
others. The modern formulation of quantum mechanics makes heavy use
of operator theory.



Dirac–von Neumann axioms of quantum mechanics

1 States are density operators, i.e., positive, trace-class operators
⇢ : H ! H on a Hilbert space H, with tr ⇢ = 1.

2 Observables are self-adjoint operators, A : D(A) ! H.
3 Measurement expectation and probability:

E⇢A = tr(⇢A), P⇢(⌦) = E⇢(E (⌦)), A =

Z

R
a dE (a).

4 Unitary dynamics between measurements:

⇢t = U
t⇤⇢0U

t .

5 Projective measurement:

⇢|e =
p
e⇢

p
e

tr(
p
e⇢

p
e)

, 0 < e  I .

H = [(Rt ) (hydrogen atom )
H = span / 103 , 11> }

( spin system )
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( A- ≤ B ⇔ B-A ≥ 0 )



Classical probability density Quantum density operator

Given measure µ on R we say that p c- B. ( H )

pe L' ( p ) (⇔ ftp.ldpso ) Thrace- class operators on H
r

is a probability density if

•

p ≥ 0
• of≥ 0

. Jp dip = 1 . tr p
= 1

r
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we define the expectation EPA = trfp A)
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Interpretation of quantum mechanics

A vast subject in its own right, the interpretation of quantum mechanics
can be approached by asking the following question:

• Does quantum mechanics describe the world, or an observer’s

knowledge of the world?

Quantum informational interpretations take the latter point of view.

• Quantum information is the study of the information processing

tasks that can be accomplished using quantum mechanical systems.
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Quantum informational interpretations take the latter point of view.

• Quantum information is the study of the information processing

tasks that can be accomplished using quantum mechanical systems.

(Nielsen & Chung)



Connections with ergodic theory
Classical statistical P(µ) P(µ)

Quantum mechanical Q(H) Q(H)

Pt

� �

P t

For a measure-preserving flow �t : ⌦ ! ⌦ on a probability space
(⌦,⌃, µ):

• The Koopman operator U t : H ! H is unitary on H = L
2(µ) and

thus defines a quantum system.
• The classical statistical dynamics on the space of probability

densities with respect to µ, P(µ), induced by the transfer operator
P

t consistently embeds into the quantum dynamics induced by U
t

on the space of density operators Q(H).
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