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Measure-preserving transformations;
Ergodic theorems



MEASURE THEORY
A collection A of subsets of R is called an

algebra if :0!
,

Sz
- ∅ ft

,
REA

- S c- A ⇒ See A

- S
,
T c- d- ⇒ SAT c- A

,

S UT f A
^

A o - algebra I is a collection of subsets of R

that is an algebra and moreover for any countable
collection { A

, } c- E then A-
±

c- I

- Given any collection cot subsets of R
,
E (c) is the smallest on- algebra that

contains C [ E- algebra generated by c) .

Example : If R is a topological space the Borel o- algebra is the o-algebra

generated by the open sets in r
.

A measure µ on a measurable space (R, -2) is a map y
: 2-→ [0,0 ]

such that : Ci) y(∅ ) = 0 ,
Cii) for any disjoint

countable collection { So
,

Si
,
- -
a-23

,

p( Vsi ) = ? Hsi) . .

.

Examine : Given a point ✗ER
,

define & : I → [0,17 sit
. 8×(57--46)

where Is G) = { 1 if its0 otherwise



A map T :(oh, E) → (Rz, E) between measurable spaces is said to be measurable

if H SEE
,
,

T
- '

( s ) c- 2T
.

Given a measurable map T :(oh, -21 ) → (Rz, E) and a measure µ : I → Ego]
we define the push forward measure -1*4 : -22 → [0,0 ] as -1*4 ( s ) =p (

T
- '

(s ) )

Check : For any ✗ c- or , T*(%) = Sta ,



Measure-preserving dynamical systems

Definition 2.1.
Let (⌦,⌃, µ) be a measure space.

1 A measurable map T : ⌦ ! ⌦ is said to be measure-preserving if
T⇤µ = µ, i.e.,

µ(T�1(S)) = µ(S), 8S 2 ⌃.

Conversely, we say that µ is an invariant measure for T .
2 A measure-preserving map T : ⌦ ! ⌦ is said to be invertible

measure-preserving if T is bijective and T
�1 is also

measure-preserving.
3 A measurable action � : G ⇥ ⌦ ! ⌦ is µ-preserving if �g : ⌦ ! ⌦

is µ-preserving for every g 2 G .

☐o
.



Examples
C) Circle rotation (discrete time

,

G = 21 )
T : Sʰ → Sʰ

,
-1107 = Ot a mod Etc

;Y For any
af R

, T preserves the Lebesgue lardeyth) measure on

a- _ _
• 0

the Borel o-algebra on s
'
.

(a) a is a rational multiple of 2x :

- The orbit of 0
,
i - e . the set 10

,
-1107
,
-1407

, _
. .
}

is periodic .

- In this case
,
T preserves the discrete measure

p

Y
=

◦
8%.

where / % , Q , Q, . . . , Op } is - periodic

orbit under T .

(b) a is an irrational multiple of 2x
,
the Lebesgue measure

is the only Borel invariant measure under T
.

£5 normalized
(a) is not ergodic Wrt Lebesgue measure :

s, ;☒µ , lebesgue
MMM

e.g. an.tl/4
IS( su ↓

Usi is aninrciant set
with 0 < pls) < 1)

"s



www.hingmap-T :S
'
→ 51

1- 10 ) = 20 mod 21T

T preserves the Lebesgue measure :

It is enough to consider an interval I = [01,02 ]

p(1) = 02 - Oi
.

T
- '(1) = [ , ] U -1%+1-4%+12]

g.
IT
-' II ) ) = µ ( [

E. % ] ) + µ ( [Etr, Etr ] ) = { + G) + { + (1)( = µ (1) .

O ' /2
• ?

'

✓
.

"

Lemma : If a o-algebra -2 is

generated by an algebra A , T

,
,

,

.
_

-
-

.

%

preserves a measure y
: 2-→ [go] iff

I
+E
,

it preserves it on the elements of 1- . Aletta
6

For the Borel o- algebra on Sʰ
,
we here

that E is generated by the algebra
d- consisting of finite unions of intervals [2,123 .
As a result, T is measure -preserving iff 14-1-1121) =p (7)
for any internal I .



(3) Continuous-time flow on
Rd

% ( t) = TECH )
,

Ect) c- Rd
,
Fi
.

Rid→ Rd vector field

∅ᵗ : Rd → Rd solution map associated with the initial- nature problem
associated with Tik, (under appropriate regularity assumptions )

lot (E) = ICH where ÉH ) __ FEIGN
,
✗( o) = ✗

.

d

If dir = ¥
, y÷. = 0 then ∅ᵗ preserves the Lebesgue measure on Rd .

Example (simple harmonic oscillation ) : :(f)= - v2
✗ (t )

,
✗ (f) E R

* Cf) = wilt) ④{ Ict) = - watt
consider the flow ∅ᵗ : Ri→ R2 generated by *) , vector field ÉCÉ)=&

-2=1×0
, yo )

∅ = Re (⇐ + ix. ei•ᵗ )/
∅

•

%
apt poems the Lebesgue measure since dirv = °% ¥↳ gamma,

✓ (s) = Hsn A) is an inv . measure C.non-ergodic)

Ffs) = pols nc ) is another invariant measure (ergodic)

↳ ephebesame measure on C



Recurrence

Theorem 2.2 (Poincaré).
Let T : ⌦ ! ⌦ be a measure-preserving transformation of the probability
space (⌦,⌃, µ). Let S 2 ⌃ be a measurable set with µ(S) > 0. Then,
under iteration by T , almost every point of S returns to S infinitely often.
That is, for µ-a.e. ! 2 S , there exists a sequence n1 < n2 < n3 < · · · of
natural numbers, increasing to infinity, such that T nj (!) 2 S for all j .

the set of points in S for which this properly{ does not hold is included in a measurable Rt

↑ NEE s.t.plN ) = 0 .

iPod
.
For N 70 , let 5N = Un?N T

-"

(s )

↳ Set of points
that return to Satter iteration by "" Nsfeps

.

Then
,
MN%Sn is the set of points that return to

S infinitely often .

let A = Sn ( In?.sn/=hI=oSn.-Csinies
≤ so)

↳ set of points in S that return to S infinitely offer
.

For each we A,
these exist a. < nzcn, < . .

.
s - t .

Thi lies .

It is enough to show

1w(A) = pls) .
Indeed

,
we have TEN)=Sn+ , ,

and since T is 4-preserving, 415am
) =p 1-1-45

Nl)

=p ( Sn
)

.

⇒ Msn) -4150
)

.

SE So
.

Moreover, we have so ?
S
,
≥ Sz - -

;
so µ (A) =p

fhiiosn) =p (so)≥y④
since

But 4. (A) ≤ s since AES
,
so we conclude that µ (A)

= 46) ☒



Ergodicity

Definition 2.3.
Let (⌦,⌃, µ) be a probability space.

1 A measurable map T : ⌦ ! ⌦ is said to be ergodic if for every
T -invariant set, i.e., every S 2 ⌃ such that T�1(S) = S we have
either µ(S) = 0 or µ(S) = 1.

2 A measurable action � : G ⇥ ⌦ ! ⌦ is ergodic if for every S 2 ⌃
such that ��g (S) = S for all g 2 G we have either µ(S) = 0 or
µ(S) = 1.

✓
HM =L

1) Let T:R → R be any measurable map ,

let ✗Er be any point .
Then T

is ergodic for the Dirac measure Y=8✗ .



Measure-theoretic characterization of ergodicity

Theorem 2.4.
Let T : ⌦ ! ⌦ be a measure-preserving transformation of the probability
space (⌦,⌃, µ). Then, the following are equivalent.

1 T is ergodic.
2 The only measurable sets S 2 ⌃ such that µ(T�1(S)4S) = 0 have

either µ(S) = 0 or µ(S) = 1.
3 For every S 2 ⌃ with µ(S) > 0, we have µ(

S1
n=1 T

�1(S)) = 1.
4 For every R , S 2 ⌃ with µ(R) > 0 and µ(S) > 0, there exists n > 0

with µ(T�n(R) \ S) > 0.

w

Orbits of sets of positive
]

"%) "
measure well - sample the

invariant measure



Proof that Cii) ⇒ Ciii )

Let s c- I have 4
( s ) > 0

.
To show : R = Un? T- " (s ) has µ ( R) - 1 .

We have T
- ' ( R) = Un? T - n ( s ) ≤ R

since µ is invariant
, y

CT
_'

CR)) = HR )

⇒ y( T
-'

CRIDR) = 0

⇒ Either 4 (R) -0 or HR)=L
Cii )

However
, µlR)≥µ(T

- '

(s ) ) = pls ) > 0
roar

⇒ + (R)
= 1

.
Dad



Measure-theoretic characterization of ergodicity

Theorem 2.5.
Let (⌦,⌃, µ) be a probability space.

1 A measure-preserving action � : N⇥ ⌦ ! ⌦ is ergodic iff

lim
N!1

1
N

N�1X

n=0

µ(��n(R) \ S) = µ(R)µ(S), 8R , S 2 ⌃.

2 A measure-preserving action � : R+ ⇥ ⌦ ! ⌦ is ergodic iff

lim
T!1

1
T

Z T

0
µ(��t(R) \ S) dt = µ(R)µ(S), 8R , S 2 ⌃.

Interpretation : Under action of the dynamics , events represented by R and S

become independent in a time- averaged sense .



Koopman operators on Lp spaces

Definition 2.6.
A measurable map T : ⌦ ! ⌦ on a measure space (⌦,⌃, µ) is said to be
nonsingular if it preserves null sets, i.e., if whenever µ(S) = 0 we have
T⇤µ(S) = µ(T�1(S)) = 0.

Notation.
• L(⌃) = {f : ⌦ ! R : f is ⌃-measurable}.
• L(µ) = {[f ]µ : f 2 L(⌃)}.
• L

p(µ) = {[f ]µ 2 L(µ) :
R
⌦|f |

p
dµ < 1} .

• L
1(µ) = {[f ]µ 2 L(µ) : esssupµ|f | < 1}.

>
Banach spaces equipped

111-11,4, __
HIP die)YP

( 111-11
.ie,)=pʰ%• "they

> HI
,

= { g. c- LICE) s.t.f-gp.ae
g.*⇔,

g g
c- If ]
,

F-✗e : D= R
, Y

= {
×
,
t
- - .

to✗
µ

(f) µ :{functions g :r→Rs.t . #
f(xn7=gKY for all

hell
,- in} }



(e) If T : R → r is measurable
,
then the Koopman operator

U : f→ f- ◦ T maps 1-(E) into itself .

Cii) If T :D →r is non- singular wrt to a measure µ , then for any
f-
, qf LICE ) if [f)

y
= [g)µ then [ f- ◦ T ]

,
= [go -1 ]y .

As a result
,
we can define a Koopman operator as a map U : LG ) → [Ga )

set . U [f)µ
= [ to -1 ]

, .

Non well- definition of Koopman operators for singular maps : n
-1

µµ = f- E-◦ %
• %

,
•

•
.

•

✗
N

Xo u

✗~
✗
n- I let IIN ' { ✗°, - - n, XN- i } add suppose

that T does not mop XN into itself

r In particular assume in = TCXN-i )&#N
Then

, 4N ( { in } ) = 0 bet µw (1--11%7) -_ YN ⇒ T is singular wrt 4N .

Lef f :D→ RI
, g :D

-7 ☒ be such that fail = glad for n c- { 0, _ . . ,N -1}
and tan) =/ gC*n ) .

Then [ f) Inn = [g) you but [ f- ◦ Than =/ [got ]yw
(since ¢0T)C✗µ,) = fkn )≠gGµ)=(g•T)cxn -17 . ⇒ Koopman operator is not well defined

on [ T.cn equiv . classes .



Koopman operators on Lp spaces
Proposition 2.7.
With notation as above, the following hold.

1 If T is measurable, then the composition map U : f 7! f � T maps
L(⌃) into itself.

2 If T is nonsingular, then U : L(µ) ! L(µ) with U [f ]µ = [Uf ]µ is a
well-defined linear map.

3 If T is nonsingular, then L
1(µ) is invariant under U , i.e.,

UL1(µ) ✓ L
1(µ).

4 If T is measure-preserving, then U is an isometry of Lp(µ),
1  p  1, i.e.,

kU [f ]µkLp(µ) = k[f ]µkLp(µ).

5 If T is invertible measure-preserving, then U is an isomorphism of
L
p(µ), 1  p  1, i.e., U and U�1 are both isometries.

Henceforth, we abbreviate [f ]µ ⌘ f , U ⌘ U .



Koopman operators on L2

Notation.
• hf1, f2iL2(µ) =

R
⌦ f1f2 dµ.

The Koopman operator induced by a µ-preserving map T : ⌦ ! ⌦
preservers Hilbert space inner products,

hUf1,Uf2iL2(µ) = hf1, f2iL2(µ).

If, in addition, T is invertible measure-preserving, then U is a unitary
operator,

U
⇤ = U

�1.

Hilbert space with inner product {fi, filthy,
*

and corresponding norm HfHey, = ✓&f,fzyµ_

I
will allow us to define

a quantum system on [ (4) .



Duality of Lp spaces
Notation.
For a probability space (⌦,⌃, µ), we let:

• Mq(⌦, µ) =
n

measures ⌫ ⌧ µ with density d⌫
dµ 2 L

q(µ)
o

.

• Duality pairing: h·, ·iµ : Lp(µ)⇤ ⇥ L
p(µ) ! R, h↵, f iµ = ↵f .

For 1  p < 1, we can identify functionals in L
p(µ)⇤ with measures in

Mq(⌦, µ), 1
p + 1

q = 1, through the map ◆q : Mq(⌦, µ) ! L
p(µ)⇤,

(◆q⌫)f =

Z

⌦
f ⇢ dµ, ⇢ =

d⌫

dµ
.

Equipping Mq(⌦, µ) with the norm

k⌫kMq(⌦,⌫) =

����
d⌫

dµ

����
Lq(µ)

,

◆q becomes an isomorphism of Banach spaces. Thus, we have

L
p(µ)⇤ ' Mq(⌦, µ) ' L

q(µ), 1  p < 1,
1
p
+

1
q
= 1.

t



%Fe.IE?fF#H be a normed space .

The continuous dual
,

** ◦ 1- F is

the set of bounded linear functionals ✗ : F→ I

c-
sup t.gg?-,,- { • .

5-* is a Banach space equipped with the norm
few} 11×1/

**
=

sup
b-%}/j¥

SIGNED / COMPLEX MEASURES (on measurable space CR, -2 ) )

• Signed measure : Y : 2- → ☒
, µ (s) = 4+6 ) - f - CS ) where

✗+ , 4- : 2- → [0
,

• ] are measures .

• Complex measure µ : 2- → RI
, y G) = Yr CS) ti pics) where

Fr , ki : I
→ ☒ are signed measures

ABSOLUTE CONTINUITY We say that a measure to on@, -2) is absolutely
continuous with respect to a measure µ on @ E) , denoted as V44 if
for every set SEE such that 467=0 we hake V67 = 0 .

Radon Nikodymthm : If ray there exists a unique element p e- L' (4) such that
for every SEE, VCs) = Is p day . We typically write p

=

day



Conversely, given p c- L' (f) , we can define a measure ns.t.VCD-fspdp
and V is a. c. wrt . µ .

Examples . µ = Lebesgue measure on ☒
, p c- L' (f) plx)=÷ e-

✗% ≥

→ v is a Gaussian prob . measure on RI
,
and r<< Y -

• µ = Lebesgue measure on R, V = of at some ✗ c- R .

In this case r is not

absolutely continuous Wrf g.( because your} ) = 0 but i (2×3)=1 ) .

RIESZ REPRESENTATION THEOREM

• If F is a Hilbert space , then for every ✗ E F
*
there exists a unique aC- F

such that ✗ f- = last≥ for every ft
F- Conversely every at F induces a functional

✗ c- F* s -t
.
Lf = {a, f)* .



Transfer operators on Lp

Definition 2.8.
With the notation of Proposition 2.7, the transfer operator
P : L1(µ) ! L

1(µ) is is the unique operator satisfying
Z

S
Pf dµ =

Z

T�1(S)
f dµ, 8f 2 L

1(µ).

We define P : Lp(µ) ! L
p(µ), 1 < p  1 by restriction of

P : L1(µ) ! L
1(µ).

Proposition 2.9.
Under the identification L

1(µ)⇤ ' L
1(µ), the transpose

P
0 : L1(µ)⇤ ! L

1(µ)⇤ of the transfer operator P : L1(µ) ! L
1(µ) is

identified with the Koopman operator U : L1(µ) ! L
1(µ); that is,

Z

⌦
f (Pg) dµ =

Z

⌦
(Uf )g dµ, 8f 2 L

1(µ), 8g 2 L
1(µ).



Duality between Koopman and transfer operators

Proposition 2.10.
Let 1  p < 1. Then, under the identification L

p(µ)⇤ ' L
q(µ),

1
p + 1

q = 1, the following hold:

1 The transpose U
0 : Lp(µ)⇤ ! L

p(µ)⇤ of the Koopman operator
U : Lp(µ) ! L

p(µ) is identified with the transfer operator
P : Lq(µ) ! L

q(µ); that is,

hf ,Ugiµ = hPf , giµ, 8f 2 L
q(µ), 8g 2 L

p(µ).

2 The transpose P
0 : Lp(µ)⇤ ! L

p(µ)⇤ of the transfer operator
P : Lp(µ) ! L

p(µ) is identified with the Koopman operator
U : Lq(µ) ! L

q(µ); that is,

hf ,Pgiµ = hUf , giµ, 8f 2 L
q(µ), 8g 2 L

p(µ).

✓
U'✗ = ✗ ◦ U



Duality between Koopman and transfer operators

Corollary 2.11.

1 For 1 < p < 1, U : Lp(µ) ! L
p(µ) and P : Lp(µ) ! L

p(µ) satisfy

U = U
00, P = P

00.

2 In the Hilbert space case, p = 2, we have P = U
⇤.

3 For 1  p  1, P has unit operator norm, kPkLp(µ) = 1.

Lemma 2.12.
With the notation of Proposition 2.8, if T : ⌦ ! ⌦ is invertible
measure-preserving then P : Lp(µ) ! L

p(µ) is the inverse of
U : Lp(µ) ! L

p(µ), P = U
�1.

(f, Ug>
,, ,>

= {Pf
, g



Spectral characterization of ergodicity

Observe that the Koopman operator U : F ! F on any function space
F has an eigenvalue equal to 1 with a constant corresponding
eigenfunction, : ⌦ ! R,

U = , (!) = 1.

Theorem 2.13.
Let T : ⌦ ! ⌦ be a measure-preserving transformation of a probability
space (⌦,⌃, µ). Then, µ is ergodic iff the eigenvalue equal to 1 of the
associated Koopman operator U on L(µ) (and thus on any of the L

p(µ)
spaces with 1  p  1) is simple, i.e.,

Uf = f =) f = const. µ-a.e.

i
eigenvalue 1=1

-



Assume : The system is measure- preserving , ergodic _ f- € 1-1 (E) Of = f- µ- a. e.

To show : f- = const
. µ - a. e.

Define Rian = f-
'

( Ekg , k¥ ) ) ,

he 21
,
n c-

-1t.ws.= { wer :¥≤tH<k÷n } .

T
-' ( rien) = { war :¥n≤ film / <¥. } .

5- ra,nATTRi⇔ʳ
Then SE { war : fltw ) ) =/ flan } ⇒ 467=0 .

L since Ut=f g- a.e.
By ergodioity , either flora,n)=O or ✗ Glyn) = 1. For each n, R=¥zR&m ,

so there

is a unique bust . µ (Ren
,
n ) = I _ Moreover

, Mena inn ≤ Ren
,
n .

Let Q=Nn?
,
Rlkn ,n ) .

On Q f is constant
.

We have µ / a) =p ( An? Men .nl ) = eimul.dtn.nl =L ⇒ f- is constant on a set of full measure
.n -7N

☒



Application (Circle rotation)

claim : T :S
'
→ s

'

,
-1107 = Ota mod ZTL is ergodic wrt . Lebesgue measure itf a

is an irrational multiple of 2% .

First
, suppose that a is rational. Then

, there exists p c- 21st . e
IP"
= 1

.

Let

f / 07 = e IPO
.

Then Uf (O) = f- (-1/07) = eip (•+ a) = eripl = f. (o) .

⇒ f- is an eigenfunction at U corresponding to e-value 1
,
but f- is not constant ¢- are .

⇒ Tis not ergodic .

normalized

conversely
, suppose that

a/ztc is irrational and of = f
,
f f L2(µ

""

?
het

∅; (a) = eiio be the Fourier basis of [(f) .

Then f- = I cjoj
,
where

_↳Ñ∅e{yµ, = File it 21

⇒
. Observing that V19.10) = eii

/•+a)
= eiiaq.co,Cj = { ∅;

,
µ

=§ ,

e-
•
flo) do

[ i_ e.
,

∅j is an e-function of U at evil .

eiia )
,
we
have Ut = §cjU∅j = Tgcjeiiaafj

Thus
,
Uf=f⇔ of - f- = 0 ⇔

,

c;
a
_ 1) &; = 0 ⇒ cieiia_ 7=0 ⇒ 9--0 unless j=o

↑ ↑&ñ∅; iii.
3C-N) is irrational

⇒ f- = c. &, ⇒ f is constant 4- are . ⇒ T is ergodic with respect to Lebesgue measure .

☒



Spectral characterization of ergodicity

Theorem 2.14.
1 Let � : N⇥ ⌦ ! ⌦ be a measure-preserving action and U

n, n 2 N,
the associated Koopman operators on any of L(µ) or Lp(µ),
1  p  1. Then � is ergodic iff U

n
f = f for all n 2 N implies that

f is constant µ-a.e.
2 Let � : R+ ⇥ ⌦ ! ⌦ be a measure-preserving action and U

t ,
t 2 R+, the associated Koopman operators on any of L(µ) or Lp(µ),
1  p  1. Then, � is ergodic iff U

t
f = f for all t 2 R+ implies

that f is constant µ-a.e.



Pointwise ergodic theorem

Theorem 2.15 (Birkhoff).
Let T : ⌦ ! ⌦ be a measure-preserving transformation of a probability
space (⌦,⌃, µ) with associated Koopman operator U : L1(µ) ! L

1(µ).
Then, for every f 2 L

1(µ) and µ-a.e. ! 2 ⌦,

fN(!) :=
1
N

N�1X

n=0

f (T n(!))

converges to a function f̄ 2 L
1(µ) that satisfies

Uf̄ = f̄ ,

Z

⌦
f dµ =

Z

⌦
f̄ dµ.

In particular, if T is ergodic, then for µ-a.e. ! 2 ⌦,

f̄ (!) =

Z

⌦
f dµ.



.coNVRRGRNCR /TOPOLOGIES IN NORMED SPACES

het (E
,
H - H ) be a normed space .

- We say that a sequence fi, fi, _ . . C- F converses to f- c- F if lim 11 f-full = 0
n→a

- We say that a sequence fe.fr, . . . c- F converges to f- c-F.weakly if for every ✗ c- F*

lim @ If-fn)) = 0
n→oo

• Convergence in norm implies weak convergence but the converse is not true .

e. g. F- = 12 , fu = ( . - -

,

0
, 1,0 , _ _ .

)

↳ Ice;) ; ftp./-Ij % -th entry .

We have Ntn _ fm Her = FL for any n
,
me N n=/m . Thus fn does not converge in

norm .

However
,
it converges weakly to 0 .

Indeed
, by the Riesz representation thin ,

for any ✗ c- F* we have ✗g
= {a,g7e , for some af e

' and every gfl ? As

a result
,

✗ In = am ,
and since (a=(ay.az

,
_
. . 7

Haller =✓É,laaT < a we hare an→ ◦ as n → • . Thus
,
for erery ✗ c- F*,

Enzo ✗A = 0 ⇒ fu→ 0

weakly



CONVERGENCE/TOPOLOGY OF THE DUAL SPACE

Recall that F-
*
is a Banach space equipped with the norm

11×11
#* = sup

feFÑ ☒F

As a result F* can be equipped with the corresponding norm and weak topologies .

In addition we hare the weak -* topology of F* induced from the weak topology of
F. We say that a sequence a

,
✗
y - - . e- f-

*

converges to if
5-* in weak -*

sense it for every f- c- F lim an f- = af
.

↳ a

↳The weak -* topology of 4-* is the smallest topology that makes the maps
✗ EF*↳ of continuous for every ft F .

Banach - Atoeogln theorem : The unit ball in 5-
*
(i.e. B ,

#
*) = /✗ c- F-

*
: 11×11,=*= I } )

is weak -* compact .



CONVERGENCE/TOPOLOGIES OF OPERATORS

1-et Fi be a normed space and Fz a Banach space .

We say
that

a linear

map A :-P, →Fz is bounded if sup
d- c-fit { o } %¥!¥;_ < • • The spice of such bounded

linear maps , BCA,E) is a Banach space equipped with the operator norm

11A "
Bea
,E)

= ¥:&, { o } "↑¥¥,- '

we say that a sequence Ai, Ac , - -f-BCF,E) converges to AEBCR, E) in

G) gorm topology if ;g 11 An - All = 0
.

Iii ) strong operator topology if Hf c- Fi , figg K&n- A) f- Hf
,

= 0
.

Ciii ) weak operator topology if Hff Fi and ✗ c- Fit Ling ✗*f) = ✗(At) .

norm converge ⇒ strong convergence ⇒ weak
convergence , but in general the converse

is not true .



Example Fi=Fz = l
2

,
fu = (0, - - n , 0,1, 0, _ . . 2 as before

.

Recall
a

{& , h>ez =¥ g¥hn where g = (go.ge , . _ .
_

) , h
= Cho
,
hi
,
_ . ) . Let Tin c- B. fee)

be defined as the g = {fu, g) fu = ( 0
,
. . .

,
0
, gu , ° . _ _ )

↳ orthogonal projection along fu

tri = Tin
,
1T¥ = The

G) Tn converges weakly to 0 : since lt a Hilbert space , i-e .
e2≈e ? it is enough

to show that for every g. he .lt , figg {g ,Ñnh ?
- 0

.

Indeed
,

neigh (9.Tlnh > = lim g# hn = 0 since g. hell .

w n-7N

← ( co
,
_

. .io , .hn,
°
,
_
. .
7
. Similarly lim 111Th gll = him Ign I = 0 , so Th→IT1999g . - ^ )

n→•
↳00

strongly . However
,
we have

supgfeiyo}%↑g& = I [choosing G=fn ] , similarly sup

81-0110} "T%g)s# =L
wheneater Mtn , choosing g=fn , so Tln does no-tconv-erge.ir operator norm .

Defining Fln = ÷É◦Tn , we can similarly show that Fin ˢ→ I but it does not

converge
in operator norm .[orthogonal projection onto span { to, _ . -stars}



Mean ergodic theorem

Theorem 2.16 (von Neumann).
Let T : ⌦ ! ⌦ be a measure-preserving transformation of a probability
space (⌦,⌃, µ) with associated Koopman operator U : L2(µ) ! L

2(µ).
Let ⇧ : L2(µ) ! L

2(µ) be the orthogonal projection onto the eigenspace
of U corresponding to eigenvalue 1. Then, the sequence of operators
UN = N

�1 PN�1
n=0 U

n converges strongly to ⇧, i.e.,

lim
N!1

UN f = ⇧f , 8f 2 L
2(µ).

In particular, if T is ergodic, ⇧ is the projection onto the 1-dimensional
subspace of L2(µ) containing µ-a.e. constant functions, i.e.,

⇧f = h , f iL2(µ) =

✓Z

⌦
f dµ

◆
.



FINITE -RANK APPROXIMATIONS OF THE KOOPMAN OPERATOR

T : r → r
,
measure -preserving with invariant probability measure µ .

U : V4 ) → LYN
,

U f = f- ◦T
, Koopman operator .

Given : { % , ∅, . - - , } 'orthonormal basis of V4) , i.e . It f- e- L4µ )

we have f- = fight, ( in norm topology of Ltp ) ) where f- = É Ñe∅e
L 1=0

where the = He
,
f) .iq) .

Example : D= Sʰ , y normalized Lebesgue measure
,
an o-N basis of L'Gu) is the

Fui basis
, 1%10) = e'

"°
0£ [0,42 ) , l c- 21 . fires feck), we have

= {∅e
,
f) = -

i
flo) do

◦
It

'

Define orthogonal projections TIL : ily ) → lily ) such that ranTL = span / ∅, -→9L , } .

Explicitly Tkf = fL=ÉgÑe&e .

We have a family of projected Koopman operators U
,
: V4 ) → v4 ) given by

UL = TIL UTIL
.



L - I

UL = FLUTE
.

can be represented by an ↳ L matrix A
,
= [Aij ]

,;=◦

where Aij = {fi
,
Up;) .

In particular , given f- c- V4 ) we have g= Unf
A

where
g
= (Jo, - . , 9%-1,0, _ _ . ) and of = (Jo, _ . . -9<-17 satisfies § = AL #

with # = (%
,
. . ,É→ )

"

.

Eiampel) : T :S
ʰ
→ St circle rotation

,
1-107=0 + a mod 2K

.

We have U ∅; (o ) = §; (Tfo ) ) = eiillta
)
= eiiaeiio = eija ∅; (o)

( In this case the ∅; are eigenvectors of U corresponding to eigenvalue eii? )
Aij = {di , 0$;) = {∅i , ∅;> eiia = Si ; Eia

⇒ AL = [ Airi ] ;; =-L =

[
"

%é#a
◦

° )•
ÉÉ

. eito

Example 2 : T :S
'
→ s

'

, doubling map , 1-101=20 mod 2k

V10 ; ( o) = ei2i° = &,; / O) ⇒ {& ,
,
Ufj> = { di

,
¢2;) = dip; = Aij

A , = (
^

" %
•

;◦ .

.
.

)



Proposition As ↳a , Uh = TEUT, converges to U strongly .

Proof
. First

,
observe that TL converges to I strongly since { ate / is an o-N basis

of v4 ) , i-e . Thf ⇒ f- for every ft L'4) . As a result
,
since U

is bounded
,
ÑL = UTE converges strongly to U .

The
#Yourergence of U=ÑÑu

to U will follow from the following lemma :

Let AL and BL converge strongly to A and B
, respectively .

Assume

that AL is uniformly bounded i. er
, gyp 11A

,
11 = a <• .

Then
,
ALBL

converges strongly to AB .



Topological dynamics

Of particular interest is the case where (G , ⌧G ) and (⌦, ⌧⌦) are
topological spaces and � : G ⇥ ⌦ ! ⌦ is a continuous, and thus
Borel-measurable, action. We let B(⌦) denote the Borel �-algebra of ⌦.

Definition 2.17.
The support of a measure µ : B(⌦) ! [0,1] is the set

suppµ := {! 2 ⌦ : µ(N!) > 0, 8N! 2 ⌧⌦}.

Lemma 2.18.
With notation as above, the following hold.

1 suppµ is a closed (and thus Borel-measurable) subset of ⌦.
2 If ⌦ is Hausdorff, and µ is a Radon measure, every Borel-measurable

set S ⇢ ⌦ \ suppµ has µ(S) = 0.
3 If µ is invariant under a continuous map T : ⌦ ! ⌦, then suppµ is

also invariant,
T

�1(suppµ) ✓ suppµ.



Existence of invariant measures

Theorem 2.19 (Krylov-Bogoliubov).
Let (⌦, ⌧⌦) be a compact metrizable space and T : ⌦ ! ⌦ a continuous
map. Then, there exists an invariant Borel probability measure under T .



Existence of dense orbits

Theorem 2.20.
Let (⌦, ⌧⌦) be a compact metrizable space, T : ⌦ ! ⌦ a continuous
map, and µ an ergodic, invariant Borel probability measure with
suppµ = ⌦. Then, µ-a.e. ! 2 ⌦ has a dense orbit {T n(!)}1n=0.



Geometry of invariant measures

Theorem 2.21.
Let T : ⌦ ! ⌦ be a continuous map on a compact metrizable space. Let
M(⌦;T ) denote the set of T -invariant Borel probability measures on ⌦.
Then, the following hold:

1 M(⌦;T ) is a weak-⇤ compact, convex space.
2 µ is an extreme point of M(⌦;T ) iff it is ergodic.
3 If µ and ⌫ are distinct, ergodic measures in M(⌦;T ), then they are

mutually singular.



Equidistributed sequences

Definition 2.22.
Let T : ⌦ ! ⌦ be a continuous map on a compact metrizable space
(⌦, ⌧⌦) and µ a Borel probability measure. A sequence !0,!1, . . . with
!n = T

n(!0) is said to be µ-equidistributed if

lim
N!1

1
N

N�1X

n=0

f (!n) =

Z

⌦
f dµ, 8f 2 C (⌦).

Remark.
µ-equidistribution of !0,!1, . . . is equivalent to weak-⇤ convergence of
the sampling measures µN = N

�1 PN�1
n=0 �!n to the measure µ.



Basin of a measure

Definition 2.23.
With the notation of Definition 2.22 the basin of µ is the set

B(µ) = {!0 2 ⌦ : !0,!1, . . . is µ-equidistributed}.

By the pointwise ergodic theorem (Theorem 2.15), if ⌦ is a metrizable
space and µ is an ergodic invariant measure with compact support, then
µ-a.e. ! 2 ⌦ lies in B(µ).



Observable measures

Definition 2.24.
With the notation of Definition 2.23, let ⌫ be a reference Borel probability
measure on ⌦. The measure µ is said to be ⌫-observable if there exists a
Borel set S 2 B(⌦) with ⌫(S) > 0 such that ⌫-a.e. ! 2 S lies in B(µ).

Intuitively, we think of ⌫ as the measure from which we draw initial
conditions. ⌫-observability of µ then means that the statistics of
observables with respect to µ can be approximated from experimentally
accessible initial conditions.



Koopman operators on spaces of continuous functions

Proposition 2.25.
Let T : ⌦ ! ⌦ be a continuous map on a locally compact Hausdorff
space. Then, the Koopman operator U : f 7! f � T is well-defined as a
linear map from C (⌦) into itself. Moreover:

1 U is a contraction, i.e.,

kUf kC(⌦)  kf kC(⌦), 8f 2 C (⌦),

with equality if T is invertible.
2 U has operator norm kUk = 1.
3 U has the properties

U(fg) = (Uf )(Ug), U(f ⇤) = (Uf )⇤, 8f , g 2 C (⌦),

i.e., it is a ⇤-homomorphism of the C
⇤-algebra C (⌦).



Transfer operators on Borel measures

Notation.
• M(⌦): Space of signed Borel measures on topological space (⌦, ⌧⌦).

Definition 2.26.
Let T : ⌦ ! ⌦ be a continuous map on a compact metrizable space.
The transfer operator P : C (⌦)⇤ ! C (⌦)⇤ is the transpose (dual)
operator to the Koopman operator U : C (⌦) ! C (⌦),

P↵ = ↵ � U.



Unique ergodicity

Definition 2.27.
Let T : ⌦ ! ⌦ be a continuous map on a compact metrizable space
(⌦, ⌧⌦). T is said to be uniquely ergodic if there is only one T -invariant
Borel probability measure.

Theorem 2.28.
With notation as above, the following are equivalent.

1 T is uniquely ergodic.
2 For every f 2 C (⌦), N�1 PN�1

n=0 f (T n(!)) converges to a constant,
uniformly with respect to ! 2 ⌦.

3 For every f 2 C (⌦), N�1 PN�1
n=0 f (T n(!)) converges pointwise to a

constant.
4 There exists an invariant Borel probability measure µ such that

lim
N!1

1
N

N�1X

n=0

f (T n(!)) =

Z

⌦
f dµ, 8! 2 ⌦.



Strong and weak continuity of continuous-time (semi)flows
Theorem 2.29.
Let �t : ⌦ ! ⌦, t � 0, be a continuous-time, continuous, semiflow on a
compact metrizable space ⌦ with associated Koopman operators
U

t : C (⌦) ! C (⌦). Then, as t ! 0, U t converges strongly to the
identity,

lim
t!0

kU t
f � f kC(⌦) = 0, 8f 2 C (⌦).

Theorem 2.30.
Let �t : ⌦ ! ⌦, t � 0, be a continuous-time, measurable semiflow with
invariant probability measure µ and associated Koopman operators
U

t : Lp(µ) ! L
p(µ). Then, the following hold as t ! 0:

1 For 1  p < 1, U t converges strongly to the identity,

lim
t!0

kU t
f � f kLp(µ) = 0, 8f 2 L

p(µ).

2 For p = 1, U t converges in weak-⇤ sense to the identity,

lim
t!0

Z

⌦
g(U t

f ) dµ =

Z

⌦
gf dµ, 8f 2 L

1(µ), 8g 2 L
1(µ).



Mixing

Recall from Theorem 2.4 that a measure-preserving transformation is
ergodic iff

lim
N!1

1
N

N�1X

n=0

µ(T�n(R) \ S) = µ(R)µ(S), 8R , S 2 ⌃.

Definition 2.31.
Let T : ⌦ ! ⌦ be a measure-preserving transformation of the probability
space (⌦,⌃, µ).

1 T is said to be weak-mixing if

lim
N!1

1
N

N�1X

n=0

|µ(T�n(R) \ S)� µ(R)µ(S)| = 0, 8R , S 2 ⌃.

2 T is said to be strong-mixing, or mixing, if

lim
n!1

µ(T�n(R) \ S) = µ(R)µ(S), 8R , S 2 ⌃.



Mixing

Theorem 2.32.
Let T : ⌦ ! ⌦ be a measure-preserving transformation of the probability
space (⌦,⌃, µ). Then, the following are equivalent.

1 T is weak-mixing.
2 There is a subset N ⇢ N of zero density such that

lim
n!1
n/2N

µ(T�n(R) \ S) = µ(R)µ(S), 8R , S 2 ⌃.



Observable-centric characterization of ergodicity and mixing

Let T : ⌦ ! ⌦ be a measure-preserving transformation of the probability
space (⌦,⌃, µ). Let U : L2(µ) ! L

2(µ) be the associated Koopman
operator on L

2.

For f , g 2 L
2(µ), define the cross-correlation function Cfg : N ! R, where

Cfg (n) = hf ,Un
giL2(µ),

and the autocorrelation function Cf = C↵ .

Consider also the expectation values f̄ =
R
⌦ f dµ and ḡ =

R
⌦ g dµ.

Theorem 2.33.
With notation as above, the following are equivalent.

1 T is ergodic.
2 For all f , g 2 L

2(µ), limn!1 N
�1 PN�1

n=0 Cfg (n) = f̄ ḡ .

3 For all f 2 L
2(µ), limn!1 N

�1 PN�1
n=0 Cf (n) = f̄

2.



Observable-centric characterization of ergodicity and mixing

Theorem 2.34.
With notation as above, the following are equivalent.

1 T is weak-mixing.
2 For all f , g 2 L

2(µ), limN!1 N
�1 PN�1

n=0 |Cfg (n)� f̄ ḡ | = 0.

3 For all f 2 L
2(µ), limN!1 N

�1 PN�1
n=0 |Cf (n)� f̄

2| = 0.

Theorem 2.35.
With notation as above, the following are equivalent.

1 T is mixing.
2 For all f , g 2 L

2(µ), limN!1 Cfg (n) = f̄ ḡ .
3 For all f 2 L

2(µ), limN!1 Cf (n) = f̄
2.



Spectral characterization of mixing

Theorem 2.36.
Let T : ⌦ ! ⌦ be a measure-preserving transformation of the probability
space (⌦,⌃, µ), and U : L2(µ) ! L

2(µ) the corresponding Koopman
operator. Then, T is weak-mixing iff the only eigenvalue of U is the
eigenvalue equal to 1.



Mixing and product flows

Theorem 2.37.
Let T : ⌦ ! ⌦ be a measure-preserving transformation of the probability
space (⌦,⌃, µ). Then, the following are equivalent.

1 T is weak-mixing.
2 T ⇥ T is ergodic with respect to the product measure µ⇥ µ.
3 T ⇥ T is weak-mixing with respect to the product measure µ⇥ µ.
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