Section 2

Measure-preserving transformations; Ergodic theorems

THERO unr 1 . T A

A collection A of jubiets of 52 is called an
$\frac{dl_{gebra}}{f}$
$- \not \in \mathcal{E}$, $\mathcal{I} \in \mathcal{A}$
$-SEE \Rightarrow SEE$
- S, TEA => SOTEA, SUTEA
A <u>or-algebra</u> Z is a collection of subjects of r
that is on algebra and moreover for any countable
collection (AIJEZ then UAJEZ
- Given any collection Cot subjets of R, Z(C) is the smallest or-algebra that
ontails C (Z-algebra generated by C)
Example: If R is a topological space the Borel o-algebra is the o-algebra
generated by the oppn sets in SZ.
A measure p on a measurable space (R, Z) is a map p: Z -> [0, 0]
such that: (i) $\mu(\phi) = 0$, (ii) for any disjoint countable collection $2S_0, S_1, \dots \in \mathbb{Z}_n^n$
$\mu(\bigcup S_i) = \sum_{j=1}^{j} \mu(S_j).$
Example: Given a point XER define S: Z-> LO, 1] s.t. S(S) = X_S(x)
where $\chi_{S}(x) = \begin{cases} 1 & \text{if } x \in S \\ 0 & \text{if } x \in S \end{cases}$

Amap T if ∀SE	$\frac{1}{\sum_{i,j}} \sum_{i,j} \sum_{i,j$	\rightarrow ($\mathcal{J}_{2}, \mathbb{Z}_{2}$) ϵ 2	z) between	r measurable	599687 15 5	aid to be <u>measurabl</u>	e
Given a we define	measurable the push fo	map T:(orward me	(Ri, Zi)→ asure T*p	$(\mathcal{J}_{2}, \mathcal{Z}_{2})$ $Z_{2} \rightarrow [0, \infty]$	and a meas] as T*p	ure p: Z, -> Z, 2) (S) = p. (T'(S)))
Check :	For shy	xen, T,	• (S×) = 5	T(~)			

Measure-preserving dynamical systems

Definition 2.1. Let (Ω, Σ, μ) be a measure space.

1 A measurable map $T : \Omega \to \Omega$ is said to be measure-preserving if $T_*\mu = \mu$, i.e.,

$$\mu(T^{-1}(S)) = \mu(S), \quad \forall S \in \Sigma.$$

Conversely, we say that μ is an invariant measure for T.

- 2 A measure-preserving map T : Ω → Ω is said to be invertible measure-preserving if T is bijective and T⁻¹ is also measure-preserving.
- 3 A measurable action Φ : G × Ω → Ω is μ-preserving if Φ^g : Ω → Ω is μ-preserving for every g ∈ G.

Examples	
(1) Circle rotation (discrete time, G = Z)	
$T: S^{1} \longrightarrow S^{1}$, $T(\theta) = \theta + a \mod 2\pi$	
For any at R, T preserves the Lebesgue (arcleyth)	Mcasille on
(Borel or-algebra on S'.	
(a) a is a rational multiple of 22:	
- The orbit of O, i.e. the jet {O, TIO),	T ² (0), ~~ }
is periodic.	
- In this ruse, T preserves the disorde measure	· · · · · · · · · · · ·
$\mu = \sum_{j=0}^{r} S_{j} \text{where} \left\{ \mathfrak{B}, \mathfrak{O}, \mathfrak{O}_{2}, \ldots, \mathfrak{O}_{p} \right\}$	j 13 · periodic
orbit under T.	
(b) a is an irrational multiple of 272, the bes	ergue measure T
(a) is not erjodic with belong the measure so the solution is a solution of the solution of th	normalized ebesgue measure y
Usi is an inrement pet with	$0 < \mu(z) < 1$

(2) Doubling map T: S' -> S1
$T(\theta) = 2\theta \mod 2\pi$
T preserves the Lebesgue measure:
It is enough to consider an interval $J = [\Theta_1, \Theta_2]$
$\mu(1) = \theta_2 - \theta_1, \qquad T^{-1}(1) = \begin{bmatrix} \theta_1 & \theta_2 \\ \theta_2 & \theta_2 \end{bmatrix} \cup \begin{bmatrix} \theta_1 & \theta_2 \\ \theta_1 & \theta_2 \end{bmatrix} + T_2 \begin{bmatrix} \theta_1 & \theta_2 \\ \theta_2 & \theta_2 \end{bmatrix}$
$\mu\left(T^{-1}(I)\right) = \mu\left(I\stackrel{\Theta_1}{=}, \stackrel{\Theta_2}{=}\right) + \mu\left(\left[\stackrel{\Theta_1}{=}, \stackrel{\Theta_2}{=}+\mathcal{R}\right]\right) = \frac{1}{2}\mu(Z) + \frac{1}{2}\mu(Z)$
$= \mu(\mathbf{I}), \mathbf{I} = \mathbf{I}$
$ \begin{array}{c} \end{array} \\ \\ $
Lemma: If a o-algebra Z is generated by an algebra A, T
preserves a measure $p: Z \rightarrow [o, o]$ iff $\frac{o}{2} + n$ it preserves if on the elements of 4
For the Borel o-algebra on St, we have
that Z is generated by the algebra
A consisting of finite whichs of intervals $[T_1, T_2]$. As a result, T is measure preserving iff $f(T'(2)) = f(2)$
for any interval I.

(3) Continuous-time flow on Rd
$\vec{x}(t) = \vec{v}(\vec{x}(t)), \vec{x}(t) \in \mathbb{R}^d, \vec{v}: \mathbb{R}^d \to \mathbb{R}^d \text{vector field}$
\$t: Rd -> Rd solution map associated with the initial-value publicm
associated with we, i.e., (under appr priate regularity assumptions)
$\phi^{t}(z) = \overline{\chi}(f)$ where $\overline{\chi}(f) = \overline{\chi}(\overline{\chi}(f))$, $\chi(0) = \chi$
If $div \vec{v} = \sum_{i=1}^{d} \frac{\partial v_i}{\partial x_i} = 0$ then ϕ^{f} preserves the bebesque measure on \mathbb{R}^{d}
Example (Simple harmonic oscillation): $\dot{x}_{H} = -\omega^2 \times (t)$, $x(t) \in \mathbb{R}$
$\int \dot{x}(t) = \omega \gamma(t) \qquad (2t)$
$(\dot{\gamma}(t) = -\omega < ti)$
Consider the flow of: R -> R generated by (F), vector hield v(x)= (-wx)
$\mathbf{x} = (\mathbf{x}_0, \mathbf{y}_0)$
$\frac{d^{\dagger}(\vec{x})}{c} = \operatorname{Re}\left(\left(x_{0}+iy_{0}\right)e^{i\omega t}\right)$
of preserves the Lebesgue miasure since div v = 0
$\gamma(s) = \mu(s \cap A)$ is an inv. measure (non-ergodic)
$(\Lambda (s) = \mu_c(S \cap c))$ is due ther invariant measure (ergodic)
A cannulus

Recurrence

the set of points in S for which this property Theorem 2.2 (Poincaré). NGZ s.f. $\mu(N) = 0$.

Let $T: \Omega \to \Omega$ be a measure-preserving transformation of the probability space (Ω, Σ, μ) . Let $S \in \Sigma$ be a measurable set with $\mu(S) > 0$. Then, under iteration by T, almost every point of S returns to S infinitely often. That is, for μ -a.e. $\omega \in S$, there exists a sequence $\mathsf{n}_1 < \mathsf{n}_2 < \mathsf{n}_3 < \cdots$ of natural numbers, increasing to infinity, such that $T^{n_j}(\omega) \in S$ for all j. Proof. For N70, let $S_{N} = (\int_{n-N}^{\infty} T^{-n}(s))$ Then, $\bigcap_{N=0}^{\infty} S_N$ is the set of points that return to S after Herdion by NO. Steps. Let $A = S \cap \left(\bigcap_{N=0}^{\infty} S_N \right) = \bigcap_{N=0}^{N} S_N \dots (since S \leq S_0)$ Indeed, we have $T^{-1}(S_N) = S_{N+1}$, and since T is μ -preserving, $\mu(S_{N,H}) = \mu(T^{-1}(S_N))$ => $\mu(S_N) = \mu(S_0)$. => $\mu(SN) = \mu(SO)$. Horegre, we have $SO \supseteq S_1 \supseteq S_2 \cdots$, so $\mu(A) = \mu(IN = S_N) = \mu(SO) \supseteq \mu(S)$. But $\mu(A) \le S$ since $A \le S$, so we conclude that $\mu(A) \supseteq \mu(S)$.

Ergodicity

- **1** A measurable map $T : \Omega \to \Omega$ is said to be ergodic if for every *T*-invariant set, i.e., every $S \in \Sigma$ such that $T^{-1}(S) = S$ we have either $\mu(S) = 0$ or $\mu(S) = 1$.
- 2 A measurable action Φ : G × Ω → Ω is ergodic if for every S ∈ Σ such that Φ^{-g}(S) = S for all g ∈ G we have either μ(S) = 0 or μ(S) = 1.

1) Let $T: \Omega \rightarrow \Omega$ be any missinable map, let real be any point. Then T is ergodic for the Dirac measure $\mu = \delta_{R}$.

Measure-theoretic characterization of ergodicity

Theorem 2.4.

Let $T : \Omega \to \Omega$ be a measure-preserving transformation of the probability space (Ω, Σ, μ) . Then, the following are equivalent.

- 1 T is ergodic.
- 2 The only measurable sets $S \in \Sigma$ such that $\mu(T^{-1}(S) \triangle S) = 0$ have either $\mu(S) = 0$ or $\mu(S) = 1$.
- 3 For every $S \in \Sigma$ with $\mu(S) > 0$, we have $\mu(\bigcup_{n=1}^{\infty} T^{-Y}(S)) = 1$.
- a For every R, S ∈ Σ with μ(R) > 0 and μ(S) > 0, there exists n > 0 with $μ(T^{-n}(R) ∩ S) > 0$.

Orbits of sels of positive the measure evell-scorple the inversional measure

Proof that (ii) => (iii) Let SEZ have p(S) > O. To show. $R = \bigcup_{n=1}^{\infty} T^{-n}(S)$ has p(R) = 1. We have $T^{-1}(R) = \bigcup_{n=2}^{\infty} T^{-n}(S) \subseteq R$ Since puis invariant, $\mu(T^{-1}(R)) = \mu(R)$ $\Rightarrow \mu(T^{\prime}(R) \Delta R) = O$ Prie $= 7 \text{ Either } \mu(R) = 0 \text{ or } \mu(R) = 1$ (ii) However, $\mu(R) \approx \mu(T^{-1}(S)) = \mu(S) > O$ T-I(R)AR $\Rightarrow \gamma(R) = 1$

Measure-theoretic characterization of ergodicity

Theorem 2.5.

Let (Ω, Σ, μ) be a probability space.

1) A measure-preserving action $\Phi : \mathbb{N} \times \Omega \to \Omega$ is ergodic iff

$$\lim_{N\to\infty}\frac{1}{N}\sum_{n=0}^{N-1}\mu(\Phi^{-n}(R)\cap S)=\mu(R)\mu(S),\quad\forall R,S\in\Sigma.$$

2 A measure-preserving action $\Phi:\mathbb{R}_+\times\Omega\to\Omega$ is ergodic iff

$$\lim_{T\to\infty}\frac{1}{T}\int_0^T\mu(\Phi^{-t}(R)\cap S)\,dt=\mu(R)\mu(S),\quad\forall R,S\in\Sigma.$$

Interpretation: Under action of the dynamics, events represented by R and S become independent in a time-averaged sense.

Koopman operators on L^p spaces

Definition 2.6.

A measurable map $T : \Omega \to \Omega$ on a measure space (Ω, Σ, μ) is said to be nonsingular if it preserves null sets, i.e., if whenever $\mu(S) = 0$ we have $T_*\mu(S) = \mu(T^{-1}(S)) = 0$.

Notation.

•
$$\mathbb{L}(\Sigma) = \{f : \Omega \to \mathbb{R} : f \text{ is } \Sigma \text{-measurable}\}$$
.
• $L(\mu) = \{[f]_{\mu} : f \in \mathbb{L}(\Sigma)\}$.
• $L^{p}(\mu) = \{[f]_{\mu} \in L(\mu) : \int_{\Omega} |f|^{p} d\mu < \infty\}$.
• $L^{\infty}(\mu) = \{[f]_{\mu} \in L(\mu) : \text{esssup}_{\mu} |f| < \infty\}$.
• $L^{\infty}(\mu) = \{[f]_{\mu} \in L(\mu) : \text{esssup}_{\mu} |f| < \infty\}$.
• $L^{\infty}(\mu) = \{[f]_{\mu} \in L(\mu) : \text{esssup}_{\mu} |f| < \infty\}$.
• $\|f\|_{L^{\infty}(p)} = \lim_{p \to \infty} \|f\|_{L^{1}(p)}$
• $L^{\infty}(\mu) = \{[f]_{\mu} \in L(\mu) : \text{esssup}_{\mu} |f| < \infty\}$.
• $\|f\|_{L^{\infty}(p)} = \lim_{p \to \infty} \|f\|_{L^{1}(p)}$
• $L^{\infty}(\mu) = \{[f]_{\mu} \in L(\mu) : \text{esssup}_{\mu} |f| < \infty\}$.
• $\|f\|_{L^{\infty}(p)} = \lim_{p \to \infty} \|f\|_{L^{1}(p)}$
• $L^{\infty}(\mu) = \{g \in \mathbb{L}(\Sigma) \text{ s.e. } f = g \mid \mu - a.e. \}$ (when μ is a finite measure)
• $Example: \quad \Omega = \mathbb{R}, \quad \mu = \delta_{\kappa_{1}} + \dots + \delta_{\kappa_{N}}$
• $f_{1} = \{hunchions \ g : \Omega = \mathbb{R} \text{ s.f. } f_{1} + \dots + \delta_{\kappa_{N}}$
• $f_{1} = \{hunchions \ g : \Omega = \mathbb{R} \text{ s.f. } f_{1} + \dots + \delta_{\kappa_{N}}$

(i) If $T: \Omega \rightarrow \Omega$ is measurable, then the Koopman operator $U: f \mapsto f \circ T$ maps IL(Z) into itself. (ii) If $T: \Sigma \rightarrow \mathcal{X}$ is non-singular with to a measure μ , then for any $f, g \in \mathcal{U}(\Sigma)$ if $\mathbb{L}f \mathbb{J}_{\mu} = \mathbb{L}g \mathbb{J}_{\mu}$ then $\mathbb{L}f \circ T \mathbb{J}_{\mu} = \mathbb{L}g \circ T \mathbb{J}_{\mu}$. As a result, we can define a Koopman operator as a map U: L(r) -> L(r) s.t. $U[P]_{p} = [foT]_{p}$. Non well-dehnitiss et Koopman operators for singular maps: $\mu_{N} = \frac{1}{N} \sum_{n=0}^{\infty} S_{n}$ Let XN = {xo, ..., XN-1 } and suppose that T does not map XN into Healt se In particular assume × = T(turi) & X Then, $\mu_N(\{X_N\}) = 0$ but $\mu_N(T^{-1}\{X_N\}) = Y_N = T$ is singular with μ_N Let f: R > R, g: R -> R be , uch that f(xn) = g(xn) for n & 20, ..., N-19 and $f(x_N) \neq g(x_N)$. Then $[f]_{\mu_N} = [g]_{\mu_N}$ but $[f \circ T]_{\mu_N} \neq [g \cdot T]_{\mu_N}$ (since $(f \circ T)(x_{\mu_1}) = f(x_N) \neq g(x_N) = (g \circ T)(x_{N-1}) \implies Koopman operator is not well defined$ $on <math>C J_{\mu_N}$ equir- classes.

Koopman operators on L^p spaces

Proposition 2.7.

With notation as above, the following hold.

- **1** If T is measurable, then the composition map $U : f \mapsto f \circ T$ maps $\mathbb{L}(\Sigma)$ into itself.
- 2 If T is nonsingular, then $\mathcal{U} : L(\mu) \to L(\mu)$ with $\mathcal{U}[f]_{\mu} = [Uf]_{\mu}$ is a well-defined linear map.
- 3 If T is nonsingular, then $L^{\infty}(\mu)$ is invariant under \mathcal{U} , i.e.,

$$\mathcal{U}L^{\infty}(\mu)\subseteq L^{\infty}(\mu).$$

ⓐ If T is measure-preserving, then U is an isometry of L^p(μ), 1 ≤ p ≤ ∞, i.e.,

$$\|\mathcal{U}[f]_{\mu}\|_{L^{p}(\mu)} = \|[f]_{\mu}\|_{L^{p}(\mu)}.$$

⑤ If *T* is invertible measure-preserving, then *U* is an isomorphism of $L^{p}(\mu)$, 1 ≤ p ≤ ∞, i.e., *U* and *U*⁻¹ are both isometries.

Henceforth, we abbreviate $[f]_{\mu} \equiv f$, $U \equiv U$.

Koopman operators on L^2

Notation.

•
$$\langle f_1, f_2 \rangle_{L^2(\mu)} = \int_{\Omega} f_1^* f_2 d\mu.$$

Hilbert space with inner product
$$\langle f_1, f_2 \rangle_{L^2(f_1)}$$

and corresponding norm $\|\|f\|_{L^2(f_1)} = \sqrt{\langle f_1, f_2 \rangle_{L^2(f_2)}}$

The Koopman operator induced by a $\mu\text{-preserving map }T:\Omega\to\Omega$ preservers Hilbert space inner products,

$$\langle Uf_1, Uf_2 \rangle_{L^2(\mu)} = \langle f_1, f_2 \rangle_{L^2(\mu)}.$$

If, in addition, T is invertible measure-preserving, then U is a unitary operator, $U^* = U^{-1}$.

Duality of L^p spaces

Notation.

For a probability space (Ω, Σ, μ) , we let:

- $M_q(\Omega,\mu) = \left\{ \text{measures } \nu \ll \mu \text{ with density } \frac{d\nu}{d\mu} \in L^q(\mu) \right\}.$
- Duality pairing: $\langle \cdot, \cdot \rangle_{\mu} : L^{p}(\mu)^{*} \times L^{p}(\mu) \to \mathbb{R}, \ \langle \alpha, f \rangle_{\mu} = \alpha f.$

For $1 \leq p < \infty$, we can identify functionals in $L^p(\mu)^*$ with measures in $M_q(\Omega, \mu)$, $\frac{1}{p} + \frac{1}{q} = 1$, through the map $\iota_q : M_q(\Omega, \mu) \to L^p(\mu)^*$,

$$(\iota_q \nu)f = \int_{\Omega} f \rho \, d\mu, \quad \rho = \frac{d\nu}{d\mu}.$$

Equipping $M_q(\Omega, \mu)$ with the norm

$$\|
u\|_{M_q(\Omega, \mathbf{v})} = \left\| \frac{d
u}{d\mu} \right\|_{L^q(\mu)},$$

 ι_q becomes an isomorphism of Banach spaces. Thus, we have

$$L^p(\mu)^*\simeq M_q(\Omega,\mu)\simeq L^q(\mu), \quad 1\leq p<\infty, \quad rac{1}{p}+rac{1}{q}=1.$$

DUAL <u>SPACES</u> and a second s
· Let (F, . 1 ,) be a normed space. The continuous dual, Ft of F is
the set of bounded linear functionals x: F -> C
$\frac{ \alpha f }{ f _{F^{\#}}} \leq \infty F^{\#} \text{ is a Banach space equipped with the norm} \\ fervice \frac{ \alpha f }{ f _{F^{\#}}} \leq \sup_{\ \alpha f\ _{F^{\#}}} = \sup_{f \in F \setminus \{0\}} \frac{ \alpha f }{ f _{F}} \\ fervice \frac{ \alpha f }{ f _{F^{\#}}} \leq \sup_{\ \beta f\ _{F^{\#}}} \frac{ \alpha f }{ f _{F^{\#}}} $
SIGNED/COMPLEX MEASURES (on measurable space (R,Z))
• Signed measure: $p: \overline{Z} \rightarrow \mathbb{R}$, $\mu(S) = \mu_{+}(S) - \mu_{-}(S)$ where $\mu_{+}, \mu_{-}: \overline{Z} \rightarrow [0, \infty]$ are measures
· Complex measure $\mu: \Sigma \rightarrow R$, $\mu(S) = \mu_r(S) + i\mu_r(S)$ where $\mu_r, \mu_r: \Sigma \rightarrow R$ are signed measures
ABSOLUTE CONTINUITY We say that a measure $P \circ (\Omega, \Sigma)$ is absolutely continuous with respect to a measure $p \circ (\Omega, \Sigma)$, denoted as $V \ll p$ if for every set SEZ such that $p(S) = 0$ we have $Y(S) = 0$. Radon Nikolym thm If $p \ll p$ there exists a unique element $p \in L'(p)$ such that for every SEZ, $P(S) = \int_{S} p dp$. We fypically write $p = dp$

Conversely, given $p \in L'(p)$, we can define a measure p s.t. $p(s) = \int_{S} p dp$ and p is a.c. wrt. p .	
<u>Examples</u> . $\mu = \text{lebesgue measure on } R$, $\rho \in L'(\mu)$, $\rho(x) = \frac{1}{12\pi} e^{-\frac{\pi^2}{62}}$ $\sim \mathcal{V}$ is a Gaussian prob. measure on R , and $\mathcal{V} << \mu$.	
• $\mu = \text{Lebessue}$ measure on \mathbb{R} , $\nu = \delta$, at some $x \in \mathbb{R}$. In this case ν is not absolutely continuous write μ (because $\mu(2x3) = 0$ but $\nu(2x3) = 1$). RIESZ REPRESENTETION THEOREM	
20 N S [1] I BOOG I A P	
· If K is a Hilbert space, then for every x & KK there exists a unique a & K	
· If F is a Hilbert space, then for every x & F there exists a unique a & F such that x f = < a, f> for every for Conversely every a & F induces a functional	
· If F is a Hilbert space, then for every $x \in F^{*}$ there exists a unique $a \in F$ such that $x f = \langle a, f \rangle_{F}$ for every $f \in F$. Conversely every $a \in F$ induces a functional $x \in F^{*}$ s. $f = \langle a, f \rangle_{F}$.	
· If F is a Hilbert space, then for every $x \in F^{\#}$ there exists a unique $a \in F$ such that $x f = \langle a, f \rangle_{F}$ for every $f \in F$. Conversely every $a \in F$ induces a functional $x \in F^{*}$ s.l. $x f = \langle a, f \rangle_{F}$.	
· If F is a Hilbert space, then for every $\alpha \in F^{\#}$ there exists a unique $\alpha \in F$ such that $\alpha f = \langle \alpha, f \rangle_{F}$ for every $f \in F$. Conversely every $\alpha \in F$ induces a functional $\alpha \in F^{*}$ s. 1. $\alpha f = \langle \alpha, f \rangle_{F}$.	
• If F is a Hilbert space, then for every $\alpha \in F^{*}$ there exists a unique $\alpha \in F$ such that $\alpha f = \langle \alpha, f \rangle_{F}$ for every $f \in F$ Conversely every $\alpha \in F$ induces a functional $\alpha \in F^{*}$ s. $f = \langle \alpha, f \rangle_{F}$.	
• If F is a Hilbert space, then for every $\alpha \in F^{\#}$ there exists a unique $\alpha \in F$ such that $\alpha f = \langle \alpha, f \rangle_{F}$ for every $f \in F$ Conversely every $\alpha \in F$ induces a functional $\alpha \in F^{\#}$ s.1. $\alpha f = \langle \alpha, f \rangle_{F}$.	
· If \mathcal{F} is a Hilbert space, then for every $\alpha \in \mathcal{F}^{\#}$ there exists a unique $\alpha \in \mathcal{F}$ such that $\alpha f = \langle \alpha, f \rangle_{\mathcal{F}}$ for every $f \in \mathcal{F}$ Conversely every $\alpha \in \mathcal{F}$ induces a functional $\alpha \in \mathcal{F}^{\#}$ s.1 $\alpha f = \langle \alpha, f \rangle_{\mathcal{F}}$.	
. If \mathcal{F} is a Hilbert space, then for every $\alpha \in \mathcal{F}^{\#}$ there exists a unique $\alpha \in \mathcal{F}$ such that $\alpha f = \langle \alpha, f \rangle_{\mathcal{F}}$ for every $f \in \mathcal{F}$ Conversely every $\alpha \in \mathcal{F}$ induces a functional $\alpha \in \mathcal{F}^{\#}$ s.1 $\alpha f \in \langle \alpha, f \rangle_{\mathcal{F}}$.	
. If F is a Hilbert space, then for every $\alpha \in F^{\#}$ there exists a unique $\alpha \in F$ such that $\alpha f = \langle \alpha, f \rangle_{F}$ for every $f \in F$ Conversely every $\alpha \in F$ induces a functional $\alpha \in F^{*}$ s.1. $\alpha f = \langle \alpha, f \rangle_{F}$.	
. If F is a Hilbert space, then for every $x \in F^{*}$ there exists a unique $a \in F$ such that $\alpha f = \langle a, f \rangle_{F}$ for every $f \in F$. Conversely every $a \in F$ induces a functional $\alpha \in F^{*}$ s.1. $\alpha f = \langle a, f \rangle_{F}$.	
. If \mathcal{F} is a Hilbert space, then for every $\alpha \in \mathcal{F}^{\star}$ there exists a unique $\alpha \in \mathcal{F}$ such that $\alpha f = \langle \alpha, f \rangle_{\mathcal{F}}$ for every $f \in \mathcal{F}$. Conversely every $\alpha \in \mathcal{F}$ induces a functional $\alpha \in \mathcal{F}^{\star}$ s.l. $\alpha f = \langle \alpha, f \rangle_{\mathcal{F}}$.	
. If \mathcal{M} is a Hilbert space, then for every $\alpha \in \mathcal{K}^{\#}$ there exists a unique $\alpha \in \mathcal{K}$ such that $\alpha f = \langle \alpha, f \rangle_{\mathcal{F}}$ for every $f \in \mathcal{F}$. Conversely every $\alpha \in \mathcal{F}$ induces a functional $\alpha \in \mathcal{F}^{\#}$ s.1. $\alpha f \in \langle \alpha, f \rangle_{\mathcal{F}}$.	

Transfer operators on L^p

Definition 2.8.

With the notation of Proposition 2.7, the transfer operator $P: L^1(\mu) \to L^1(\mu)$ is is the unique operator satisfying

$$\int_{S} Pf \, d\mu = \int_{T^{-1}(S)} f \, d\mu, \quad \forall f \in L^{1}(\mu).$$

We define $P : L^{p}(\mu) \to L^{p}(\mu), 1 by restriction of <math>P : L^{1}(\mu) \to L^{1}(\mu)$.

Proposition 2.9.

Under the identification $L^1(\mu)^* \simeq L^{\infty}(\mu)$, the transpose $P' : L^1(\mu)^* \to L^1(\mu)^*$ of the transfer operator $P : L^1(\mu) \to L^1(\mu)$ is identified with the Koopman operator $U : L^{\infty}(\mu) \to L^{\infty}(\mu)$; that is,

$$\int_{\Omega} f(Pg) \, d\mu = \int_{\Omega} (Uf)g \, d\mu, \quad \forall f \in L^{\infty}(\mu), \quad \forall g \in L^{1}(\mu).$$

Duality between Koopman and transfer operators

Proposition 2.10.

Let $1 \leq p < \infty$. Then, under the identification $L^{p}(\mu)^{*} \simeq L^{q}(\mu)$, $\frac{1}{p} + \frac{1}{q} = 1$, the following hold: $U^{1}\alpha = \alpha \circ U$

 The transpose U': L^p(µ)* → L^p(µ)* of the Koopman operator U : L^p(µ) → L^p(µ) is identified with the transfer operator P : L^q(µ) → L^q(µ); that is,

$$\langle f, Ug \rangle_{\mu} = \langle Pf, g \rangle_{\mu}, \quad \forall f \in L^{q}(\mu), \quad \forall g \in L^{p}(\mu).$$

 2 The transpose P': L^p(µ)* → L^p(µ)* of the transfer operator P: L^p(µ) → L^p(µ) is identified with the Koopman operator U: L^q(µ) → L^q(µ); that is,

$$\langle f, Pg \rangle_{\mu} = \langle Uf, g \rangle_{\mu}, \quad \forall f \in L^{q}(\mu), \quad \forall g \in L^{p}(\mu).$$

Duality between Koopman and transfer operators

Corollary 2.11.

1 For $1 , <math>U : L^{p}(\mu) \to L^{p}(\mu)$ and $P : L^{p}(\mu) \to L^{p}(\mu)$ satisfy $U = U'', \quad P = P''. \quad \langle f, U_{g} \rangle_{L^{2}(\Gamma)} = \langle Pf, g \rangle_{L^{2}(\Gamma)}$ 2 In the Hilbert space case, p = 2, we have $P = U^{*}$.

3 For $1 \le p \le \infty$, P has unit operator norm, $\|P\|_{L^p(\mu)} = 1$.

Lemma 2.12.

With the notation of Proposition 2.8, if $T : \Omega \to \Omega$ is invertible measure-preserving then $P : L^{p}(\mu) \to L^{p}(\mu)$ is the inverse of $U : L^{p}(\mu) \to L^{p}(\mu)$, $P = U^{-1}$.

Spectral characterization of ergodicity

Observe that the Koopman operator $U : \mathcal{F} \to \mathcal{F}$ on any function space \mathcal{F} has an eigenvalue equal to 1 with a constant corresponding eigenfunction, $1 : \Omega \to \mathbb{R}$,

$$U \mathbb{1} = \mathcal{I}, \quad \mathbb{1}(\omega) = 1.$$

Theorem 2.13.

Let $T : \Omega \to \Omega$ be a measure-preserving transformation of a probability space (Ω, Σ, μ) . Then, μ is ergodic iff the eigenvalue equal to 1 of the associated Koopman operator U on $L(\mu)$ (and thus on any of the $L^{p}(\mu)$ spaces with $1 \le p \le \infty$) is simple, i.e.,

$$Uf = f \implies f = const. \ \mu$$
-a.e.

<u>Assume</u> : The system is measure-preserving, ergodic. $f \in \mathbb{L}(\Sigma)$ $Uf = f p - a$.	 C
To show: $f = const.$ $p - a.e.$	
Define $\Omega_{k,n} = f^{-1}\left(\overline{[k]}_{z^n}, \frac{k+1}{z^n}\right)$, $k \in \mathbb{Z}$, $n \in \mathbb{N}$	
$= \left\{ w \in \Omega : \frac{k}{\epsilon^{n}} \leq f(w) < \frac{k+1}{\epsilon^{n}} \right\} \qquad $	
$T^{-1}(\mathcal{R}_{k,n}) = \left\{ w \in \mathcal{R} : \frac{k}{2^n} \leq \#(T(w)) < \frac{k+1}{2^n} \right\}. \qquad S = \mathcal{R}_{k,n} \wedge T^{-1}(\mathcal{R}_{k,n})$	
Then $S \subseteq \{ \omega \in \mathcal{Q} : f(T(\omega)) \neq f(\omega) \} \implies \psi(S) = O$	
By ergodicity, either $\mu(Sl_{r,n}) = 0$ or $\mu(l_{r,n}) = 1$. For each n , $\Omega = \prod Sl_{r,n}$, so	there
is a unique kn st $\mu(\mathcal{R}_{tn}, n) = 1$. Moreover, $\mathcal{R}_{kn+1}, n+1 \in \mathcal{R}_{tn}, n$.	
Let $Q = \bigcap_{n=1}^{\infty} \mathcal{L}(t_{n,n})$ On Q f is constant.	
We have $\mu(Q) = \mu(\Lambda_{n=1}^{\infty} \mathcal{L}(t_n, n)) = \lim_{N \to \infty} \mu(\mathcal{S}_{L_n, N}) = 1 \implies f$ is constant on a pet of fi	ill measure

Application (Circle notation) Claim: T: S'-PS', T(0) = O + a mod 27 is ergodic with Lebesgue Measure ilf a is an irrational Multiple of 272. First, suppose that a is rational. Then, there exists $p \in \mathbb{Z}$ s.t. $e^{ipa} = 1$. Let $f(\theta) = e^{ip\theta}$. Then $(\mathcal{J}f(\theta) = f(\mathcal{I}/\theta)) = e^{ip(\theta+a)} = e^{ip\theta} = f(0)$ => f is an eigen function of U carresponding to e-value 2, but fis not constant prace. => 1 is not ergodic. Normalized Lebessue Conversely, suppose that $\alpha/2\pi$ is irrational and Uf = f, $f \in L^2(\mu)$ help by (α) if α (α) and Uf = f, $f \in L^2(\mu)$ help $\phi_{j}(\theta) = e^{ij\theta} be the fourier basis of L^{2}(p).$ $f = \sum_{j \in \mathbb{Z}} c_{j} \phi_{j}, be re$ (i.e., \$j is an e-hunction of U af even eisa), we have $Uf = \sum_{j} C_{j} U_{j} = \sum_{j} C_{j} e^{ija} \phi_{j}$ Thus, $Uf = f \Rightarrow 0f - f = 0 \Rightarrow \sum_{j \in \mathbb{Z}} C_j(e^{ij\alpha} - 1) \phi_j = 0 \Rightarrow C_j(e^{ij\alpha} - 1) = 0 \Rightarrow C_j = 0$ unless j=0 $=7 f = c.\phi_0 = 7 f is constant pr-ce-re. = 7 T is ergodic with respect to Lebesgue measure B$

Spectral characterization of ergodicity

Theorem 2.14.

- Let Φ : N × Ω → Ω be a measure-preserving action and Uⁿ, n ∈ N, the associated Koopman operators on any of L(μ) or L^p(μ), 1 ≤ p ≤ ∞. Then Φ is ergodic iff Uⁿf = f for all n ∈ N implies that f is constant μ-a.e.
- 2 Let $\Phi : \mathbb{R}_+ \times \Omega \to \Omega$ be a measure-preserving action and U^t , $t \in \mathbb{R}_+$, the associated Koopman operators on any of $L(\mu)$ or $L^p(\mu)$, $1 \le p \le \infty$. Then, Φ is ergodic iff $U^t f = f$ for all $t \in \mathbb{R}_+$ implies that f is constant μ -a.e.

Pointwise ergodic theorem

Theorem 2.15 (Birkhoff).

Let $T : \Omega \to \Omega$ be a measure-preserving transformation of a probability space (Ω, Σ, μ) with associated Koopman operator $U : L^1(\mu) \to L^1(\mu)$. Then, for every $f \in L^1(\mu)$ and μ -a.e. $\omega \in \Omega$,

$$f_N(\omega) := rac{1}{N} \sum_{n=0}^{N-1} f(T^n(\omega))$$

converges to a function $\bar{f} \in L^1(\mu)$ that satisfies

$$Uar{f}=ar{f},\quad\int_\Omega f\,d\mu=\int_\Omegaar{f}\,d\mu.$$

In particular, if T is ergodic, then for μ -a.e. $\omega \in \Omega$,

$$ar{f}(\omega) = \int_{\Omega} f \, d\mu.$$

CONVERGENCE/1090LOGIES IN NORMED SPACES
het (F,) be a normed space.
-We say that a sequence $f_i, f_{i, -} \in F$ converges to $f \in F$ if $\lim_{n \to \infty} f - f_n = O$
- We say that a sequence $f_1, h_1 \dots \in \mathcal{F}$ converges to $f \in \mathcal{F}$ weakly if for every $x \in \mathcal{F}^{\mathcal{F}}$ $\lim_{n \to \infty} (\alpha (f - f_n)) = O$
Convergence in norm implies weak convergence but the converse is not true. e.g. $F = \ell^2$, $f_n = (0,, 0, 1, 0,)$ $\ (c_i)_j \ _{\ell^2} \sqrt{\sum_j c_j ^2}$ Cu-th entry.
We have $\ f_n - f_m\ _{\ell^2} = \sqrt{2}$ for any $u, m \in N$ $n \neq m$. Thus fin does not concrete in norm. However, it converges weakly to O Indeed, by the Riesz representation thum, for any $\alpha \in P^{\text{th}}$ we have $\alpha g = \langle \alpha, g \rangle_{\ell^2}$ for some $\alpha \in \ell^2$ and every $g \notin \ell^2$. As a result, $\alpha + n = \alpha_n$, and since $\langle \alpha = (\alpha, \alpha_2,) \rangle$ $\ \alpha\ _{\ell^2} = \sqrt{\sum_{n=1}^{\infty} f_{n+1} ^2} \langle \infty w $ have $hare \alpha \rightarrow 0$ as $n \rightarrow \infty$. Thus, for every $\alpha \in P^{\text{th}}$, $\lim_{n \rightarrow \infty} \alpha \cdot f_n = 0 \implies f_n \xrightarrow{\text{weally}} 0$

Recall that F* is a Banach space equipped with the norm	
$\ \mathbf{x} \ _{\mu, f} = \sup_{\mathbf{f} \in \mathcal{F} \setminus \{0\}} \ \mathbf{x} \ _{F}$	
As a result F* can be equipped with the corresponding norm and weak topologies.	
In addition we have the weak-topology of For induced from the weak topology of	
F. We say that a sequence $x_i, x_{i,-} \in F^*$ converges to $\alpha \in F^*$ in weak-x sense if for every $f \in F$ $Gm \propto_n f = \alpha f$.	
The wedk-topology of F" is the smallest topology that Mades the maps	
[a, b] $[a, b]$ $[b, b]$ $[$	
x e F* ~> orf confinuous for every ff F.	
$x \in P^* \longrightarrow \alpha f$ continuous for every $f \in F$. <u>Banach-Maoglu Huevrem</u> : The unit ball in F^* (i.e. $B_1(P^*) = \{x \in F^* : \ x\ _{P^*} = 1\}$)	
$x \in P^* \longrightarrow \infty f$ continuous for every $f \in F$. <u>Banach-Maoglu theorem</u> : The unit ball in F^* (i.e. $B_1(P^*) = \{x \in F^* : \ x\ _{P^*} = 1\}$) is weak-* compact.	
$\alpha \in \mathbb{P}^{*} \longrightarrow \alpha + \operatorname{confinious}$ for every $f \in \mathbb{F}$. <u>Banach-Maoglu theorem</u> : The unit ball in \mathbb{F}^{*} (i.e. $B_{1}(\mathbb{P}^{*}) = \{\alpha \in \mathbb{F}^{*} : \ \alpha\ _{\mathbb{P}^{*}} = 1\}$) is weat -* compact.	
$\alpha \in P^* \longrightarrow \alpha + \text{ confinious for every } f \in F.$ <u>Banach-Maoglu theorem</u> : The unit ball in F^* (i.e. $B_1(P^*) = \{\alpha \in F^* : \ \alpha \ _{P^*} = 1\}$) is weat in compact.	
$\alpha \in P^* \longrightarrow \alpha + \alpha = \alpha + \alpha = \alpha + \beta = \alpha $	
$\alpha \in \mathcal{F}^* \longrightarrow \alpha f$ continuous for every $f \in \mathcal{F}$. <u>Banach-Maogla theorem</u> : The unit ball in \mathcal{F}^* (i.e. $B_1(\mathcal{F}^*) = \{\alpha \in \mathcal{F}^* : \ \alpha\ _{\mathcal{F}^*} = 1\}$) is weat -* compact.	
$\alpha \in F^* \mapsto \alpha - f$ continuous for every $f \in F$. <u>Banach-Haogla Hievrem</u> : The unit ball in F^* (i.e. $B_1(F^*) = \{\alpha \in F^* : \ \alpha\ _{F^*} = 1\}$) is weak-* compact.	
$\alpha \in \mathbb{P}^{*} \mapsto \alpha + \operatorname{continuous}$ for every $f \in \mathbb{P}$. <u>Banach-Alaoglin theorem</u> : The unit ball in \mathbb{P}^{*} (i.e. $B_{1}(\mathbb{P}^{*}) = \{\alpha \in \mathbb{P}^{*} : \ \alpha\ _{\mathbb{P}^{*}} = 1\}$) is weak-* compact.	

CONVERGENCE/20POLOGIES OF OPERATORS

Let Fibe a normed space and $F_2 = Banach space We say that a linear map A: Fi \rightarrow F_2 is bounded if sup \frac{\ Af\ _F}{\ F_1\ _{C}} < \infty. The space of such bounded \frac{\ Af\ _F}{\ F_1\ _{C}} < \infty.$
linear maps, $B(F_i,F_i)$ is a Banach space equipped with the operator norm $\ A\ _{B(F_i,F_i)} = \sup_{f\in F_i \setminus \{0\}} \frac{\ Af\ _{F_i}}{\ F\ _{F_i}}$
We say that a sequence AI, to,, GB(FI, FL) converges to AEB(FI, FL) in (i) norm fopology if clim An-A = 0
(ii) strong operator topology if $\forall f \in F_1$, $\lim_{n \to \infty} (A_n - A)f _{F_2} = O$.
(iii) weak operator topology if $\forall f \in F_i$ and $\alpha \in F_z^*$ lime $\alpha(A_n f) = \alpha(A f)$.
norm converge > strong convergence => weak convergence, but in general the converse is not true.

$\frac{\mathcal{E}_{\text{rample}}}{\langle q, h \rangle_{e^2}} = \mathcal{E}_{q^{\text{then}}}^2, f_n = (0, \dots, 0, 1, 0, \dots) \text{ as before } \mathcal{P}_{eall}$ $\langle q, h \rangle_{e^2} = \sum_{n=0}^{\infty} g_n^{\text{then}} \text{ where } q = (g_0, g_1, \dots), h = (h_0, h_1, \dots) \cdot \text{ Let } \mathcal{T}_n \in B(\mathcal{E}^2)$
be defined as $T_n g = \langle h, g \rangle f_n = (0,, 0, g_n, 0,)$ $\leq \text{orthogonal projection along fn}$ $T_n^2 = T_n, T_n^* = T_n$
(i) The converges weakly to O: Since $\ell^2 = 4$ tilbert space, i.e. $\ell^2 = \ell^2$, it is enough to show that for every $g, h \in \ell^2$, $\ell_{int} \langle g, Thh h \rangle = O$ Indeed, $\ell_{n \to \infty} \langle g, Thh \rangle = \ell_{int} g_{n}^{*} h_n = O$ since $g, h \in \ell^2$ $(g, g) = \int_{n \to \infty} (0, -1) h_n (0$
strongly. However, we have sup <u>ITTING II</u> = 1 (choosing $g=hn$), similarly sup $g \in e^2 \setminus \{0\}$ $\frac{\ [Tm - Tn]g }{\ g\ } = 1$ where ver $m \neq n$, choosing $g=fn$, so The data not converge in operator norm.
Defining $TT_N = \sum_{n=0}^{N-1} TT_n$, we can similarly show that $TT_N \xrightarrow{S} I$ but it does not Lothogonal projection onto span {fo,, f_N-s} converge in operator norm.

Mean ergodic theorem

Theorem 2.16 (von Neumann).

Let $T : \Omega \to \Omega$ be a measure-preserving transformation of a probability space (Ω, Σ, μ) with associated Koopman operator $U : L^2(\mu) \to L^2(\mu)$. Let $\Pi : L^2(\mu) \to L^2(\mu)$ be the orthogonal projection onto the eigenspace of U corresponding to eigenvalue 1. Then, the sequence of operators $U_N = N^{-1} \sum_{n=0}^{N-1} U^n$ converges strongly to Π , i.e.,

$$\lim_{N\to\infty} U_N f = \Pi f, \quad \forall f \in L^2(\mu).$$

In particular, if T is ergodic, Π is the projection onto the 1-dimensional subspace of $L^2(\mu)$ containing μ -a.e. constant functions, i.e.,

$$\Pi f = \langle \mathbb{1}, f \rangle_{L^{2}(\mu)} \mathbb{1} = \left(\int_{\Omega} f \, d\mu \right) \mathbb{1}.$$

FINITE-RANK APPROXIMATIONS OF THE KOOPMAN OPERATOR
$T: \mathcal{D} \rightarrow \mathcal{D}$, measure-preserving with invariant probability measure μ $U: L^{2}(\mu) \rightarrow L^{2}(\mu), UP = PoT, Koopman operator.$
Firen: { $\phi_0, \phi_1, \dots, f_n$ orthonormal basis of $L^2(\mu)$, i.e. $\forall f \in L^2(\mu)$ we have $f = \lim_{n \to \infty} f_1$ (in norm topology of $L^2(\mu)$) where $f_1 = \sum_{k=0}^{L-1} \hat{f}_k \phi_k$
where $\hat{f}_{e} = \langle \hat{\phi}_{e}, \hat{f} \rangle_{L^{2}(\mu)}$ Example: $\Sigma = S^{1}$, μ normalized Lebesgue measure, an one basis of $L^{2}(\mu)$ is the Fourier basis, $\hat{\phi}_{e}(\theta) = e^{i\theta\theta} \theta_{\bar{e}}[0,2\pi], 1 \in \mathbb{Z}$ (firen $\hat{f}_{\bar{e}}L^{2}(\mu)$, we have $\hat{f}_{e} = \langle \hat{\phi}_{e}, \hat{f} \rangle = \int_{0}^{2\pi} e^{-i\theta\theta} \hat{f}(\theta) \frac{d\theta}{2\pi}$
Define orthogonal projections $TL : L^{2}(f) \rightarrow L^{2}(f)$ such that ran $TL = poin \{ \phi_{2} \dots, \phi_{L} \}$ Explicitly $TL f = f_{L} \equiv \sum_{c=0}^{C-1} \hat{f}_{c} \phi_{c}$ We have a family of projected Koopmen operators $U_{L} : L^{2}(f) \rightarrow L^{2}(f)$ given by $U_{L} = TL \cup TL$

UL = TLUTTL con be represented by an L-L matrix AL = [Ais]
where $Aij = \langle \phi_i, U \phi_j \rangle$. In particular, given $f \in L^2(\mu)$ we have $g = U_L f$
where $q = (\overline{g}_{0},, \overline{g}_{L_{1}}, 0,)$ and $\overline{g} = (\overline{g}_{0},, \overline{g}_{L_{1}})'$ satisfies $\overline{g} = A_{L} + \overline{g}_{L_{1}}$ with $\overline{f} = (\overline{h}_{0},, \overline{h}_{L_{1}})'$.
Example): T: S ¹ -> S ¹ circle rotation, T(0) = O + a mod 27.
We have $U\phi_j(\theta) = \phi_j(T(\theta)) = e^{ij(\theta+\alpha)} = e^{ij\alpha}e^{ij\theta} = e^{ij\alpha}\phi_j(\theta)$
(In this case the ϕ_j are eigenrectors of U corresponding to eigenvalue $e^{i\hat{v}\alpha}$) Aij = $\langle \phi_i, U \phi_j \rangle = \langle \phi_i, \phi_j \rangle e^{i\hat{j}\alpha} = S_{ij} e^{i\hat{v}j\alpha}$
$\Rightarrow A_{L} = [h_{ij}]_{ij=-L}^{L} = \begin{pmatrix} e^{-iLa} \\ e^{-iLa} \\ 0 \\ e^{iLa} \\ 0 \\ e^{iLa} \end{pmatrix}$
Example 2: T: 5' -> 5', Lowsling Map, T(0)= 20 mod 290
$(\phi_{j}(\theta) = e^{i2j\theta} = \phi_{e_{j}}(\theta) \implies \langle \phi_{i}, \psi_{i} \rangle = \langle \phi_{i}, \phi_{2j} \rangle = \delta_{i,2j} = A_{ij}$
$A_{L} = \begin{pmatrix} \ddots & \ddots & \ddots & \ddots \\ & & & & & \\ & & & & & \\ & & & &$

Propositi	ion As	[->00,	\mathcal{O}_{L} :	= TLU	TTL COU	verges 1	to Us	trongly.			
Proof. First, observe that TTL converges to I stansty since [\$e! is an O-N basis of $L^2(f)$, i.e. TTL $f \longrightarrow f$ for every $ffL(f)$. As a result, since U is bounded, $U_L = UTTL$ converges strongly to U. The towergence of $U_L = TTL \widetilde{U}_L$ to U will follow from the following Cemma:											
Lemma that	Le A	F A	and brul	BL	conrege	stongly	to A	and B,	respectively. Assume Then. A. B.		
Converge	o stron	nsly f	to AF	3,		·, · · · · · ·	p +_ -				
· · · · · · ·											

Topological dynamics

Of particular interest is the case where (G, τ_G) and (Ω, τ_Ω) are topological spaces and $\Phi : G \times \Omega \to \Omega$ is a continuous, and thus Borel-measurable, action. We let $\mathfrak{B}(\Omega)$ denote the Borel σ -algebra of Ω .

Definition 2.17.

The support of a measure $\mu : \mathfrak{B}(\Omega) \to [0,\infty]$ is the set

$$\operatorname{supp} \mu := \{ \omega \in \Omega : \mu(N_\omega) > 0, \ \forall N_\omega \in \tau_\Omega \}.$$

Lemma 2.18.

With notation as above, the following hold.

- **1** supp μ is a closed (and thus Borel-measurable) subset of Ω .
- 2 If Ω is Hausdorff, and µ is a Radon measure, every Borel-measurable set S ⊂ Ω \ supp µ has µ(S) = 0.
- 3 If μ is invariant under a continuous map $T : \Omega \to \Omega$, then supp μ is also invariant,

 $T^{-1}(\operatorname{supp} \mu) \subseteq \operatorname{supp} \mu.$

Existence of invariant measures

Theorem 2.19 (Krylov-Bogoliubov).

Let (Ω, τ_{Ω}) be a compact metrizable space and $T : \Omega \to \Omega$ a continuous map. Then, there exists an invariant Borel probability measure under T.

Existence of dense orbits

Theorem 2.20.

Let (Ω, τ_{Ω}) be a compact metrizable space, $T : \Omega \to \Omega$ a continuous map, and μ an ergodic, invariant Borel probability measure with supp $\mu = \Omega$. Then, μ -a.e. $\omega \in \Omega$ has a dense orbit $\{T^n(\omega)\}_{n=0}^{\infty}$.

Geometry of invariant measures

Theorem 2.21.

Let $T : \Omega \to \Omega$ be a continuous map on a compact metrizable space. Let $\mathcal{M}(\Omega; T)$ denote the set of T-invariant Borel probability measures on Ω . Then, the following hold:

- 1 $\mathcal{M}(\Omega; T)$ is a weak-* compact, convex space.
- 2 μ is an extreme point of $\mathcal{M}(\Omega; T)$ iff it is ergodic.
- 3 If μ and ν are distinct, ergodic measures in $\mathcal{M}(\Omega; T)$, then they are mutually singular.

Equidistributed sequences

Definition 2.22.

Let $T : \Omega \to \Omega$ be a continuous map on a compact metrizable space (Ω, τ_{Ω}) and μ a Borel probability measure. A sequence $\omega_0, \omega_1, \ldots$ with $\omega_n = T^n(\omega_0)$ is said to be μ -equidistributed if

$$\lim_{N\to\infty}\frac{1}{N}\sum_{n=0}^{N-1}f(\omega_n)=\int_{\Omega}f\,d\mu,\quad\forall f\in C(\Omega).$$

Remark.

 μ -equidistribution of $\omega_0, \omega_1, \ldots$ is equivalent to weak-* convergence of the sampling measures $\mu_N = N^{-1} \sum_{n=0}^{N-1} \delta_{\omega_n}$ to the measure μ .

Basin of a measure

Definition 2.23.

With the notation of Definition 2.22 the basin of μ is the set

$$\mathcal{B}(\mu) = \{\omega_0 \in \Omega : \omega_0, \omega_1, \dots \text{ is } \mu \text{-equidistributed}\}.$$

By the pointwise ergodic theorem (Theorem 2.15), if Ω is a metrizable space and μ is an ergodic invariant measure with compact support, then μ -a.e. $\omega \in \Omega$ lies in $\mathcal{B}(\mu)$.

Observable measures

Definition 2.24.

With the notation of Definition 2.23, let ν be a reference Borel probability measure on Ω . The measure μ is said to be ν -observable if there exists a Borel set $S \in \mathfrak{B}(\Omega)$ with $\nu(S) > 0$ such that ν -a.e. $\omega \in S$ lies in $\mathcal{B}(\mu)$.

Intuitively, we think of ν as the measure from which we draw initial conditions. ν -observability of μ then means that the statistics of observables with respect to μ can be approximated from experimentally accessible initial conditions.

Koopman operators on spaces of continuous functions

Proposition 2.25.

Let $T : \Omega \to \Omega$ be a continuous map on a locally compact Hausdorff space. Then, the Koopman operator $U : f \mapsto f \circ T$ is well-defined as a linear map from $C(\Omega)$ into itself. Moreover:

1) U is a contraction, i.e.,

```
\|Uf\|_{\mathcal{C}(\Omega)} \leq \|f\|_{\mathcal{C}(\Omega)}, \quad \forall f \in \mathcal{C}(\Omega),
```

with equality if T is invertible.

- 2 U has operator norm ||U|| = 1.
- 3 U has the properties

 $U(fg) = (Uf)(Ug), \quad U(f^*) = (Uf)^*, \quad \forall f, g \in C(\Omega),$

i.e., it is a *-homomorphism of the C*-algebra $C(\Omega)$.

Transfer operators on Borel measures

Notation.

M(Ω): Space of signed Borel measures on topological space (Ω, τ_Ω).

Definition 2.26.

Let $T : \Omega \to \Omega$ be a continuous map on a compact metrizable space. The transfer operator $P : C(\Omega)^* \to C(\Omega)^*$ is the transpose (dual) operator to the Koopman operator $U : C(\Omega) \to C(\Omega)$,

 $P\alpha = \alpha \circ U.$

Unique ergodicity

Definition 2.27.

Let $T : \Omega \to \Omega$ be a continuous map on a compact metrizable space (Ω, τ_{Ω}) . T is said to be uniquely ergodic if there is only one T-invariant Borel probability measure.

Theorem 2.28.

With notation as above, the following are equivalent.

- 1 T is uniquely ergodic.
- 2 For every $f \in C(\Omega)$, $N^{-1} \sum_{n=0}^{N-1} f(T^n(\omega))$ converges to a constant, uniformly with respect to $\omega \in \Omega$.
- 3 For every $f \in C(\Omega)$, $N^{-1} \sum_{n=0}^{N-1} f(T^n(\omega))$ converges pointwise to a constant.
- 4 There exists an invariant Borel probability measure μ such that

$$\lim_{N\to\infty}\frac{1}{N}\sum_{n=0}^{N-1}f(T^n(\omega))=\int_{\Omega}f\,d\mu,\quad\forall\omega\in\Omega.$$

Strong and weak continuity of continuous-time (semi)flows

Theorem 2.29.

Let $\Phi^t : \Omega \to \Omega$, $t \ge 0$, be a continuous-time, continuous, semiflow on a compact metrizable space Ω with associated Koopman operators $U^t : C(\Omega) \to C(\Omega)$. Then, as $t \to 0$, U^t converges strongly to the identity,

$$\lim_{t\to 0} \|U^tf - f\|_{\mathcal{C}(\Omega)} = 0, \quad \forall f \in \mathcal{C}(\Omega).$$

Theorem 2.30.

Let $\Phi^t : \Omega \to \Omega$, $t \ge 0$, be a continuous-time, measurable semiflow with invariant probability measure μ and associated Koopman operators $U^t : L^p(\mu) \to L^p(\mu)$. Then, the following hold as $t \to 0$:

1 For $1 \leq p < \infty$, U^t converges strongly to the identity,

$$\lim_{t\to 0} \|U^tf-f\|_{L^p(\mu)}=0, \quad \forall f\in L^p(\mu).$$

2 For $p = \infty$, U^t converges in weak-* sense to the identity,

$$\lim_{t\to 0}\int_{\Omega}g(U^tf)\,d\mu=\int_{\Omega}gf\,d\mu,\quad\forall f\in L^{\infty}(\mu),\quad\forall g\in L^1(\mu).$$

Mixing

Recall from Theorem 2.4 that a measure-preserving transformation is ergodic iff

$$\lim_{N\to\infty}\frac{1}{N}\sum_{n=0}^{N-1}\mu(T^{-n}(R)\cap S)=\mu(R)\mu(S),\quad\forall R,S\in\Sigma.$$

Definition 2.31.

Let $T : \Omega \to \Omega$ be a measure-preserving transformation of the probability space (Ω, Σ, μ) .

1 *T* is said to be weak-mixing if

$$\lim_{N\to\infty}\frac{1}{N}\sum_{n=0}^{N-1}|\mu(T^{-n}(R)\cap S)-\mu(R)\mu(S)|=0,\quad\forall R,S\in\Sigma.$$

 \bigcirc T is said to be strong-mixing, or mixing, if

$$\lim_{n\to\infty}\mu(T^{-n}(R)\cap S)=\mu(R)\mu(S),\quad\forall R,S\in\Sigma.$$

Mixing

Theorem 2.32.

Let $T : \Omega \to \Omega$ be a measure-preserving transformation of the probability space (Ω, Σ, μ) . Then, the following are equivalent.

- 1) T is weak-mixing.
- 2 There is a subset $\mathcal{N} \subset \mathbb{N}$ of zero density such that

$$\lim_{\substack{n\to\infty\\n\notin\mathcal{N}}}\mu(T^{-n}(R)\cap S)=\mu(R)\mu(S),\quad\forall R,S\in\Sigma.$$

Observable-centric characterization of ergodicity and mixing

Let $T : \Omega \to \Omega$ be a measure-preserving transformation of the probability space (Ω, Σ, μ) . Let $U : L^2(\mu) \to L^2(\mu)$ be the associated Koopman operator on L^2 .

For $f,g\in L^2(\mu)$, define the cross-correlation function $\mathcal{C}_{\mathit{fg}}:\mathbb{N}\to\mathbb{R}$, where

 $C_{fg}(n) = \langle f, U^n g \rangle_{L^2(\mu)},$

and the autocorrelation function $C_f = C_{ff}$.

Consider also the expectation values $\bar{f} = \int_{\Omega} f \, d\mu$ and $\bar{g} = \int_{\Omega} g \, d\mu$.

Theorem 2.33.

With notation as above, the following are equivalent.

- 1 T is ergodic.
- 2 For all $f, g \in L^2(\mu)$, $\lim_{n \to \infty} N^{-1} \sum_{n=0}^{N-1} C_{fg}(n) = \overline{f}\overline{g}$.
- 3 For all $f \in L^2(\mu)$, $\lim_{n \to \infty} N^{-1} \sum_{n=0}^{N-1} C_f(n) = \overline{f}^2$.

Observable-centric characterization of ergodicity and mixing

Theorem 2.34.

With notation as above, the following are equivalent.

- 1 T is weak-mixing.
- 2 For all $f, g \in L^{2}(\mu)$, $\lim_{N \to \infty} N^{-1} \sum_{n=0}^{N-1} |C_{fg}(n) \bar{f}\bar{g}| = 0$.
- 3 For all $f \in L^2(\mu)$, $\lim_{N \to \infty} N^{-1} \sum_{n=0}^{N-1} |C_f(n) \overline{f}^2| = 0$.

Theorem 2.35.

With notation as above, the following are equivalent.

- 1 T is mixing.
- 2 For all $f, g \in L^2(\mu)$, $\lim_{N \to \infty} C_{fg}(n) = \overline{f}\overline{g}$.
- 3 For all $f \in L^2(\mu)$, $\lim_{N\to\infty} C_f(n) = \overline{f}^2$.

Spectral characterization of mixing

Theorem 2.36.

Let $T : \Omega \to \Omega$ be a measure-preserving transformation of the probability space (Ω, Σ, μ) , and $U : L^2(\mu) \to L^2(\mu)$ the corresponding Koopman operator. Then, T is weak-mixing iff the only eigenvalue of U is the eigenvalue equal to 1.

Mixing and product flows

Theorem 2.37.

Let $T : \Omega \to \Omega$ be a measure-preserving transformation of the probability space (Ω, Σ, μ) . Then, the following are equivalent.

- 1 T is weak-mixing.
- 2 $T \times T$ is ergodic with respect to the product measure $\mu \times \mu$.
- 3 $T \times T$ is weak-mixing with respect to the product measure $\mu \times \mu$.

Further reading

- V. Baladi, *Positive Transfer Operators and Decay of Correlations* (Advanced Series in Nonlinear Dynamics). Singapore: World Scientific, 2000, vol. 16.
- [2] N. Edeko, M. Gerlach, and V. Kühner, "Measure-preserving semiflows and one-parameter Koopman semigrpoups," *Semigr. Forum*, vol. 98, pp. 48–63, 2019. DOI: 10.1007/s00233-018-9960-3.
- [3] T. Eisner, B. Farkas, M. Haase, and R. Nagel, *Operator Theoretic Aspects of Ergodic Theory* (Graduate Texts in Mathematics). Cham: Springer, 2015, vol. 272.
- [4] P. Walters, An Introduction to Ergodic Theory (Graduate Texts in Mathematics). New York: Springer-Verlag, 1981, vol. 79.