Section 3

Introduction to operator algebras

Algebras – basic definitions

Definition 3.1.

An algebra (over the complex numbers) is a \mathbb{C} -vector space \mathcal{A} , equipped with a binary operation $\cdot : \mathcal{A} \times \mathcal{A} \to \mathcal{A}$ such that for every $a, b, c \in \mathcal{A}$ and $\lambda \in \mathbb{C}$, we have:

- (ab)c = a(bc).
 a(b+1) = ab + ac.
 (a+b)c = ac + bc.
- $(\lambda a)b = \lambda(ab) = a(\lambda b).$

Examples	adelian Unital with 1 2 (1)
$ Cn' with \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} \cdot \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix} = \begin{pmatrix} a_1b \\ \vdots \\ a_nb \end{pmatrix} $	C*-alj. wrt mor norm C*-alj. wrt mor norm Check that indeed
$ \begin{array}{c} & & \\ & & $	trag eles in h(K)
$\cdot L'(\mathbb{R})$ with $(f \neq g)(t) = \int f(c)g(c)$	t-z) de Whenever f,geL(K)
	Abelian but non-unital
. M. (non complex matrices) equipped w	The modify product
	Banach wrth Mr. C. and D. Pinga
· Given a grobability space (S, E, p.), an	alg. wrt. matrix maps from Cn -> Cu
L [∞] (r) equipped with pointwise hunchion	multiplication hon-abelian ganital
Gabelian, unital Rcalj. wit as nor	\mathbf{M}
· Given a Hilbert space H (e.g., H=	$L^{2}(\mu)) \rightarrow L^{2}(\mu) \rightarrow L^{2}(\mu)$
B(H) equipped with operator composit	ion K(H) SB(H) compact operators
- Given a Hausdorff top. space X,	opeator (Snon abelian, non-Unital
Co(X) (configuous Runctions that Vanish	at 0) equipped with pointwide function
multiplication CN - algebra	1 equipped with a norm
Labelian, hon-unital when X is non-comm	$\frac{1}{1} + \frac{1}{1} + \frac{1}$

No	<u>1-e</u>	2X0	m	Nec	<u>)</u>																																							
· · ·	L'((p)		U	lde	کم م	1	יע מי	rfi	J'H	e	ļ	n	vl	Ϊĥ' _f	oli	(9	th	11	Ç	,F	fi	1n(;†′	jn s	`ر ک	ý	۰oł	- (१ २	. C	alg	eb	ya	•								
								<i>¥ (</i> 	, x).																			fc	c) :		{ /2	0 /5 0	ر د :			× × (<u></u> E (S Z	~ 0,	0))])))			
							· ·			9																		TV	lCn			f	(~)	d>	6	<	æ	· · ·						
· ·	•	ć	,	•		•	•		•	I	•	•		•	• • •	• •	•	•	•	•	•	-/ 、	6					6	uf		٦Ą	∠ ∫r	2	f	2 (r)) d,	x	7	N	~3			
																																•												

Algebras – basic definitions

Definition 3.2. An algebra \mathcal{A} is said to be:

- **1** Abelian if ab = ba for all $a, b \in A$.
- **2** Unital if there is a (unique) nonzero element $\mathbb{1} \in \mathcal{A}$ such that $\mathbb{1}a = a\mathbb{1} = \mathcal{V}$ for all $a \in \mathcal{A}$.

*-algebras

Definition 3.3.

A *-algebra (or involutive algebra) is an algebra \mathcal{A} equipped with an operation * : $\mathcal{A} \to \mathcal{A}$ such that for all $a, b \in \mathcal{A}$ and $\lambda \in \mathbb{C}$,

•
$$(a^*)^* = a$$
.
• $(a+b)^* = a^* + b^*$.
• $(ab)^* = b^*a^*$.
• $(\lambda a)^* = \lambda^*a^*$.
•

Banach algebras; C*-algebras , Implies that multiplicedin is and/mons Definition 3.4.

- A normed algebra is an algebra \mathcal{A} equipped with a norm $\|\cdot\|$ such that $\|ab\| < \|a\|\|b\|, \quad \forall a, b \in \mathcal{A}.$
- ② A Banach algebra is a normed algebra (A, ||·||) which is complete with respect to ||·||.
- 3 A C*-algebra is a Banach *-algebra such that

$$\|a^*a\| = \|a\|^2.$$

For a unital normed algebra, we can choose the norm such that $\|\mathbb{1}\|=1$ without loss of generality.

Banach algebras; C^* -algebras

Definition 3.5.

- **1** Given an algebra \mathcal{A} , then for a subset $S \subseteq \mathcal{A}$ we denote by alg(S) the subalgebra of \mathcal{A} generated by S, which consists of all linear combinations of finite products of elements of S. Equivalently, alg(S) is the smallest subalgebra of \mathcal{A} containing S.
- 2 If A is a Banach algebra, the closure $\overline{\operatorname{alg}(S)}$ is said to be the Banach subalgebra of A generated by S.

Inverse

Definition 3.6.

An element *a* of a unital algebra \mathcal{A} is said to be invertible if there exists a (unique) element $b \in \mathcal{A}$ such that $ab = ba = \mathbb{1}$. We write $b = a^{-1}$ and call a^{-1} the inverse of *a*.

We denote the set of invertible elements of A as G(A). This set forms a multiplicative subgroup of A.

Proposition 3.7.

For a unital Banach algebra \mathcal{A} , $G(\mathcal{A})$ is an open set and $^{-1}$: $G(\mathcal{A}) \to \mathcal{A}$ is continuous. Henceforth, we shall assume that this is the case.

Proposition het	t be a runital	Banach algebra	and let at hav	e norm a <1.
Then $b = 1$	-a is invertible	•		
Sbetch of proof	. Postulate thou	the incree of	b is equal to	
c = 1 +	$a + a^2 + \cdots$	· · · · · · · · · ·		
Cheek that	(i) the series	$C_N = \sum_{n=0}^{N} \alpha^n$	couverses whenever	$ \alpha < 1$
	compa	e C - C~ =	Zar Zla	ll θ. N e la
		· · · · · · · · · · · · ·	hen 'l nen	· · J. · · · · · · · · · · ·
	(ii) Chet that	cb = bc = 1	L_{\star}°	

Normal elements

Definition 3.8.

An element a of a *-algebra is said to be:

- **1** Normal if it commutes with a^* , i.e., $aa^* a^*a = 0$.
- 2 Self-adjoint if $a^* = a$. e.g. self-adjoint elements of $L^{\infty}(f)$ 3 Skew-adjoint if $a^* = -a$. are real-relined hunctions

Given a unital Banach algebra \mathcal{A} and an element $a \in \mathcal{A}$ we denote the Banach algebra generated by $\{1, a\}$ as B(a). If, in addition, A is a *-algebra, we let $B^*(a)$ be the Banach *-algebra generated by $\{1, a, a^*\}$. adelian Lemma 3.9.

If $a \in A$ is a normal element of a Banach *-algebra, then B*(a) is abelian.

Spectrum

Definition 3.10.

For an element $a \in \mathcal{A}$ of a unital Banach algebra \mathcal{A} we define:

1 The spectrum as the set of complex numbers

$$\sigma(a) = \{\lambda \in \mathbb{C} : a - \lambda \notin G(\mathcal{A})\}_{||a||}$$

2 The spectral radius

$$r(a) = \sup_{\lambda \in \sigma(a)} |\lambda|.$$

a.

 $\overline{a}_{=}\begin{pmatrix}0 \\ 0 \\ 0 \end{pmatrix}, \sigma(a) = \{0\}$

Er. of = Ne

Theorem 3.11.

With notation as above, the following hold:

1 $\sigma(a)$ is a compact subset of \mathbb{C} such that

$$\sup_{\lambda\in\sigma(a)}|\lambda|\leq \|a|$$

2 $r(a) = \lim_{n \to \infty} ||a^n||^{1/n}$. 3 If a is a normal element of a C*-algebra, then r(a) = ||a||.

Eram	ples	of s	ipec	fra	 L																								
1)A =	- M,	~ .		σ	(a	·) :	e 1 e 1 1	l se	et	of	er	ge	n/a	n la	105	ې و.	F .	a	G										
												· ·																	
2) A		С(,	X)	· · · · · · · ·	\geq	$\langle c$	Comp	aif	-	Han	s do	r H																	
· · · · · · · · · · · · · · · · · · ·	·(a)) _			б. :		a				ha	L,		al	ale,	ഹ	· · ·	ſ	onti	nu	ou.	s f	unci	hu	יייי אריייייייייייייייייייייייייייייייי	ìe			
	ر صن	• <u> </u>	l	· ·	• · ·				•. · ·	•••	ĩ	י ו ג				Сь с	ب ن	11.0	~ ~ .	J		t.	- م	7	1	/~-			
						Ь()	g=)~ ¦	1	• • •	.7	V-07	· ·	~	ر ۵ <i>۲</i>	• p •	(~0	43	<i>"</i>]	1 ~ ((· 1						
	$\hat{1}$											 1					· ·	•						-					
	27	~a ⁽ ,	*)			-		-	ha	s Si	ngn	lon	is.			5	• (`qn		a.									
	$\left \right\rangle$					a	(x)-,	7	wh A	enev	∕}r																		
••• d • •••									46	ran	na																		
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<u>↓</u>		 {						\$ ×																				
· · ·																													

# Homomorphisms

#### Definition 3.12.

**1** A homomorphism  $\pi : A \to B$  between algebras is a linear map that is compatible with algebraic multiplication, i.e.,

$$\pi(aa')=\pi(a)\pi(a'), \quad \forall a,a'\in \mathcal{A}.$$

- 2 A homomorphism  $\pi : \mathcal{A} \to \mathcal{B}$  is said to be unital if  $\mathcal{A}$  and  $\mathcal{B}$  are unital and  $\pi(\mathbb{1}_{\mathcal{A}}) = \mathbb{1}_{\mathcal{B}}$ .
- 3 A homomorphism  $\pi : \mathcal{A} \to \mathcal{B}$  between *-algebras is said to be a *-homomorphism if

$$\pi(a^*) = (\pi a)^*, \quad \forall a \in \mathcal{A}.$$

 $\frac{E \times q \times q \times p \mid s}{\mathcal{A} = \mathbb{C}^{n}, \quad \mathcal{B} = \mathcal{M}_{n}, \quad \mathcal{T} \begin{pmatrix} a_{i} \\ a_{n} \end{pmatrix} = \begin{pmatrix} a_{i} & \mathcal{O} \\ \mathcal{O} & a_{m} \end{pmatrix}$   $\mathcal{T} \begin{pmatrix} \begin{pmatrix} a_{i} \\ \vdots \\ a_{n} \end{pmatrix} \begin{pmatrix} b_{i} \\ \vdots \\ b_{n} \end{pmatrix} = \begin{pmatrix} a_{i}b_{i} \\ \mathcal{O} & a_{n}b_{n} \end{pmatrix} = \begin{pmatrix} a_{i} & \mathcal{O} \\ \mathcal{O} & a_{n} \end{pmatrix} \begin{pmatrix} b_{i} \\ \mathcal{O} & a_{n} \end{pmatrix} = \begin{pmatrix} a_{i} & \mathcal{O} \\ \mathcal{O} & a_{n} \end{pmatrix} \begin{pmatrix} b_{i} \\ \mathcal{O} & b_{n} \end{pmatrix} = \mathcal{T} \begin{pmatrix} a_{i} \\ a_{n} \end{pmatrix} \mathcal{T} \begin{pmatrix} b_{i} \\ b_{n} \end{pmatrix}$  $A = L^{\infty}(\mu) \quad B = B(L^{2}(\mu))$  $\pi f = A$  st. Ag = fg.  $C_{G_{n}}$  show  $||A||_{B} = ||F||_{A}$ 

## Representations

#### Definition 3.13.

- **1** For an algebra  $\mathcal{A}$ , a representation is a homomorphism  $\pi : \mathcal{A} \to L(V)$ , where L(V) is the algebra of linear maps on a vector space V.
- 2 If A is a Banach algebra, a representation is a homomorphism π : A → B(E), where B(E) is the Banach algebra of bounded linear maps on a Banach space E.
- If A is a Banach *-algebra, a *-representation is a *-homomorphism π : A → B(H), where B(H) is the C*-algebra of bounded linear maps on a Hilbert space H.
- 4 If ker  $\pi = \{0\}$ ,  $\pi$  is said to be a faithful representation.

## Representations

#### Definition 3.14.

For a Banach algebra A, the left regular representation (or left multiplier representation)  $\pi : A \to B(A)$  is defined as

$$(\pi a)b = ab, \quad \forall a, b \in \mathcal{A}.$$

#### Proposition 3.15.

- **1** The left regular representation  $\pi : A \to L(A)$  of a unital algebra A is faithful.
- 2 If A is a Banach algebra, then  $\pi$  is a contraction; that is,  $\|\pi\| \leq 1$ .
- 3 If A is a  $C^*$ -algebra, then  $\pi$  is an isometry; that is,  $\|\pi\| = 1$ .

# Representations of $C^*$ -algebras

**Lemma 3.16.** Let H be a Hilbert space. Then, any norm-closed *-subalgebra A of B(H) is a C*-algebra. We refer to every such A as a concrete C*-algebra.

#### Theorem 3.17 (Gelfand–Naimark–Segal).

Every C^{*}-algebra A admits admits a faithful representation  $\pi : A \rightarrow B(H)$  on some Hilbert space H.

> The do is a concrede C*-algebra.

$$\begin{aligned} F & H = C^{n}, \text{ equipped with Euclidean inverpol.} \\ B(C^{n}) &\simeq M_{n}, \quad \mathcal{A} = D_{n} \text{ is } c \quad C^{*} - subalphra \to B(C^{n}) \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & &$$

# Characters

#### Definition 3.18.

A character (or multiplicative linear functional) of a unital Banach algebra  $\mathcal{A}$  is a nonzero homomorphism  $\chi : \mathcal{A} \to \mathbb{C}$ .

Lemma 3.19. Every character  $\chi : \mathcal{A} \to \mathbb{C}$  is: 1 Unital. 2 Surjective. 3 Contractive, i.e.,  $\|\chi\| \le 1$ . Moreover, if  $\mathcal{A}$  is a C*-algebra, then: 4  $\chi$  is a *-homomorphism. 5  $\|\chi\| = 1$ .

#### Corollary 3.20.

Every character of a unital Banach algebra is continuous. G chora churs lie in the continuous dual to

<u>Example</u> : A = C(X), X compact, Hausdorff
For any $x \in X$ let $S_x : A \to C$ be the evaluation functional at $x$ , i.e., $S_x f = f(x)$ .
$\nabla P_{\alpha} = \sum_{i=1}^{n} P_$
$(nen, o_{\infty} / s = On(rector) = o_{\infty}(rg) = f(x)g(x) = (o_{\infty} r) Co_{\infty} g(x)$
In fact, every character of C(x) is of this form.
Non-example: A = Mn has no characters.
Indeed, let lij E Mn be fle matix whole only nonzero element is (lij); =1.
Then whenever if ; ei; = O. Thus, any character & would satisfy
$\mathcal{O} = \mathcal{X}(e_{i}) = (\mathcal{X}(e_{i}))^{2} \Rightarrow \mathcal{X}(e_{i}) = \mathcal{O},$
flowers, are also have eigeji = eii. Thus, 1 = eii+tenn
$= e_{1j}e_{j,1} + \dots + e_{Njn}e_{jn}n$
where $j_{1} \neq i$ , and we would have $\chi(1) = 0$ which is not possible

# Characters

#### Proposition 3.21.

An abelian unital Banach algebra has at least one character.

## Ideals

#### Definition 3.22.

A subalgebra  $\mathcal{I} \subseteq \mathcal{A}$  of an algebra is said to be a (two-sided) ideal if  $a\mathcal{I} \subseteq \mathcal{I}$  and  $\mathcal{I} a \subseteq \mathcal{I}$  for all  $a \in \mathcal{A}$ .

#### Definition 3.23.

A maximal ideal is a proper ideal  $\mathcal{I} \subset \mathcal{A}$  that is not a subset of any other proper ideals.

#### Proposition 3.24.

Every maximal ideal in a unital Banach algebra is closed.

Examples (i) $A = C(X)$	
for an xe X	
$\mathcal{I}_{x} = \{f \in C(x) : f(x) = 0\} = f \in k$	μ( / m · · · · · · · · · · · · · · · · · ·
is a movinal ideal	~
(ii) &= B(H). Then K(H) is = i	deal in BCH)

# Spectra of abelian Banach algebras

#### Definition 3.25.

Let  $\mathcal{A}$  be a unital, abelian Banach algebra. The spectrum of  $\mathcal{A}$ , denoted as  $\sigma(\mathcal{A})$ , is the set of its characters.

#### Theorem 3.26 (Gelfand–Mazur).

Let  $\mathcal{A}$  be an abelian unital Banach algebra. There is a canonical bijection between  $\sigma(\mathcal{A})$  and the set of maximal ideals of  $\mathcal{A}$ . Specifically, for every  $\chi \in \sigma(\mathcal{A})$ , ker  $\chi$  is a maximal ideal, and every maximal ideal has this form for a unique character  $\chi \in \sigma(\mathcal{A})$ .

# Gelfand transform

#### Theorem 3.27.

The spectrum  $\sigma(\mathcal{A})$  of an abelian unital Banach algebra is a weakcompact subset of  $\mathcal{A}^*$ . Moreover, the map  $\widehat{}: \mathcal{A} \to \mathcal{C}(\sigma(\mathcal{A}))$  with  $\hat{a}(\chi) = \chi(a)$  is a Banach algebra homomorphism with norm  $\|\widehat{}\| \leq 1$ .

7 C#-alpetra by weak -* compreducy of  $\sigma(k)$ 

#### Definition 3.28.

The map[^]: 
$$\mathcal{A} \to C(\sigma(\mathcal{A}))$$
 is called the Gelfand transform for  $\mathcal{A}$ .  
(Nonclines we write  $\hat{a} \in \Gamma(\alpha)$ )  
Proposition 3.29

The Gelfand transform for A is injective iff the intersection of all the maximal ideals of A is  $\{0\}$ . In that case, we say that A is semisimple.



# Gelfand transform

Per The

#### Proposition 3.30.

For an element a of an abelian, unital, Banach algebra  $\mathcal{A}$  we have

$$\sigma(a) = \operatorname{ran} \hat{a} = \sigma(B(a)).$$

$$\{ \mathcal{I} \in \mathcal{C} : a \not \mathcal{A} \notin G(\mathcal{A}) \} \qquad \{ \mathcal{I} \in \mathcal{C} : \chi(a) = \mathcal{I} \\ \text{for some } \chi \in \sigma(\mathcal{C}) \}$$

$$\operatorname{pressure} \chi \in \sigma(\mathcal{C}) \}$$

$$\operatorname{pressure} \chi \in \sigma(\mathcal{C})$$

$$\operatorname{pressure} \chi \in \sigma(\mathcal{C})$$

$$\operatorname{pressure} \chi \in \sigma(\mathcal{C})$$

$$\operatorname{pressure} \chi \in \sigma(\mathcal{C})$$

$$\operatorname{pressure} \chi \in \sigma(\mathcal{A}) \rightarrow \sigma(a)$$

$$\operatorname{defined} as \quad \mathcal{P}(\chi) = \hat{a}(\chi)$$

$$\operatorname{is } a \text{ homeomorphisms}$$

$$\operatorname{defined} \chi \in \mathcal{A}$$

$$\operatorname{pressure} \chi \in \sigma(\mathcal{A})$$

# Spectra of $C^*$ -algebras

#### Theorem 3.32 (Gelfand).

Let  $\mathcal{A}$  be a unital, abelian  $C^*$ -algebra. Then, the Gelfand transform  $\Gamma : \mathcal{A} \to C(\sigma(\mathcal{A}))$  is an isometric *-isomorphism between  $\mathcal{A}$  and the  $C^*$ -algebra of continuous functions on  $\sigma(\mathcal{A})$ .

#### Theorem 3.33 (Stone).

Let X be a compact Hausdorff space. For  $x \in X$  let  $\delta_x \in C(X)^*$  denote the evaluation functional  $\delta_x f = f(x)$ . Then, the following hold.

2 X is homeomorphic to  $\sigma(\overline{C}(X))$  under the map  $x \mapsto \delta_x$ .

#### Corollary 3.34.

Let X and Y be compact Hausdorff spaces. Then, X and Y are homeomorphic iff C(X) and C(Y) are algebraically isomorphic. In that case, C(X) and C(Y) are isometrically *-isomorphic C*-algebras.

# Spectra of $C^*$ -algebras

Based on Theorems 3.32 and 3.33, we can identify unital abelian  $C^*$ -algebras with spaces of continuous functions on compact Hausdorff spaces. Generalizing this interpretation, we can interpret non-abelian  $C^*$  algebras as spaces of continuous functions on "non-commutative spaces".

# Continuous functional calculus

Let *a* be a normal element of a unital  $C^*$ -algebra  $\mathcal{A}$ . Given a continuous function  $f : \sigma(a) \to \sigma(a)$ , we define  $f(a) \in \mathcal{A}$  as

$$f(a)=\Gamma^{-1}(f\circ\beta),$$

where  $\Gamma : C^*(a) \to C(\sigma(C^*(a)))$  is the Gelfand transform associated with the abelian  $C^*$ -algebra generated by a, and  $\beta : \sigma(C^*(a)) \to \sigma(a)$  is the homeomorphism from Proposition 3.31.

## Positive elements

#### Definition 3.35.

An element *a* of a *-algebra A is said to be positive if  $a = b^*b$  for some  $b \in A$ .

#### Definition 3.36.

A *-algebra  $\mathcal{A}$  is said to be:

- **1** Hermitian if every self-adjoint element has real spectrum, i.e.,  $a \in A$  and  $a^* = a$  implies  $\sigma(a) \subset \mathbb{R}$ .
- 2 Symmetric if every positive element has positive spectrum, i.e.,  $a \in \mathcal{A}$  and  $a \ge 0$  implies  $\sigma(a) \subset \mathbb{R}_+$ .

Theorem 3.37.

A Banach *-algebra  $\mathcal{A}$  is Hermitian iff it is symmetric.

Examples	
(1) A = Mn ( C ) Linear algebra result:	
The following are equivelent:	
$(1)  a = 1 \times [2]  a \in M((1))$	
$\frac{1}{1} = \frac{1}{1} = \frac{1}$	
un and (ji) ∀ J€ (Lang, and S), a.J) = Jaaj ≥ Contraction and a second	
Scomplex, anj. transpose	
For every such matrix $a_1, \sigma(a) \in \mathbb{R}_+$	
[1] for a general matrix a o (a) CR+ does not imply that a is possible, e-g.,	
$a = (0, 1)$ has $\sigma(a) = \{0\}$ but it is not positive.	
· · · · · · · · · · · · · · · · · · ·	
$(z) \mathcal{A} = \mathcal{C}(\mathcal{X}) \times \mathcal{C}$	
The following are executed	
(ne) p((0w)) = (u)	
and (1) for a grad a for a fight a way a second	
(ii) $\forall x \in X  f(x) \neq O$ .	

# Positive elements of $C^*$ -algebras

#### Theorem 3.38.

Let A be a  $C^*$ -algebra. The following are equivalent:

- **1** a is positive (i.e.,  $a = b^*b$  for some  $b \in A$ ).
- 2 a is normal and  $\sigma(a) \subset [0,\infty)$ .
- 3 There exists a self-adjoint element  $b \in A$  such that  $a = b^2$ .

#### Corollary 3.39.

Every positive element  $a \in A$  has a unique positive square root, i.e., a positive element  $b \in A$  such that  $a = b^2$ . We write  $b = \sqrt{a}$ .

#### Notation.

For a  $C^*$ -algebra  $\mathcal{A}$ :

- $\mathcal{A}_{sa} \subset \mathcal{A}$  is the subspace of the self-adjoint adjoint elements.
- $\mathcal{A}_+ \subset \mathcal{A}_{sa}$  is the subset of positive elements.

Positive elements of  $C^*$ -algebras

# **Theorem 3.40.** $\mathcal{A}$ The set of positive elements of a $C^*$ algebra is a convex cone, i.e.,**1** For all $a \in \mathcal{A}_+$ and $\lambda \ge 0$ , $\lambda a \in \mathcal{A}_+$ .**2** For all $a, b \in \mathcal{A}_+$ and $\lambda \in [0, 1]$ , $\lambda a + (1 - \lambda b) \in \mathcal{A}_+$ .Moreover, $\mathcal{A}_+$ is closed in the norm topology of $\mathcal{A}$ .

By Theorem 3.40, positivity defines an order on  $\mathcal{A}_{sa}$ .

- If  $a \in \mathcal{A}_{sa}$  is positive, we write  $a \ge 0$ .
- Given  $a, b \in A_{sa}$ , we write  $a \leq b$  if  $b a \geq 0$ .

#### Proposition 3.41.

Given two positive elements  $a, b \in A_+$  with  $a \leq b$  the following hold:

- **1**  $||a|| \le ||b||.$
- $2 \ \sqrt{a} \le \sqrt{b}.$

3 If A is unital and a, b are invertible, then  $b^{-1} \leq a^{-1}$ .

Example Approximation of multiplication operators  $(X, \Sigma, \mu) - probability measure space$  $\mathcal{A} = L^{\infty}(\mu)$  (obelian C^{*}-algebra under pointwise Runchon multiplication) "space of classical observables"  $f \in \mathcal{F}$ Asa = {f E L[∞](F): f (x) is real Por p-u.e. x E X } At = {ffdsa : fa) = 0 for prarer « EX } H = L²(p), B = B(H) (non-abelian (xt-algebra under operator composition) "space of quantum observables"  $B_{sc} = \{a \in B(H) : \langle 2, a \} \}_{H} = \langle a 2, \overline{f} \rangle, \forall 2, \overline{f} \in H \}$  $B_F = \{a \in B_{Sa}\} \{\{j, a\}\}_{H} \geq 0$ ,  $\forall F \in H \}$ Important property: o(f) = o(Tif), If fe t  $\pi \quad \mathcal{A} \longrightarrow \mathcal{B} \quad \text{regular rep. } \pi f = \alpha \quad \text{where } \alpha \tilde{j} = f \tilde{j} \quad \forall \tilde{j} \in H$   $\text{recall } \pi(f^*) = (\pi f)^* \quad \pi(f_g) = (\pi f)(\pi g).$ This implies that  $\pi \quad \text{maps } \mathcal{A}_+ \quad \text{info } \mathcal{B}_+; \text{ since } \pi(g^*g) = \pi(g^*)\pi(g) = (\pi g)^* (\pi g) \approx 0$ 

Let II : H Then, given	$\rightarrow$ H be r f $\epsilon$ A	$k_{\pm}$ , $T$	ection i.e. M f is, in ge	= TT = TT, s.t. neal, not positive	TA SA.	
Howerer, T Check: ¥	Γ (πf) T Fe H ,	Τ ε <b>Β</b> < ξ, π(	$\frac{15}{100}$ positive ( $\pi F$ ) $\pi T$ =	< TF, (7P) TT 5 >	20 since (Jif) 20	
Application:	Let 2 po,	$\phi_{1/2} = \frac{1}{2} \left( \frac{1}{2} \right)^{1/2} $	be an O-n	1 bosis of H, TT	= Proj_H, HL= { \$ \$ 9,, \$ \$ L	-1 ]
Then AL:	= TL @	$f$ ) $\overline{H_{L}}$	is represented.	Ly an L×L Moth	x with positive eigenvolv	1.85
H can be	stown	that for	erry 26 0(	F), there is a si	junce at eigen-alues	
				/ /	· · · · · · · · · · · · · · · · · · ·	
21, 24,	ot A	(, <b>Å</b> 2, _,	, respectively	, s-t. lim 2 L-200		
J, J, ,	ot A	(, A, , , , , , , , , , , , , , , , , ,	, respectively	, s-t. lim 2 L-200		
$\mathcal{I}_{1}, \mathcal{I}_{2}, \cdots$	oł A		, respectively	, s-t. Cam 2		
	• • • • • • • • • • • • • • • • • • •	(, Å, , , , , , , , , , , , , , , , , ,	, respectively	, s-t. Gm	$\mathcal{L} = \mathcal{A}, \qquad \dots \qquad $	
J, J, , , , , , , , , , , , , , , , , ,	• • • • • • • • • • • • • • • • • • •	(, A, z, , _ , , , , , , , , , , , , , , , ,	, respectively	, s-t. Gm	$\mathcal{L} = \mathcal{A}$	
J ₁ , J ₂ ,	$     \begin{array}{c}         \\         \\         \\         $	(, Å, , , , , , , , , , , , , , , , , ,	, respectively	, s-t. Gm	$\mathcal{L}_{1} = \mathcal{A}_{1}$	
J ₁ , J ₂ ,	$     \begin{array}{c}         \\         \\         \\         $	(, Å, , , , , , , , , , , , , , , , , ,	, respectively	$s - t$ $L \rightarrow \infty$	$\mathcal{L} = \mathcal{A}$	
			, respectively	r	$\mathcal{L} = \mathcal{A}$	

## States

#### Definition 3.42.

A linear functional  $\varphi : \mathcal{A} \to \mathbb{C}$  on a *-algebra  $\mathcal{A}$  is said to be positive if  $\varphi a \geq 0$  whenever a is positive.

#### Definition 3.43.

A state  $\varphi : \mathcal{A} \to \mathbb{C}$  on a unital *-algebra  $\mathcal{A}$  is a positive, linear unital functional, i.e.:

• 
$$\varphi(a^*a) \ge 0$$
 for all  $a \in \mathcal{A}$ .

• 
$$\varphi \mathbb{1} = 1.$$

The state space of A is the set of its states, denoted as S(A).

<u>Examples</u>
(i) A is a delian unital C [#] -algebra. Frey character of A defines a state (ii) $A = C^2$ . Let $X_1 : E \to C^*$ $X_1 \begin{pmatrix} a \\ b \end{pmatrix} = a$ , $X_2 \begin{pmatrix} a \\ b \end{pmatrix} = b$
Let $p \in [0, 1]$ , define $\varphi_p : \ell \rightarrow C^*$ i.t. $\varphi_p \begin{pmatrix} q \\ b \end{pmatrix} = p \chi_i \begin{pmatrix} q \\ b \end{pmatrix} + \begin{pmatrix} -p \end{pmatrix} \chi_2 \begin{pmatrix} q \\ b \end{pmatrix}$
Then any state $-f$ $k$ is of the form $\varphi_p \cdot (\varphi_i)_{A}^{X_2}$ = $pa + ((-p)b$ . dim $S(k) = 1$ Every state $\varphi \in S(k)$ has a unique decomposition $\varphi = p\chi_i + ((-p)\chi_k)$ into pure states. $\chi_i$ pure states
Ly Every functional $\varphi: \mathcal{A} \to \mathbb{C}$ is of the form $\varphi a = q^{\dagger} a$ for a realiser $q = \begin{pmatrix} q_{1} \\ q_{2} \end{pmatrix} \in \mathbb{C}^{d}$ If $\varphi$ is a state, we have $q = \begin{pmatrix} P \\ I-P \end{pmatrix}$ with $P \in [0,1]$ .

(iii) &= M2(C). A has the structure of a thilbert space equipped with the inner
product (a, b) = tr(a*b). Thus, by the Riesz representation theorem,
enq state $\varphi: t \rightarrow \mathbb{C}$ is of the form $\varphi(a) = tr(pa)$ for some $p \in \mathcal{E}$ .
Such a p is called a density matrix. Can verify that in order for 6 to be
a state we must have:
) p = 0, $z) fr p = 1$ .
We can parameterize the set S(t) using Pauli metrices:
Claim Frey density matrix p can be written in the form
$\rho = \begin{pmatrix} \frac{1}{2} & 0 \\ 0 & \frac{1}{2} \end{pmatrix} + a_1\sigma_1 + a_2\sigma_2 + a_3\sigma_3  s \neq f.  \vec{a} = \begin{pmatrix} a_1, a_2, a_3 \end{pmatrix} \ \vec{a}\  \leq 1.$
pur states pur states correspond to points on surface of sphere i-e. $  \vec{a}   = 1$ . Such density matrices are
mixed state rank-1 projection matrices, i.e., $p = q q^{T}$ for a unit vector $q$ .
$a_i$ $d_{ins}(\lambda) = 3$
a mixed state can be represented as lineon av Bloch sphere combinations of distinct pure states.

<u>Emledding states of C² into states of M2</u> (i) Map  $G_p \in SCC^2$ ) with  $p \in Eo, 1]$  into  $G_p \in S(M_2)$  with  $p = \begin{pmatrix} P & o \\ O & I-p \end{pmatrix}$  $( T_{1} : S(C^{2}) \longrightarrow S(M_{2})$ *i.e.*,  $p = \frac{1}{2} I + i p \sigma_{1}$  $= \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ (2) Hop  $\varphi_p \in S(\mathbb{C}^2)$  with  $p \in [0,1]$  into  $\varphi_p \in S(\mathbb{A}^{12})$  with  $p = q q^T$  $(f_2:SCG^2) \rightarrow S(H_2)$  $\sim Observe ||q||_2^2 = p + 1 - p = 1$ P=1 - under (2) SC (2) embeds honeinearly into SCM, as a meridian " connecting as (1) and (5) Unler (1) SCC²) embeds linearly into SCM²) as a line through the origin with end points (3) and (8) -1) p = 0 વા

Embedding elements of C ² into elements of M2
. We use the regular representation of $C^2$ , $\pi: \mathbb{C}^2 \to \mathbb{B}(\mathbb{C}^2) \cong \mathbb{M}_2$
$\mathcal{T}\begin{pmatrix}a_{l}\\a_{l}\end{pmatrix} = \begin{pmatrix} a_{l} & 0\\ 0 & a_{l} \end{pmatrix}$
a m multiplication operator in the serve that
$M_{a}\begin{pmatrix}b_{1}\\b_{2}\end{pmatrix}=\begin{pmatrix}a_{1}b_{1}\\a_{2}b_{2}\end{pmatrix}=ab$
"Classical quantum consistency"
For every $\varphi_{p} \in S(\mathbb{C}^{2})$ and $\alpha \in \mathbb{C}^{2}$ $\varphi_{p} \alpha = (\Gamma_{j} \varphi_{p})(\pi \alpha)$
$M_{\rm example} = M_{\rm example$
Pa(+(-p)dz) = p + p + p + p + p + p + p + p + p + p
e.g. $(\Gamma, \varphi_p)(\tau \alpha) = tr\left(\begin{pmatrix} P & 0 \\ 0 & 1-p \end{pmatrix}\begin{pmatrix} a_1 \\ a_2 \end{pmatrix}\right) = fr\left(\begin{pmatrix} pq_1 & 0 \\ 0 & (1-p)a_1 \end{pmatrix} = pq_{1,1}(1-p)q_2$
To check for Tz, observe that for a pure state of M2 represented by p=99
we have $\varphi_p m = tr(pm) = tr(qq^7)m) = q^{rm}q \equiv \langle q m q \rangle$ in Dirac bratef instartion
Thus, $(f_2 \varphi_p) = q^T (Ta) q = (Jp (I-p)(q_1 o) (g_p) = pa_1 f(I-p)a_2$

## States on $C^*$ -algebras

#### Proposition 3.44.

The following hold for every state  $\varphi \in S(A)$  of a unital C^{*}-algebra and elements  $a, b \in A$ .

- 1  $\varphi(a^*) = (\varphi a)^*$ , for all  $a \in \mathcal{A}$ . 2  $|\varphi(a^*b)| \le \varphi(a^*a)\varphi(b^*b)$ .
- $\boxed{3} \|\varphi\| = 1.$

#### Proposition 3.45.

The state space S(A) of a unital  $C^*$ -algebra A is a convex subset of the <u>unit ball of  $A^*$  which is closed</u> in the weak-* topology. In particular, S(A) is a weak-* compact subset of  $A^*$ .

b It qu, fr., ... is a sequence of states such that tack, Cim qua = Ga Porsona GEdt, then G is also a state.

# States on $C^*$ -algebras

**Proposition 3.46.** For every self-adjoint element a of a C^{*}-algebra  $\mathcal{A}$ , there exists a state  $\varphi \in S(\mathcal{A})$  such that  $\varphi a = ||a||$ .

#### Theorem 3.47.

The set of states of a unital  $C^*$ -algebra  $\mathcal{A}$  separates the points of  $\mathcal{A}$ . That is, for every  $a, b \in \mathcal{A}$  there exists  $\varphi \in S(\mathcal{A})$  such that  $\varphi a \neq \varphi b$ .

### Pure states

GE S(A) is an extremal paint of flere are no Gi, G2 E S(A) and pe(0,1) s.d. G = pf1 + (1-p) f2.

#### Definition 3.48.

A state  $\varphi$  of a unital  $C^*$ -algebra  $\mathcal{A}$  is said to be pure if it is an extremal point of  $S(\mathcal{A})$ . Otherwise,  $\varphi$  is said to be mixed.

#### Definition 3.49.

Let *H* be a Hilbert space. A state  $\varphi$  of B(H) is said to be a vector state if there exists a (unit) vector  $\xi \in H$  such that

 $\varphi \mathbf{a} = \langle \xi, \mathbf{a} \xi \rangle, \quad \forall \mathbf{a} \in \mathcal{A}.$ 

#### Proposition 3.50.

Every vector state of B(H) is pure. (since the map a to (Z, aZ) is a pojection, and projections are extremal points of the positive come of B(H).

If H is infinite-dimensional, there exist pure states that are not vertor states.

lef	thon of H = L	a pure ² (X, f	state c) (on	which is not usider $S_x \in C$	a verbr state: C(X)* (evelophin hund	simple at $\sim$ )
Let S _x	ССВ( ЦИЗ	(H), to a	C = TC S Galar ra bounder	(C(x)) er Leineor F	, E consists of multipli continuous punctions inchancel Ax on E,	(ation operators by $A_{x}(\pi f) = S_{x}f$
βy s.1.	Hahn-B   G   = unp stat	enach th =    Ar    <	reorem (and	$\beta_{x}$ here, or $\varphi(\pi f) = 0$	entension to a continue Saf ). Such an entension	nous hunchional on B(H) of can be chosen to be
				Service Ste	tes there is no veror	$G \in \Pi$ $J = \int \left( \frac{1}{2} \sqrt{2} \sqrt{2} \right) d = \int \left( \frac{1}{2} \sqrt{2} \sqrt{2} \sqrt{2} \right) d = \int \left( \frac{1}{2} \sqrt{2} \sqrt{2} \sqrt{2} \sqrt{2} \sqrt{2} \sqrt{2} \right) d = \int \left( \frac{1}{2} \sqrt{2} \sqrt{2} \sqrt{2} \sqrt{2} \sqrt{2} \sqrt{2} \sqrt{2} $
					TCS FWIRE (S. NO VELLOR	$\mathcal{G} \subset \mathcal{H} \setminus \mathcal{S}_{\mathcal{F}} \setminus \mathcal{G} \subset \mathcal{G} \setminus $
					TCS FWIRE (S. NO VCENOR	$G \in \Pi \setminus \mathcal{S}_{\mathcal{F}} \setminus \mathcal{G} \setminus$
					TCS F.W.J.C. (S. NO VCLAD)	$G \in \Pi$ $A_{-1}$ , $\varphi \land \gamma = 5 \gamma \land 4 \gamma / 2$
						$G \in \Pi$ $A_{-1}$ , $G \subseteq \Lambda$ $A_{-1}$ , $A_{-$
						$G \in \Pi$ $A_{-1}$ , $G \subseteq \Lambda$ $I = 577, a = 7/2$
						$G \in H$ $A_{1}$ , $G \subseteq A_{2} / 2 / 2 / 2 / 2 / 2 / 2 / 2 / 2 / 2 /$
						$G \in H$ $A_{1}$ , $G \subseteq A_{2} \wedge A_{2} \wedge A_{2}$
						$G \in H$ $A_{1}$ , $G \subseteq A_{2}$ , $A_{2}$
						$G \in \Pi$ $S = 1$ , $G \subseteq \Lambda = 5$ , $G \downarrow A = 7$ , $A =$
						$G \in H$ $S = 1$ , $G \cup A = 5, 7, A = 7, 7$
						$G \in H$ , $S = 1$ , $G \cup A = 2$ , $F = 2$ ,
						$G \in H$ , $S = 1$ , $G \cup A = 2$ , $F = 2$ ,

# Projections

#### Definition 3.51.

An element *a* of a *-algebra A is said to be a projection if  $a = a^* = a^2$ .

#### Proposition 3.52.

For a C*-algebra A, the projections are the extremal points of the positive cone  $A_+$ .

# Projection-valued measures

#### Definition 3.53.

Let  $(X, \Sigma)$  be a measurable space and H a Hilbert space. A map  $E : \Sigma \to B(H)$  is said to be a projection-valued measure (PVM) if the following hold:

- **1** For every  $S \in \Sigma$ , E(S) is a projection.
- $2 E(\emptyset) = 0.$
- $\Im E(X) = I.$
- ④ For every countable collection  $\{S_0, S_1, ...\}$  of pairwise-disjoint sets  $S_j \in E$  and  $f \in H$ , we have  $E(\bigcup_{j=0}^{\infty} S_j)f = \sum_{j=0}^{\infty} E(S_j)f$ .

$$a_{J} = \sum_{j=0}^{J} E(S_{j})$$
 converges in the strong operator topology of B(H).

Example  $H = \mathbb{C}^n$ ,  $B(H) \simeq M_n(\mathbb{C})$  let a  $\in M_n$  be self-adjoint. By the spectral thm. Br self-adjoint matrices, a has a set of real eigenvalues Ai, __, 2m m ≤ n and a set of or monormal eigenvectors [ ui, j ] sif. (i)  $a u_{i,j} = Ai u_{i,j}$ , (2)  $\{u_{i,j}\}$  is an O-N basis of  $C^{n}$ let B(C) densite the Borch or algebra of C Define E: B(C) -> My s.t.  $E(5) = \sum_{\hat{c}: A_i \in S} P_i$   $\hat{c}: A_i \in S$  Hermitian where  $P_i = \sum_{i} u_{i,j} u_{i,j}$ projection onto elsenspace of a R R corresponding to 2, Then E is a projection-ralued measure. More over, we have  $\alpha = \sum_{i=1}^{m} A_i P_i \equiv U N U^*$ Hore over, we have  $\alpha = \sum_{i=1}^{m} A_i P_i \equiv U N U^*$   $\exists u_{i=1}^{m} = \int A dE(A)$   $\alpha = \int A dE(A)$ Classical statistics Events Characteristic functions  $a_{i=1}^{m} = U N U^*$   $\exists u_{i} = U N U^*$ 

# Projection-valued measures

#### Proposition 3.54.

Let  $(X, \Sigma)$  be a measurable space, H a Hilbert space, and  $E : \Sigma \to B(H)$  a projection-valued map such that E(X) = I. Then, the following are equivalent:

- E is a PVM.
- 2 For every countable collection  $\{S_0, S_1, ...\}$  of pairwise-disjoint sets  $S_j \in E$ ,  $\sum_{j=0}^{J} E_j$  converges as  $J \to \infty$  in the weak operator topology.
- **3** For any two disjoint sets S and T, E(S)E(T) = 0.

## Projection-valued measures

Given a PVM  $E : \Sigma \rightarrow B(H)$  and elements  $\eta, \xi \in H$  we have:

E_{η,ξ}: Σ → C with E_{η,ξ}(S) = ⟨η, E(S)ξ⟩ is a finite complex measure.
E_η: Σ → R with E_η(S) = E_{η,η}(S) = ⟨η, E(S)η⟩ is a probability measure.

 $\langle \gamma, E(s) \gamma \rangle^* = \langle E(s) \gamma, \gamma \rangle = \langle \gamma, (E(s))^* \gamma \rangle = \langle \gamma, E(s) \gamma \rangle \Rightarrow \langle \gamma, B(s) \gamma \rangle \in \mathbb{R}$ 

## Spectral integrals

#### Theorem 3.55.

Given a PVM  $E : \mathcal{B}(\mathbb{C}) \to B(H)$  and a bounded Borel-measurable function  $f : \mathbb{C} \to \mathbb{C}$ , there exists a unique operator  $a \in B(H)$  such that

$$\langle \eta, \mathsf{a} \xi 
angle = \int_{\mathbb{C}} f(\lambda) \, \mathsf{d} \mathsf{E}_{\eta, \xi}(\lambda).$$

Symbolically, we write

$$\mathsf{a}=\mathsf{E}(f)=\int_{\mathbb{C}}f(\lambda)\,\mathsf{d}\mathsf{E}(\lambda).$$

## Spectral theorem

Theorem 3.56.

Let  $a \in B(H)$  be a normal operator. Then, there exists a unique PVM  $E : \mathcal{B}(\mathbb{C}) \to B(H)$ , supported on the spectrum  $\sigma(a) \subset \mathbb{C}$  such that

ata=aat

$$\mathsf{a} = \int_{\mathbb{C}} \lambda \, \mathsf{d} \mathsf{E}(\lambda).$$

#### Remark.

If  $f : \mathbb{C} \to \mathbb{C}$  is continuous on  $\sigma(a)$ , then E(f) is identical to f(a) as defined via the continuous functional calculus.

V*-algebras 
$$A = L^{\circ}(\mu), A = (L^{\circ}(\mu))^{*}$$
 - abelian  
 $A = B(H), A = (B_{1}(H))^{*}$  - non-abelian

#### Definition 3.57.

A  $W^*$ -algebra (or abstract von Neumann algebra)  $\mathcal{A}$  is a  $C^*$ -algebra that has a predual as a Banach space, i.e., we have  $A = (\mathcal{A}_*)^*$  for a Banach space  $\mathcal{A}_*$ .

In addition to the norm and weak topologies, a  $W^*$ -algebra has the weak-* topology induced from the predual.

#### Definition 3.58.

GA sequence as services to as b in web-* serve, if for every 86kx lin an (\$) = a (\$)

- A linear map T : A → B between W*-algebras A, B is said to be normal if it is weak-* continuous.
- Correspondingly, a state φ : A → C of a W*-algebra is called normal if there is ρ ∈ A_{*} such that

$$\varphi a = a\rho, \quad \forall a \in \mathcal{A}.$$

b  $B_1(H)$  = frace-class operators on H  $B_1(H) = \{a \in B(H) \leq trais have \}$ , equipped with the norm  $||a||_1 = tr|a|$  $|a| = \sqrt{n^*a}$ 

Examples of normall stades t= L°C(m). Given a probability density pf L'(f), i.e., p70, Spdp=1, we have a normal state qp: t > C where qp f= Sfp dp All normal states of L°C(p) are of this form. A=B(H). Given a density operator pEBi(H), i.e., p7r0, trp=1, we have a normal state qp: A -> C, where Gp a = tr(pa). All normal states at B(H) are of this form. (Result: If a c B(H), b c B, (H) then ab c B, (H))  $2F F \in L^{(p)}, g \in L^{(p)}$  then  $f \in L^{(p)}$ 

## Commutants

#### Definition 3.59.

Let  $\mathcal{A}$  be an algebra. The commutant of a set  $X \subseteq \mathcal{A}$ , denoted as X', is the set elements of  $\mathcal{A}$  that commute with every element of X, i.e.,

$$X' = \{ a \in \mathcal{A} : ax = xa, \forall x \in X \}.$$

The bicommutant of X, denoted as X'', is the commutant of X'.

#### Proposition 3.60.

With notation as above, the following hold.

- X' is a subalgebra of A.
- If  $\mathcal{A}$  is unital, then X' is unital.
- If A is a *-algebra, then X' is a *-algebra.
- $X \subseteq X''$ .
- X''' = X'.

# $W^*$ -algebras

#### Theorem 3.61.

The set of projections of a  $W^*$ -algebra  $\mathcal{A}$  spans a norm-dense subspace of  $\mathcal{A}$ .

A=L[∞](μ), π: L[∞](μ) →8(L²(μ)) πf = He, Heg = Lo, Vg ∈ L²(μ) It L²(μ) is popular, the L[∞](μ) is populate Definition 3.62. A  $W^*$ -algebra is said to be separable if it admits a faithful, normal representation on a separable Hilbert space H.

#### **Proposition 3.63.**

If a the predual  $\mathcal{A}_*$  of a  $W^*$ -algebra  $\mathcal{A}$  is separable in the norm topology, then  $\mathcal{A}$  is separable.

#### Proposition 3.64.

If a  $W^*$ -algebra is infinite-dimensional, then it is non-separable in the norm topology.

# Von Neumann algebras

**Definition 3.65.** Let H be a Hilbert space. A (concrete) von Neumann algebra is a *-subalgebra of B(H) which is closed in the weak operator topology.

**Theorem 3.66 (von Neumann).**  $\lim_{n \to \infty} \langle \gamma, \alpha_n - \varphi \rangle \leq 4$  and hren  $\gamma, \gamma, \zeta \in H$ Let H be a Hilbert space and M a unital *-subalgebra of B(H). Then,  $\alpha \in \mathcal{A}$ . the following are equivalent:

- 1) M is a von Neumann algebra.
- M is closed in the strong operator topology.
- 3 M = M''.

Examples and non-examples of von-Neumann algebras
$\mathcal{L}(\mathcal{L}) = \mathcal{L} - \mathcal{L} - \mathcal{L}$
(ii) (Nun-example) $A = K(H)$ (compact operators on $H$ : $k(H) = \begin{cases} a \in B(H) : a = \lim_{n \to \infty} a_n$ , $a_n$ have reak $\end{cases}$ $k(H) = \begin{cases} a \in B(H) : a = \lim_{n \to \infty} a_n$ , $a_n$ have reak $\end{cases}$ $b c losed in norm topology but not closed in the weak operator topology e.g. if \{\phi_0, \phi_{1, -}, \phi_{n-1}\} be in k(H) buta_n = proj \{\phi_0, \phi_{1, -}, \phi_{n-1}\} be in k(H) butconverge weakly to the identity which does not fiein k(H) if H is co-dimensional$
(iii) $H = L^2(p)$ , $A = \{ multiplication operators by functions in L^\infty(p) \}.$

# Von Neumann algebras

#### Theorem 3.67 (Sakai).

Every von Neumann algebra has a predual, and is thus a  $W^*$ -algebra. Moreover, the predual is unique up to isometric isomorphism.

#### Theorem 3.68.

Every abelian von Neumann algebra is isometrically isomorphic to  $L^{\infty}(\mu)$  for some measure space  $(X, \Sigma, \mu)$ .

Analogously to our interpretation of the study of  $C^*$ -algebras as "non-commutative topology", we can interpret the study of von Neumann algebras as "non-commutative measure theory".