
Section 3

Introduction to operator algebras



Algebras – basic definitions

Definition 3.1.
An algebra (over the complex numbers) is a C-vector space A, equipped
with a binary operation · : A⇥A ! A such that for every a, b, c 2 A
and � 2 C, we have:
• (ab)c = a(bc).
• a(b + 1) = ab + ac .
• (a+ b)c = ac + bc .
• (�a)b = �(ab) = a(�b).
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Algebras – basic definitions

Definition 3.2.
An algebra A is said to be:

1 Abelian if ab = ba for all a, b 2 A.
2 Unital if there is a (unique) nonzero element 2 A such that

a = a = for all a 2 A.k



⇤-algebras

Definition 3.3.
A ⇤-algebra (or involutive algebra) is an algebra A equipped with an
operation ⇤ : A ! A such that for all a, b 2 A and � 2 C,
• (a⇤)⇤ = a.
• (a+ b)⇤ = a

⇤ + b
⇤.

• (ab)⇤ = b
⇤
a
⇤.

• (�a)⇤ = �⇤
a
⇤.

Examples -1=6
"

( ;)
*
= (

":*
:* )

A.= Mn A* ~ complex - conjugate transpose

1-
• (y ) ~ f-
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Banach algebras; C ⇤-algebras

Definition 3.4.
1 A normed algebra is an algebra A equipped with a norm k·k such

that
kabk  kakkbk, 8a, b 2 A.

2 A Banach algebra is a normed algebra (A, k·k) which is complete
with respect to k·k.

3 A C
⇤-algebra is a Banach ⇤-algebra such that

ka⇤ak = kak2.

For a unital normed algebra, we can choose the norm such that k k = 1
without loss of generality.

"
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"" "^ "" """" "*""

"

" """ " °"

as a map from A ✗A to A.
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Banach algebras; C ⇤-algebras

Definition 3.5.
1 Given an algebra A, then for a subset S ✓ A we denote by alg(S)

the subalgebra of A generated by S , which consists of all linear
combinations of finite products of elements of S . Equivalently,
alg(S) is the smallest subalgebra of A containing S .

2 If A is a Banach algebra, the closure alg(S) is said to be the Banach
subalgebra of A generated by S .



Inverse

Definition 3.6.
An element a of a unital algebra A is said to be invertible if there exists a
(unique) element b 2 A such that ab = ba = . We write b = a

�1 and
call a�1 the inverse of a.

We denote the set of invertible elements of A as G (A). This set forms a
multiplicative subgroup of A.

Proposition 3.7.
For a unital Banach algebra A, G (A) is an open set and �1 : G (A) ! A
is continuous. Henceforth, we shall assume that this is the case.-



Proposition het d- be a unital Banach algebra and eat aft hare norm Hal/<1 .

Then b-- I - a is invertible .

Sketch of proof .

Postulate that the inverse of b is equal to

c = It a + a't _ - ^

N-1

Cheek that Ci) the series ↳ =
I
a
"

converges whenever Halk 1

( compute 11C - call =# a

" / I e- E Hall" )
n=N n=N

Iii) Chek that cb = bc =L
.



Normal elements

Definition 3.8.
An element a of a ⇤-algebra is said to be:

1 Normal if it commutes with a
⇤, i.e., aa⇤ � a

⇤
a = 0.

2 Self-adjoint if a⇤ = a.
3 Skew-adjoint if a⇤ = �a.

Given a unital Banach algebra A and an element a 2 A we denote the
Banach algebra generated by { , a} as B(a). If, in addition, A is a
⇤-algebra, we let B⇤(a) be the Banach ⇤-algebra generated by { , a, a⇤}.

Lemma 3.9.
If a 2 A is a normal element of a Banach ⇤-algebra, then B

⇤(a) is abelian.

- e-g. self-adjoint
elements of V4)

are real- valued functions

[abelian



Spectrum

Definition 3.10.
For an element a 2 A of a unital Banach algebra A we define:

1 The spectrum as the set of complex numbers

�(a) = {� 2 C : a� � /2 G (A)}.

2 The spectral radius
r(a) = sup

�2�(a)
|�|.

Theorem 3.11.
With notation as above, the following hold:

1 �(a) is a compact subset of C such that

sup
�2�(a)

|�|  kak.

2 r(a) = limn!1kank1/n.
3 If a is a normal element of a C

⇤-algebra, then r(a) = kak.

✓
=-D A-

i:
" " ¥ "

-

,

a

F d- = Me

a-- (: ;) , • (a) = to}
⇒ r (a) = ◦

Hall = I



Examples of spectra

1)A = Mn
.

• (a) = { set of eigenvalues of a }

2) A = C. (X)
,

✗ compact Hausdorff .

•(a) = { I c- 6 : a-1 is not invertible as a continuous function , i.e. ,
bad= 1- is not a continuous function }aka- I

n

/
AH ha , singularities = ran a

:÷÷. .

C- ran a

✗



Homomorphisms

Definition 3.12.
1 A homomorphism ⇡ : A ! B between algebras is a linear map that

is compatible with algebraic multiplication, i.e.,

⇡(aa0) = ⇡(a)⇡(a0), 8a, a0 2 A.

2 A homomorphism ⇡ : A ! B is said to be unital if A and B are
unital and ⇡( A) = B.

3 A homomorphism ⇡ : A ! B between ⇤-algebras is said to be a
⇤-homomorphism if

⇡(a⇤) = (⇡a)⇤, 8a 2 A.



F-%7E-en.B.mn * I;) = (
"

j:?)
" 11:11 :D -

- fi . ◦ a://ii.i.la◦ ii./ =/
"

:

d- = V4 ) B. =BCiG) )

Tcf = A sit
. Ag = fg .

Can show : HAH
,
= 11th



Representations

Definition 3.13.
1 For an algebra A, a representation is a homomorphism

⇡ : A ! L(V ), where L(V ) is the algebra of linear maps on a vector
space V .

2 If A is a Banach algebra, a representation is a homomorphism
⇡ : A ! B(E ), where B(E ) is the Banach algebra of bounded linear
maps on a Banach space E .

3 If A is a Banach ⇤-algebra, a ⇤-representation is a ⇤-homomorphism
⇡ : A ! B(H), where B(H) is the C

⇤-algebra of bounded linear
maps on a Hilbert space H.

4 If ker ⇡ = {0}, ⇡ is said to be a faithful representation.



Representations

Definition 3.14.
For a Banach algebra A, the left regular representation (or left multiplier
representation) ⇡ : A ! B(A) is defined as

(⇡a)b = ab, 8a, b 2 A.

Proposition 3.15.

1 The left regular representation ⇡ : A ! L(A) of a unital algebra A is
faithful.

2 If A is a Banach algebra, then ⇡ is a contraction; that is, k⇡k  1.
3 If A is a C

⇤-algebra, then ⇡ is an isometry; that is, k⇡k = 1.



Representations of C ⇤-algebras

Lemma 3.16.
Let H be a Hilbert space. Then, any norm-closed ⇤-subalgebra A of B(H)
is a C

⇤-algebra. We refer to every such A as a concrete C
⇤-algebra.

Theorem 3.17 (Gelfand–Naimark–Segal).
Every C

⇤-algebra A admits admits a faithful representation
⇡ : A ! B(H) on some Hilbert space H.I ↳ TCA is a concrete C*- algebra .

> H = 6ᵗʰ
, equipped

with Fondidean inner prod .

(Bcci ) = Mn .

d-= is a
C*- subalgebra ◦ 1- BCE

" )
↑
nxn diag .

matrices

> 4=1244 A = { malt . operators by 647
tunes .} is a (

*
- iuklsebra

• 1- 1364yd
↳ K(H) (compact operators on H ) is a E- subalgebra • f- BCH) , H Hilbert space .



Characters

Definition 3.18.
A character (or multiplicative linear functional) of a unital Banach
algebra A is a nonzero homomorphism � : A ! C.

Lemma 3.19.
Every character � : A ! C is:

1 Unital.
2 Surjective.
3 Contractive, i.e., k�k  1.

Moreover, if A is a C
⇤-algebra, then:

4 � is a ⇤-homomorphism.
5 k�k = 1.

Corollary 3.20.
Every character of a unital Banach algebra is continuous.

Gcharacters lie in the continuous dual A*



E-ample-i.at = CC× ) , ✗ compact , Hausdorff

for
any ✗ c- ✗ let -8

,
: A → 1C be the evaluation functional at ×

,
i.e
,

off = far ) .

Then
,
Sx is a character : %@g) = far> gc⇒ = f) Ccf g)

In fact
, every character

of CCA is of this form .

Non -example : A = Mn has no characters .

Indeed
,
let eij C- Mn be fk matrix whose only nonzero element is @i;) ij =L .

Then wherever i -4J , eij = 0 .

Thus
, any character ✗ would satisfy

0 = ✗Cei:) = Cei;) )
"

⇒ ✗ Cei;) = 0 .

However
,

we also have eijeji = @ii. Thus , = en t
. . . .
fenn

= eij ,ej , , 1- _ . .

1- enjnejnh

where ji =/ i , and we would have ✗ (A) = 0 which is not possible



Characters

Proposition 3.21.
An abelian unital Banach algebra has at least one character.



Ideals

Definition 3.22.
A subalgebra I ✓ A of an algebra is said to be a (two-sided) ideal if
aI ✓ I and Ia ✓ I for all a 2 A.

Definition 3.23.
A maximal ideal is a proper ideal I ⇢ A that is not a subset of any other
proper ideals.

Proposition 3.24.
Every maximal ideal in a unital Banach algebra is closed.

Examples G) d- = CCX )☒For an ✗ C- ✗
,

I
✗
=/ ftccx) : fix)=0} = f- c- kerf

,

is a maximal ideal

Iiit d- = BCH ) .
Then KCH ) is a ideal in BCH)



Spectra of abelian Banach algebras

Definition 3.25.
Let A be a unital, abelian Banach algebra. The spectrum of A, denoted
as �(A), is the set of its characters.

Theorem 3.26 (Gelfand–Mazur).
Let A be an abelian unital Banach algebra. There is a canonical bijection
between �(A) and the set of maximal ideals of A. Specifically, for every
� 2 �(A), ker� is a maximal ideal, and every maximal ideal has this
form for a unique character � 2 �(A).



Gelfand transform

Theorem 3.27.
The spectrum �(A) of an abelian unital Banach algebra is a weak-⇤
compact subset of A⇤. Moreover, the map ˆ: A ! C (�(A)) with
â(�) = �(a) is a Banach algebra homomorphism with norm kˆk  1.

Definition 3.28.
The mapˆ: A ! C (�(A)) is called the Gelfand transform for A.

Proposition 3.29.
The Gelfand transform for A is injective iff the intersection of all the
maximal ideals of A is {0}. In that case, we say that A is semisimple.

7 C*- algebra

g
" "* ""↑ " """

of • (t )

( sometimes we ante of ≤ Tca) )

Recall: a sequence ✗
i. ✗y . . .

@ d-
*
converges

in the weak - * topology to ✗ c- d-
* if

for Grey f- c- 1-
,

lion ✗nf = ✗ f- .

n -30

Oct) is weak
*- compact ⇔ every open

cover of OCA / in area £ -* topology
has

a finite
d-
*

sutscorer .



Gelfand transform

Proposition 3.30.
For an element a of an abelian, unital, Banach algebra A we have

�(a) = ran â = �(B(a)).

i.
/
I

{ I c- 6 : a-1¢ 6cal } {a c- E : ✗ (a)
= 'd

for some ✗ c- oct) }
PNI let 1- be a unital

,
abelian Banach algebra generated by {A-, a } .

Then
, p :O (A) → • (a) defined

as P (X) = a^(✗ ) is a homeomorphism
between the spectrum of 1- and the spectrum a .



Spectra of C ⇤-algebras

Theorem 3.32 (Gelfand).
Let A be a unital, abelian C

⇤-algebra. Then, the Gelfand transform
� : A ! C (�(A)) is an isometric ⇤-isomorphism between A and the
C

⇤-algebra of continuous functions on �(A).

Theorem 3.33 (Stone).
Let X be a compact Hausdorff space. For x 2 X let �x 2 C (X )⇤ denote
the evaluation functional �x f = f (x). Then, the following hold.

1 �(C (X )) = {�x : x 2 X}.
2 X is homeomorphic to �(C (X )) under the map x 7! �x .

Corollary 3.34.
Let X and Y be compact Hausdorff spaces. Then, X and Y are
homeomorphic iff C (X ) and C (Y ) are algebraically isomorphic. In that
case, C (X ) and C (Y ) are isometrically ⇤-isomorphic C

⇤-algebras.



Spectra of C ⇤-algebras

Based on Theorems 3.32 and 3.33, we can identify unital abelian
C

⇤-algebras with spaces of continuous functions on compact Hausdorff
spaces. Generalizing this interpretation, we can interpret non-abelian C

⇤

algebras as spaces of continuous functions on “non-commutative spaces”.



Continuous functional calculus

Let a be a normal element of a unital C⇤-algebra A. Given a continuous
function f : �(a) ! �(a), we define f (a) 2 A as

f (a) = ��1(f � �),

where � : C⇤(a) ! C (�(C⇤(a))) is the Gelfand transform associated with
the abelian C

⇤-algebra generated by a, and � : �(C⇤(a)) ! �(a) is the
homeomorphism from Proposition 3.31.



Positive elements

Definition 3.35.
An element a of a ⇤-algebra A is said to be positive if a = b

⇤
b for some

b 2 A.

Definition 3.36.
A ⇤-algebra A is said to be:

1 Hermitian if every self-adjoint element has real spectrum, i.e., a 2 A
and a

⇤ = a implies �(a) ⇢ R.
2 Symmetric if every positive element has positive spectrum, i.e.,

a 2 A and a � 0 implies �(a) ⇢ R+.

Theorem 3.37.
A Banach ⇤-algebra A is Hermitian iff it is symmetric.



Examples
(1) A = Mn ( E )

.

Linear algebra result :
The following are equivalent : i

G) a = b*b for a
,

b f An Ca )

Iii ) HYE E
"

,
{ 3
,
a} > ≤ gta } ≥ 0

↳ complex. anuj . transpose
for

every such matrix a
,
• (a) • ☒+ .

A- for a general matrix a • (a) C ☒+ does not imply that a is positive , e-g.,
a = ( '

◦ ) has 0cal = 107 but it is not positive .

C) A = CCK )
,
✗ compact Hausdorff

The following are equivalent :

G) f- = g*g for f.ge CCX)

Iii ) 4-✗ c- ✗ fed ≥ 0 .



Positive elements of C ⇤-algebras

Theorem 3.38.
Let A be a C

⇤-algebra. The following are equivalent:
1 a is positive (i.e., a = b

⇤
b for some b 2 A).

2 a is normal and �(a) ⇢ [0,1).
3 There exists a self-adjoint element b 2 A such that a = b

2.

Corollary 3.39.
Every positive element a 2 A has a unique positive square root, i.e., a
positive element b 2 A such that a = b

2. We write b =
p
a.

Notation.
For a C

⇤-algebra A:
• Asa ⇢ A is the subspace of the self-adjoint adjoint elements.
• A+ ⇢ Asa is the subset of positive elements.



Positive elements of C ⇤-algebras

Theorem 3.40.
The set of positive elements of a C

⇤ algebra is a convex cone, i.e.,
1 For all a 2 A+ and � � 0, �a 2 A+.
2 For all a, b 2 A+ and � 2 [0, 1], �a+ (1 � �b) 2 A+.

Moreover, A+ is closed in the norm topology of A.

By Theorem 3.40, positivity defines an order on Asa.

• If a 2 Asa is positive, we write a � 0.
• Given a, b 2 Asa, we write a  b if b � a � 0.

Proposition 3.41.
Given two positive elements a, b 2 A+ with a  b the following hold:

1 kak  kbk.
2

p
a 

p
b.

3 If A is unital and a, b are invertible, then b
�1  a

�1.

1. ±



Examples Approximation of multiplication operators
- (×, -2, µ ) - probability measure space

A = 1-
•

(y ) (abelian C*- algebra under pointwise function multiplication)
"

space of classical observables
"

Asa = / felicia ) : f is real for p
-a - e. ✗ c- × },d- + = { f- c- Asa : fix) ≥ 0 for µ - are_ ✗ c- × }

H - [( y) , B = BCH ) ( non-abelian ☒- algebra under operator composition)
"

space
of quantum observables "

Bsa = { ac- BCH ) : 12
,
a}>+,

= < a%} > , try, }fH } .

B+ = { a c- Bsa : { 9
,
a) %, ≥ ◦ , HFEH }

Important properly : off ) = octif) , tf c- 1-
.

To : A → B regular rep : if = a where a} = ff YFEH .

recall tf*) = ④
*

Tifg / = ④g) .

This implies that Tc maps d-
+ into B+ ; since t( g.

*g) = Hg*)M(g)= ☒g)
*

Tig ) 70



let IT : It → H be a projection i.e. IT = IT
*
= IT? s.tn TIA ≤ 1-

Then
, given f- c- A* ,

Tf is
,
in general, not positive .

However
,
IT @ f) IT c- B is positive

cheek : HYE H
,
49
,
TIGHTLY > = 4177

,
④f) IT} ) ≥ 0 since ☒f) ≥ 0

Application : Let { do, ∅ ,
,
. . . } be an o-N basis of H

, TL = Pooja
,

,
the { do, - . ., 01<-1 }

Then A
,
: = TIL ⑤ f) The is represented by an ↳ L matrix with positive eigenvalues

It can be shown that for every 1£ off ) , there is a sequence of eigenvalues
di
,
de
,
- ^ of Ai

,
Ar
, _
. . ,

respectively , s - t . Lingo 2 = 2
.



States

Definition 3.42.
A linear functional ' : A ! C on a ⇤-algebra A is said to be positive if
'a � 0 whenever a is positive.

Definition 3.43.
A state ' : A ! C on a unital ⇤-algebra A is a positive, linear unital
functional, i.e.:
• '(a⇤a) � 0 for all a 2 A.
• ' = 1.

The state space of A is the set of its states, denoted as S(A).



Examples
G) A is an abelian unital C*-algebra . Every character of A defines a state

.

Cii ) 1- = 62
.

Let X
,
: d- → Xi (g) = a

,
Xz (g) = b

let p c- [ 0
,
I ]
,
deline Gp : d- → at . Gp (9) = PX, (g) + Xp )Xz(9)

= Pat C-p)b .

"""""""
" " "" " "

⇔" " "" """
~

sct)
dim SCA) = 1

Every state GE Scot) has a unique decomposition {÷
.

÷:G = PX ,
+ f- p /✗< into pure states .

s Every functional g :
A → 6 is of the form q a

= of a for a reefer q = (G) c-
If { is a state

,
we have q = ( Hp ) with PE [°, I ] .



Ciii) d- = MI6) . A has the structure of a Hilbert space equipped with the inner

product {a, b) = tr (a* b) .

. Thus
,
by the Riesz representation theorem ,

every state 9 : 1- →
'

e i > of the form q (a)
= tr (p a) for some pet .

Such a p
is called a density matrix .

Can verify that in order for G to be

a state we must have :

D p ≥ 0 ,
2) trp = 1 .

We can parameterize the set sct) using Pauli matrices :

• =/↓ ? ) , or = ( p :) , or = ( ;)
Claim : F-very

"
density matrix p can be written in the form

p = ( % %) + aio, + aeoi + as 03 s -t.a-fayai.az/s:a11 ≤ 1-
.

• a
}

pure
states pure states correspond to points on surface of sphere

i - e . Hail =L .
Such density matrices are

rank-1 projection matrices , i. e. , p = qqt for a
unit rector 9 .

" """ ""

mixed states are in the intro
> a

,

dims (t ) =3

lpdochsphe.pe# mixed state can be represented as einem
combinations of distinct pure states .£



Embedding states of Q2 into states of Nz

G) Map qp £ scar) with p c- To
,
I] into Gpf SGML ) with p

= (Po ,;)
TF : SCE) → SCM ) i. e-

, p = { I +1Pa
C. (6-9)

C) - Map qp C- S ( E4 with petal ] into q, c- SCH ) with p= 99T
Cr
, :sCñ)→s9= (Eg) -

a 9,

Observe 1191122 =p + 1- p = 1-
.

•

=L

nonlinear/y into SCM iff-
"""

asainoidian "

connectsp a.m,

⇔ "" ' embeds

>
as (f) and (%) .

Ice' ) embeds linearly into ICM )
as a line through the origin£

with endpoints (f) and (
, )



Embedding elements of €2 into elements of Me

◦ We use the regular representation of 62
,

Tc : 62 → B.(E) = Mz
* (%) = ( is a:) .

y
-

ma~,
multiplication operator in the sense that

ma 1%1=1:%)=ab
T

" Classical quantum consistency
"

For every Gp C- SCE
' ) and a c- 62 Gpa ÷ § Gp) @a)

" l

part dz

e-s . free) = tr / 1! ,;) (ai a.1) = + ( P"u f-F) a.) = Pat aa

To cheek for Fe
,
observe that for a pure state of Ale represented by p -99T

we have 9pm = trfpm ) = trfqé' )m ) = 9%9 ± { qlmlq> in Dirac

bratef notation .

Thus,¢4p)*a=Ñka)q=frp Fp)(% a?)( Ff
, )
-
_ part az



States on C ⇤-algebras

Proposition 3.44.
The following hold for every state ' 2 S(A) of a unital C⇤-algebra and
elements a, b 2 A.

1 '(a⇤) = ('a)⇤, for all a 2 A.
2 |'(a⇤b)|  '(a⇤a)'(b⇤b).
3 k'k = 1.

Proposition 3.45.
The state space S(A) of a unital C⇤-algebra A is a convex subset of the
unit ball of A⇤ which is closed in the weak-⇤ topology. In particular,
S(A) is a weak-⇤ compact subset of A⇤.-

→ It 91,92, . . . is a sequence
of skates such that Ha c- A , ein Gua

= Ga for some
n→o

Gt d-
*
,
then q is

also a state .



States on C ⇤-algebras

Proposition 3.46.
For every self-adjoint element a of a C

⇤-algebra A, there exists a state
' 2 S(A) such that 'a = kak.

Theorem 3.47.
The set of states of a unital C⇤-algebra A separates the points of A.
That is, for every a, b 2 A there exists ' 2 S(A) such that 'a 6= 'b.

✓
positive



Pure states

Definition 3.48.
A state ' of a unital C⇤-algebra A is said to be pure if it is an extremal
point of S(A). Otherwise, ' is said to be mixed.

Definition 3.49.
Let H be a Hilbert space. A state ' of B(H) is said to be a vector state
if there exists a (unit) vector ⇠ 2 H such that

'a = h⇠, a⇠i, 8a 2 A.

Proposition 3.50.
Every vector state of B(H) is pure.

✓
& £ %) " ° " """" ""+ *

+"^ " " °

& , 92 f SCA) and p c- 10,1 ) s -t . q =p 9 ,
+ C-P ) fi .

L" Wavefunction
"

(since the map a if
,
if> is a projection, and projections are extremal points

of the positive cone of BCH)
.

If H is infinite-dimensional, there
exist pure states

that are not vector states .



Construction of a pure state
which is not a vector state -

.

let H = E(×
, g) .

Consider E- c- C(×)* Cerebration functional at × )
.

Let ECBCH)
,

e = Tc@Cx)) ,
e consists of multiplication operators - by

↑
continuous functions .

regular rep
of 4th to a bounded biker functional on E

,

i- e
,
A- ⑤ f) - off .

r6
By Hahn- Banach theorem Ax has an extension to a continuous functional on BCH)

at
. 11911--11%11 ( and q @f)

= dxf ) . Such an extension q can be chosen to be

a pure state
. However

,
fur such states there is no vector YEH srt

. q(a) =L}a7>.



Projections

Definition 3.51.
An element a of a ⇤-algebra A is said to be a projection if a = a

⇤ = a
2.

Proposition 3.52.
For a C

⇤-algebra A, the projections are the extremal points of the
positive cone A+.



Projection-valued measures

Definition 3.53.
Let (X ,⌃) be a measurable space and H a Hilbert space. A map
E : ⌃ ! B(H) is said to be a projection-valued measure (PVM) if the
following hold:

1 For every S 2 ⌃, E (S) is a projection.
2 E (;) = 0.
3 E (X ) = I .
4 For every countable collection {S0, S1, . . .} of pairwise-disjoint sets

Sj 2 E and f 2 H, we have E (
S1

j=0 Sj)f =
P1

j=0 E (Sj)f .

I
as = É F- (s;) converges

in the

strong operator topology
of BCH) .



Example H =
,
BCH ) ≈ Mn (G)

.

Let a c- Mn be self-adjoint .

By the spectral thm .
for self-adjoint matrices

,
a has a set of real eigenvalues

Ii
,
- -

r

,
1m m ≤ n and a set of orthonormal eigenvectors / Ui

, ; } sit .

G) au
; ;

= Ii Ui,j , (2) Hi
, ; } is an o-N basis of

.

Let BCE) denote the Bordo-algebra of E .

Deline F- :B (e) → An

s.t. F- (s) = I Pi
c- : dies

conjugate
• here Pi = ? ; a,

-
Hermitian

• . • •

ˢ

☒ ↑
projection onto etgerspace of a

corresponding to di
e

Ther E is a projection - valued measure .
M Classical statistics

Moreover
,
we have a = ¥ ,

I :P:i E U N Events ~ characteristic

↓ ↓ functions
This is an example d- a spectral integral, 1↑µ, ) (a.guy / p•µ , , , ,
a = / I dE(1) abelian algebrasQuantum theory

6 "Quantum events
"

~ projections on
non-abelian algebras



Projection-valued measures

Proposition 3.54.
Let (X ,⌃) be a measurable space, H a Hilbert space, and E : ⌃ ! B(H)
a projection-valued map such that E (X ) = I . Then, the following are
equivalent:

1 E is a PVM.
2 For every countable collection {S0, S1, . . .} of pairwise-disjoint sets

Sj 2 E ,
PJ

j=0 Ej converges as J ! 1 in the weak operator topology.
3 For any two disjoint sets S and T , E (S)E (T ) = 0.



Projection-valued measures

Given a PVM E : ⌃ ! B(H) and elements ⌘, ⇠ 2 H we have:

• E⌘,⇠ : ⌃ ! C with E⌘,⇠(S) = h⌘,E (S)⇠i is a finite complex measure.
• E⌘ : ⌃ ! R with E⌘(S) = E⌘,⌘(S) = h⌘,E (S)⌘i is a probability

measure.

-

(z, F-G)2 >
*

= (Els)q
, g) = (z ,(ECsD*z )

= 12
,
ECDZ> ⇒ G, ECDZ> c- A



Spectral integrals

Theorem 3.55.
Given a PVM E : B(C) ! B(H) and a bounded Borel-measurable
function f : C ! C, there exists a unique operator a 2 B(H) such that

h⌘, a⇠i =
Z

C
f (�) dE⌘,⇠(�).

Symbolically, we write

a = E (f ) =

Z

C
f (�) dE (�).

-

-



Spectral theorem

Theorem 3.56.
Let a 2 B(H) be a normal operator. Then, there exists a unique PVM
E : B(C) ! B(H), supported on the spectrum �(a) ⇢ C such that

a =

Z

C
� dE (�).

Remark.
If f : C ! C is continuous on �(a), then E (f ) is identical to f (a) as
defined via the continuous functional calculus.

(
a*a=aa*



W ⇤-algebras

Definition 3.57.
A W

⇤-algebra (or abstract von Neumann algebra) A is a C
⇤-algebra that

has a predual as a Banach space, i.e., we have A = (A⇤)⇤ for a Banach
space A⇤.

In addition to the norm and weak topologies, a W
⇤-algebra has the

weak-⇤ topology induced from the predual.

Definition 3.58.
• A linear map T : A ! B between W

⇤-algebras A,B is said to be
normal if it is weak-⇤ continuous.

• Correspondingly, a state ' : A ! C of a W
⇤-algebra is called

normal if there is ⇢ 2 A⇤ such that

'a = a⇢, 8a 2 A.

Examples : A = icy )
,
A =@ " ( p 7)

*
-
abelian

1- = BCH )
,
1- = (B , (ti ))

*
- non-abelian

↳asiᵗt•.-• ↳ act "weak - * sense
,
if for every P c- 1-* limancp ) = acts )

n-70

> B , / H) : trace - class operators on H

BICH) = { a c- BIH ) : tra is finite}
,
equipped with the norm Hall ,

= trial
la/ =Va*a-



Examples of normal states :

1-= 647 .

Given a probability density p c- L'4) , i. e., P 70 ,
/pole 1 ,

we hate a normal state qp : d- → € where qp f-= / f-p dy
All normal states of V4 ) are of this form _

1- = BCH) .
Given a density operator p EACH) , i.e , pro , trap = I , we
have a normal state qp : 1-→ 6

,
where 4, a

= tripa) .
All normal states of BCH) are of this form .

( Result : If a c- BCM
,
be B. ( te ) then abc-B.CH)

.

If f- c- ily ) , gf
L'(4) then tg C- L' (f) )



Commutants

Definition 3.59.
Let A be an algebra. The commutant of a set X ✓ A, denoted as X

0, is
the set elements of A that commute with every element of X , i.e.,

X
0 = {a 2 A : ax = xa, 8x 2 X}.

The bicommutant of X , denoted as X
00, is the commutant of X 0.

Proposition 3.60.
With notation as above, the following hold.
• X

0 is a subalgebra of A.
• If A is unital, then X

0 is unital.
• If A is a ⇤-algebra, then X

0 is a ⇤-algebra.
• X ✓ X

00.
• X

000 = X
0.

A- Mn (E)

✗= -1
,
✗
'

= ICI , ce e }



W ⇤-algebras

Theorem 3.61.
The set of projections of a W

⇤-algebra A spans a norm-dense subspace
of A.

Definition 3.62.
A W

⇤-algebra is said to be separable if it admits a faithful, normal
representation on a separable Hilbert space H.

Proposition 3.63.
If a the predual A⇤ of a W

⇤-algebra A is separable in the norm topology,
then A is separable.

Proposition 3.64.
If a W

⇤-algebra is infinite-dimensional, then it is non-separable in the
norm topology.

A=L
"

(f) , t : V47 →BCC,) )
tf = Mf

, Mfg =19, Hg c- [(p)
It [(f) is separable, the ↳(f) is separable



Von Neumann algebras

Definition 3.65.
Let H be a Hilbert space. A (concrete) von Neumann algebra is a
⇤-subalgebra of B(H) which is closed in the weak operator topology.

Theorem 3.66 (von Neumann).
Let H be a Hilbert space and M a unital ⇤-subalgebra of B(H). Then,
the following are equivalent:

1 M is a von Neumann algebra.
2 M is closed in the strong operator topology.
3 M = M

00.

1-

ÉÉry 2,9EH

III. <2, an 3- > = fr, at > for a c-BCH), then
at 1-

.



Examples and non- examples of non -Neumann algebras
G) 1- = BCH )

worm topologyCii) (Non -example ) A = KCH ) (compact operators on H :

[
=

KCH ) = { a c- BCH ) : a = fig an , an finite rank }
↳ closed in norm topology but not closed in the

weak operator topology .

e.g. if / ∅, &, _ . if is an on - basis of H
,
then

an = pros
'

{ %
,
01,, _ . ,∅n-, } lie in KCH ) but

coverage weakly to the identity which does not lie

in KCH) if H is o-dimensional -

liii) H = ily ) , 1- = / multiplication operators by functions in V41 } .



Von Neumann algebras

Theorem 3.67 (Sakai).
Every von Neumann algebra has a predual, and is thus a W

⇤-algebra.
Moreover, the predual is unique up to isometric isomorphism.

Theorem 3.68.
Every abelian von Neumann algebra is isometrically isomorphic to L

1(µ)
for some measure space (X ,⌃, µ).

Analogously to our interpretation of the study of C⇤-algebras as
“non-commutative topology”, we can interpret the study of von Neumann
algebras as “non-commutative measure theory”.


