Section 3

Introduction to operator algebras

Algebras - basic definitions

Definition 3.1.
An algebra (over the complex numbers) is a \mathbb{C}-vector space \mathcal{A}, equipped with a binary operation : : $\mathcal{A} \times \mathcal{A} \rightarrow \mathcal{A}$ such that for every $a, b, c \in \mathcal{A}$ and $\lambda \in \mathbb{C}$, we have:

- $(a b) c=a(b c)$.
- $a(b+\neq 1)^{c}=a b+a c$.
- $(a+b) c=a c+b c$.
- $(\lambda a) b=\lambda(a b)=a(\lambda b)$.

Examples

- $L^{\prime}(\mathbb{R})$ with $(f * g)(t)=\int_{-\infty}^{\infty} f(z) g(t-z) d \tau \quad$ w he lies in $L^{\prime}(\mathbb{R})$
- Abelian put non-unital - Banach wit L' norm
- M_{n} (nan complex mefricics) equipped with matrix panodueb w
- Given a provability space (Ω, Σ, μ), (Banach wot ${ }^{\text {an }}$ math x norm, \uparrow Composition of linear $L^{\infty}(\mu)$ equipped with pointwise function multiplication maps from $\mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ G abelian, nuital c^{*}-ald. wit on norm.
- Given a Hilbert space H (e.g., $\left.H=L^{2}(\mu)\right)$
$B(H)$ equipped with operator composition $K(H) \subseteq B(H)$ compact operators \longrightarrow non abclicn nuital $\uparrow C^{*}$-algebra witt opestor
\rightarrow non delian, non-vnital
- Given a Hausdorff top. sucre X, qum
$C_{0}(x)$ (continuous functions that vanish at o) equipped with point wite function multiplication \& C^{*}-algebra equipped with ∞ norm
\Rightarrow abelian, non-unital when X is non-compact

Non-examples
$L^{\prime}(\mathbb{R})$ under pointuise multiplication of functions is not an algebra

$$
f(x)=\left\{\begin{array}{cc}
0, & x \leq 0 \\
1 / \sqrt{x}, & x \in(0,1) \\
0, & x \geqslant 1
\end{array}\right.
$$

Then $\int_{\mathbb{R}} f(x) d x<\infty$ but $\int_{R}^{R} f^{2}(x) d x=\infty$

Algebras - basic definitions

Definition 3.2.

An algebra \mathcal{A} is said to be:
(1) Abelian if $a b=b a$ for all $a, b \in \mathcal{A}$.
(2) Unital if there is a (unique) nonzero element $\mathbb{1} \in \mathcal{A}$ such that $\mathbb{1} a=a \mathbb{1}=\mathbb{1} /$ for all $a \in \mathcal{A}$.

*-algebras

Definition 3.3.

A *-algebra (or involutive algebra) is an algebra \mathcal{A} equipped with an operation * $: \mathcal{A} \rightarrow \mathcal{A}$ such that for all $a, b \in \mathcal{A}$ and $\lambda \in \mathbb{C}$,

- $\left(a^{*}\right)^{*}=a$.
- $(a+b)^{*}=a^{*}+b^{*}$.
- $(a b)^{*}=b^{*} a^{*}$.
- $(\lambda a)^{*}=\lambda^{*} a^{*}$.

Examples $A=\mathbb{C}^{n} \quad\left(\begin{array}{c}a_{1} \\ \vdots \\ a_{n}\end{array}\right)^{*}=\left(\begin{array}{c}a^{*} \\ \vdots \\ a_{n}^{*}\end{array}\right)$
$A=M_{n} \quad A^{*} \sim$ complex-corjuyate tomspore
$L^{\infty}(\mu) \sim f^{*}(x)=(f(x))^{*}$
$B(H) \quad A^{*} \sim$ operator adjoint $\quad\left(\left\langle f, A_{g}\right\rangle_{H}=\left\langle A^{*} f, s\right\rangle_{H} \quad \forall f, g \in H\right)$

Banach algebras; C^{*}-algebras \longrightarrow Implies thent multiplicedin is cutinuous

Definition 3.4.

(1) A normed algebra is an algebra \mathcal{A} equipped with a norm $\|\cdot\|$ such that

$$
\left\|_{a b \|} \leq\right\| a\|\|b\|, \quad \forall a, b \in \mathcal{A} .
$$

(2. A Banach algebra is a normed algebra $(\mathcal{A},\|\cdot\|)$ which is complete with respect to $\|\cdot\|$.
3 A C*-algebra is a Banach *-algebra such that

$$
\underbrace{\left\|a^{*} a\right\|=\|a\|^{2}}_{\text {"C }^{*} \text {-identify" }} \text {, }
$$

For a unital normed algebra, we can choose the norm such that $\|\mathbb{1}\|=1$ without loss of generality.

Banach algebras; C*-algebras

Definition 3.5.

(1) Given an algebra \mathcal{A}, then for a subset $S \subseteq \mathcal{A}$ we denote by $\operatorname{alg}(S)$ the subalgebra of \mathcal{A} generated by S, which consists of all linear combinations of finite products of elements of S. Equivalently, $\operatorname{alg}(S)$ is the smallest subalgebra of \mathcal{A} containing S.
(2) If \mathcal{A} is a Banach algebra, the closure $\overline{\operatorname{alg}(S)}$ is said to be the Banach subalgebra of \mathcal{A} generated by S.

Inverse

Definition 3.6.

An element a of a unital algebra \mathcal{A} is said to be invertible if there exists a (unique) element $b \in \mathcal{A}$ such that $a b=b a=\mathbb{1}$. We write $b=a^{-1}$ and call a^{-1} the inverse of a.

We denote the set of invertible elements of \mathcal{A} as $G(\mathcal{A})$. This set forms a multiplicative subgroup of \mathcal{A}.

Proposition 3.7.

For a unital Banach algebra $\mathcal{A}, G(\mathcal{A})$ is an open set and ${ }^{-1}: G(\mathcal{A}) \rightarrow \mathcal{A}$ is continuous. Henceforth, we shall assume that this is the case

Proposition let A be a unital Banach algebra and leet a\& A hare norm $\|a\|<1$. Then $b=\mathbb{1}-a$ is invertible.

Sketch of proof. Postulate thou the inverse of b is equal to

$$
c=1+a+a^{2}+\ldots
$$

Chard that $\left.C_{i}\right)$ the series $C_{N}=\sum_{n=0}^{N-1} a^{n}$ courerges whenever $\|a\|<1$

$$
\left(\text { compute }\left\|c-c_{N}\right\|=\left\|\sum_{n=N}^{\infty} a^{n}\right\| \leqslant \sum_{n=N}^{\infty}\|a\|^{n}\right)^{n}
$$

(ii) Cher that $c b=b c=1$.

Normal elements

Definition 3.8.

An element a of a *-algebra is said to be:
(1) Normal if it commutes with a^{*}, i.e., $a a^{*}-a^{*} a=0$.
(2) Self-adjoint if $a^{*}=a$ er. selt-adjoint elements of $L^{*}(r)$

3 Skew-adjoint if $a^{*}=-a$. are real-malued functions

Given a unital Banach algebra \mathcal{A} and an element $a \in \mathcal{A}$ we denote the Banach algebra generated by $\{\mathbb{1}, a\}$ as $B(a)$. If, in addition, \mathcal{A} is a *-algebra, we let $B^{*}(a)$ be the Banach ${ }^{*}$-algebra generated by $\left\{\mathbb{1}, a, a^{*}\right\}$.
Lemma 3.9.
\rightarrow abelian
If $a \in \mathcal{A}$ is a normal element of a Banach *-algebra, then $B^{*}(a)$ is abelian.

Spectrum

Definition 3.10.

For an element $a \in \mathcal{A}$ of a unital Banach algebra \mathcal{A} we define:
(1) The spectrum as the set of complex numbers

$$
\sigma(a)=\{\lambda \in \mathbb{C}: a-\lambda \notin G(\mathcal{A})\}_{\text {. }} \text { |all }
$$

(2) The spectral radius

$$
r(a)=\sup _{\lambda \in \sigma(a)}|\lambda| .
$$

Theorem 3.11.

With notation as above, the following hold:

(1) $\sigma(a)$ is a compact subset of \mathbb{C} such that

$$
\begin{aligned}
& \frac{E_{x}}{} A=M_{2} \\
& a=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) \\
& \|a\|=1
\end{aligned}
$$

$$
\sup _{\lambda \in \sigma(a)}|\lambda| \leq\|a\| . \quad a=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), \quad \sigma(a)=\{0\}
$$

(2) $r(a)=\lim _{n \rightarrow \infty}\left\|a^{n}\right\|^{1 / n}$.

3 If a is a normal element of a C^{*}-algebra, then $r(a)=\|a\|$.

Examples of spectra

1) $A=M_{n} \cdot \sigma(a)=\{$ set of eigenvalues of $a\}$
2) $A=C(x), \quad x$ compact. Hausdorff
$\sigma(a)=\{\lambda \in \mathbb{C}: a-\lambda$ is not incurfible as a continuous function, i.e., $b(\lambda)=\frac{1}{a(x)-\lambda}$ is not a continuous function \} ~

Homomorphisms

Definition 3.12.

(1) A homomorphism $\pi: \mathcal{A} \rightarrow \mathcal{B}$ between algebras is a linear map that is compatible with algebraic multiplication, i.e.,

$$
\pi\left(a a^{\prime}\right)=\pi(a) \pi\left(a^{\prime}\right), \quad \forall a, a^{\prime} \in \mathcal{A} .
$$

(2) A homomorphism $\pi: \mathcal{A} \rightarrow \mathcal{B}$ is said to be unital if \mathcal{A} and \mathcal{B} are unital and $\pi\left(\mathbb{1}_{\mathcal{A}}\right)=\mathbb{1}_{\mathcal{B}}$.
3 A homomorphism $\pi: \mathcal{A} \rightarrow \mathcal{B}$ between ${ }^{*}$-algebras is said to be a *-homomorphism if

$$
\pi\left(a^{*}\right)=(\pi a)^{*}, \quad \forall a \in \mathcal{A} .
$$

Examples

$$
\begin{aligned}
& A=\mathbb{C}^{n}, B=M_{n} \quad \pi\left(\begin{array}{c}
a_{1} \\
\vdots \\
a_{n}
\end{array}\right)=\left(\begin{array}{ccc}
a_{1} & & 0 \\
\ddots & 0 \\
0 & a_{n}
\end{array}\right) \\
& \pi\left(\left(\begin{array}{c}
a_{1} \\
\vdots \\
a_{n}
\end{array}\right)\left(\begin{array}{c}
b_{1} \\
\vdots \\
b_{n}
\end{array}\right)\right)=\left(\begin{array}{cc}
a_{1} b_{1} & \\
\vdots & 0 \\
0 & \\
a_{n} b_{n}
\end{array}\right)=\left(\begin{array}{ccc}
0 & a_{n}
\end{array}\right)\left(\begin{array}{cc}
a_{1} & \\
0 \\
0 & 0 \\
0 & a_{n}
\end{array}\right)\left(\begin{array}{ll}
b_{1} & \\
& 0 \\
0 & \\
b_{n}
\end{array}\right)=\pi\left(\begin{array}{l}
a_{1} \\
\vdots \\
a_{n}
\end{array}\right) \pi\left(\begin{array}{l}
b_{1} \\
\vdots \\
b_{n}
\end{array}\right) \\
& A=L^{\infty}\left(\varphi_{\mu}\right) \quad B=B\left(L^{2}(\mu)\right) \\
& \pi f=A \quad \text { st. } \quad A g=f g . \\
& \text { Can show: }\|A\|_{B}=\|f\|_{A}
\end{aligned}
$$

Representations

Definition 3.13.

(1) For an algebra \mathcal{A}, a representation is a homomorphism $\pi: \mathcal{A} \rightarrow L(V)$, where $L(V)$ is the algebra of linear maps on a vector space V.
(2) If \mathcal{A} is a Banach algebra, a representation is a homomorphism $\pi: \mathcal{A} \rightarrow B(E)$, where $B(E)$ is the Banach algebra of bounded linear maps on a Banach space E.
3 If \mathcal{A} is a Banach *-algebra, a *-representation is a *-homomorphism $\pi: \mathcal{A} \rightarrow B(H)$, where $B(H)$ is the C^{*}-algebra of bounded linear maps on a Hilbert space H.
(4) If $\operatorname{ker} \pi=\{0\}$, π is said to be a faithful representation.

Representations

Definition 3.14.
For a Banach algebra \mathcal{A}, the left regular representation (or left multiplier representation) $\pi: A \rightarrow B(\mathcal{A})$ is defined as

$$
(\pi a) b=a b, \quad \forall a, b \in \mathcal{A} .
$$

Proposition 3.15.

(1) The left regular representation $\pi: A \rightarrow L(\mathcal{A})$ of a unital algebra \mathcal{A} is faithful.
(2) If \mathcal{A} is a Banach algebra, then π is a contraction; that is, $\|\pi\| \leq 1$.

3 If \mathcal{A} is a C^{*}-algebra, then π is an isometry; that is, $\|\pi\|=1$.

Representations of C^{*}-algebras
Lemma 3.16.
Let H be a Hilbert space. Then, any norm-closed *-subalgebra \mathcal{A} of $B(H)$
is a C^{*}-algebra. We refer to every such \mathcal{A} as a concrete C^{*}-algebra.
Theorem 3.17 (Gelfand-Naimark-Segal).
Every C* *-algebra \mathcal{A} admits admits a faithful representation $\pi: \mathcal{A} \rightarrow B(H)$ on some Hilbert space H.
$\longrightarrow \pi A$ is a concrete C^{π}-algebra.
$\rightarrow H=\mathbb{C}^{n}$, equipped with Euclidean Aver pol.

$$
B\left(\mathbb{C}^{n}\right) \simeq M_{n} . \quad A=\mathbb{T}_{n} \text { is a } C^{*} \text { - sibalpora of } B\left(\mathbb{C}^{n}\right)
$$

$\rightarrow H=L^{2}(\mu) \quad \mathcal{A}=\left\{\right.$ mull. opeabors by $L^{\infty}(\mu)$ funcs. $\}$ is a C^{*}-sulslyebra of $P\left(l^{2}(p)\right)$
$\rightarrow K(H)($ compact opestos on $H)$ is a C^{t}-subalgebera of $B(H)$, H Hilbert space.

Characters

Definition 3.18.
A character (or multiplicative linear functional) of a unital Banach algebra \mathcal{A} is a nonzero homomorphism $\chi: \mathcal{A} \rightarrow \mathbb{C}$.

Lemma 3.19.
Every character $\chi: \mathcal{A} \rightarrow \mathbb{C}$ is:
(1) Unital.
(2) Surjective.
(3) Contractive, ie., $\|\chi\| \leq 1$.

Moreover, if \mathcal{A} is a C^{*}-algebra, then:
(4) χ is a *-homomorphism.
(5) $\|x\|=1$.

Corollary 3.20 .
Every character of a unital Banach algebra is continuous.
\rightarrow cheractors lie in the continuous dual \mathcal{A}^{*}

Example: $A=C(x), X$ compact, Hausdorff
For any $x \in X$ let $\delta_{x}: A \rightarrow \mathbb{C}$ be the evaluation functional at x, i.e,

$$
\delta_{x} f=f(x)
$$

Then, δ_{x} is a cherrater: $\delta_{x}(f g)=f(x) g(x)=\left(\delta_{x} f\right)\left(\delta_{x} g\right)$
In fad, every character of $C(x)$ is of this form.
Non example: $A=M_{n}$ has no characters.
Indeed, let $e_{i j} \in \mu_{n}$ be fee matix whore only konzers element is $\left(e_{i_{i}}\right)_{i_{j}}=1$. Then whenever $i \neq j, e_{i j}^{2}=0$. Thus, any character x $\omega_{0 u}(d$ satisfy

$$
0=x\left(e_{i j}^{2}\right)=\left(x\left(e_{i j}\right)\right)^{2} \Rightarrow x\left(e_{i j}\right)=0 .
$$

flowers, we abs hark $e_{i j} e_{j i}=e_{i i}$. Thus, $1=e_{11}+\ldots+e_{n n}$

$$
=e_{1 j} e_{j_{1} 1}+\ldots+e_{\eta_{n}} e_{j_{n} n}
$$

whore $j_{i} \neq i$, and we would hare $\chi(\mathbb{1})=0$ which is not possible

Characters

Proposition 3.21.

An abelian unital Banach algebra has at least one character.

Ideals

Definition 3.22.
A subalgebra $\mathcal{I} \subseteq \mathcal{A}$ of an algebra is said to be a (two-sided) ideal if $a \mathcal{I} \subseteq \mathcal{I}$ and $\mathcal{I} a \subseteq \mathcal{I}$ for all $a \in \mathcal{A}$.

Definition 3.23.
A maximal ideal is a proper ideal $\mathcal{I} \subset \mathcal{A}$ that is not a subset of any other proper ideals.

Proposition 3.24.

Every maximal ideal in a unital Banach algebra is closed.

$$
\frac{\text { Examples }}{\text { Fir } a_{x} x \in X} \text { i) } \mathcal{A}=C(X)
$$

$$
I_{x}=\{f \in C(x): f(x)=0\}=f \in \operatorname{ker} \delta_{x}
$$

is a morinal idectl
(ii) $A=B(H)$. Then $K(H)$ is an idea in $B(H)$

Spectra of abelian Banach algebras

Definition 3.25.
Let \mathcal{A} be a unital, abelian Banach algebra. The spectrum of \mathcal{A}, denoted as $\sigma(\mathcal{A})$, is the set of its characters.

Theorem 3.26 (Gelfand-Mazur).
Let \mathcal{A} be an abelian unital Banach algebra. There is a canonical bijection between $\sigma(\mathcal{A})$ and the set of maximal ideals of \mathcal{A}. Specifically, for every $\chi \in \sigma(\mathcal{A})$, ker χ is a maximal ideal, and every maximal ideal has this form for a unique character $\chi \in \sigma(\mathcal{A})$.

Gelfand transform

Theorem 3.27.
The spectrum $\sigma(\mathcal{A})$ of an abelian unital Banach algebra is a weak-* compact subset of \mathcal{A}^{*}. Moreover, the map ${ }^{\wedge}: \mathcal{A} \rightarrow(C(\sigma(\mathcal{A}))$ with $\hat{a}(\chi)=\chi(a)$ is a Banach algebra homomorphism with norm $\|\wedge\| \leq 1$.

Definition 3.28.
The map^: $\mathcal{A} \rightarrow C(\sigma(\mathcal{A}))$ is called the Gelfand transform for \mathcal{A}.
Proposition 3.29.

$$
\text { (sometimes we ute } \hat{a} \equiv \Gamma(a) \text {) }
$$

The Gelfand transform for \mathcal{A} is injective iff the intersection of all the maximal ideals of \mathcal{A} is $\{0\}$. In that case, we say that \mathcal{A} is semisimple.

Recall: a sequence $\alpha_{1}, \alpha_{1}, \ldots \in t^{*}$ converges
in the what-* top.lojy to $\alpha \in t^{*}$ if for ere y $f \in A, \quad \lim _{n \rightarrow \infty} \alpha_{n} f=\alpha f$. $\sigma(A)$ is what $*$-compact \Leftrightarrow grey open cover of $\sigma(A)$ in mas tit topilory has a frise subcoren.

Gelfand transform
Proposition 3.30.
For an element a of an abelian, unital, Banach algebra \mathcal{A} we have

$$
\{\lambda \in \mathcal{C}: a-\lambda \in G(t)\} \quad\left\{\lambda \in \mathcal{C}: \chi^{(a)=\lambda}\right.
$$

for some $x \in \cup(t)\}$
Prop. Let A be a vital, abelian Banach alpha gerveted by $\{\mathbb{1}, a\}$. Then, $\beta: \sigma(A) \rightarrow \sigma(a)$ defined as $\beta(X)=\hat{a}(X)$ is a homeomorphism between the spectrum of A ard the spectrum a.

Spectra of C^{*}-algebras

Theorem 3.32 (Gelfand).

Let \mathcal{A} be a unital, abelian C*-algebra. Then, the Gelfand transform $\Gamma: \mathcal{A} \rightarrow C(\sigma(\mathcal{A}))$ is an isometric *-isomorphism between \mathcal{A} and the C^{*}-algebra of continuous functions on $\sigma(\mathcal{A})$.

Theorem 3.33 (Stone).
Let X be a compact Hausdorff space. For $x \in X$ let $\delta_{x} \in C(X)^{*}$ denote the evaluation functional $\delta_{x} f=f(x)$. Then, the following hold.
(1) $\sigma(C(X))=\left\{\delta_{x}: x \in X\right\}$.
(2) X is homeomorphic to $\sigma(C(X))$ under the map $x \mapsto \delta_{x}$.

Corollary 3.34.

Let X and Y be compact Hausdorff spaces. Then, X and Y are homeomorphic iff $C(X)$ and $C(Y)$ are algebraically isomorphic. In that case, $C(X)$ and $C(Y)$ are isometrically ${ }^{*}$-isomorphic C^{*}-algebras.

Spectra of C^{*}-algebras

Based on Theorems 3.32 and 3.33 , we can identify unital abelian C*-algebras with spaces of continuous functions on compact Hausdorff spaces. Generalizing this interpretation, we can interpret non-abelian C* algebras as spaces of continuous functions on "non-commutative spaces".

Continuous functional calculus

Let a be a normal element of a unital C^{*}-algebra \mathcal{A}. Given a continuous function $f: \sigma(a) \rightarrow \sigma(a)$, we define $f(a) \in \mathcal{A}$ as

$$
f(a)=\Gamma^{-1}(f \circ \beta),
$$

where $\Gamma: C^{*}(a) \rightarrow C\left(\sigma\left(C^{*}(a)\right)\right)$ is the Gelfand transform associated with the abelian C^{*}-algebra generated by a, and $\beta: \sigma\left(C^{*}(a)\right) \rightarrow \sigma(a)$ is the homeomorphism from Proposition 3.31.

Positive elements

Definition 3.35.
An element a of $a{ }^{*}$-algebra \mathcal{A} is said to be positive if $a=b^{*} b$ for some $b \in \mathcal{A}$.

Definition 3.36.
A *-algebra \mathcal{A} is said to be:
(1) Hermitian if every self-adjoint element has real spectrum, i.e., $a \in \mathcal{A}$ and $a^{*}=a$ implies $\sigma(a) \subset \mathbb{R}$.
(2) Symmetric if every positive element has positive spectrum, i.e., $a \in \mathcal{A}$ and $a \geq 0$ implies $\sigma(a) \subset \mathbb{R}_{+}$.

Theorem 3.37.
A Banach *-algebra \mathcal{A} is Hermitian iff it is symmetric.

Examples
(1) $A=M_{n}(\mathbb{C})$. Linear algebra result:

The following are equivalent:
(i) $a=b^{*} b$ for $a, b \in M_{n}(c)$
(ii) $\left.\forall \zeta \in \mathbb{C}^{n},\langle\zeta, a \xi\rangle \equiv \xi^{+} a\right\} \geqslant 0$
G complex. any. transpose
For every rich matrix $a, \sigma(a) \subset \mathbb{R}_{+}$.

1. For a geneal matrix a $\sigma(a) \subset \mathbb{R}_{+}$does not imply that a is positive, egg., $a=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$ hes $\sigma(a)=\{0\}$ but it is not positive.
(2) $A=C(X), X$ compact Hausdorff $f f$

The following are equivalent:
(i) $f=g^{*} g$ for $f, g \in C(x)$
(ii) $\forall x \in X \quad f(x) \geqslant 0$.

Positive elements of C^{*}-algebras

Theorem 3.38.

Let \mathcal{A} be a C^{*}-algebra. The following are equivalent:
(1) a is positive (i.e., $a=b^{*} b$ for some $b \in \mathcal{A}$).
(2) a is normal and $\sigma(a) \subset[0, \infty)$.

3 There exists a self-adjoint element $b \in \mathcal{A}$ such that $a=b^{2}$.
Corollary 3.39.
Every positive element $a \in \mathcal{A}$ has a unique positive square root, i.e., a positive element $b \in \mathcal{A}$ such that $a=b^{2}$. We write $b=\sqrt{a}$.

Notation.
For a C^{*}-algebra \mathcal{A} :

- $\mathcal{A}_{\mathrm{sa}} \subset \mathcal{A}$ is the subspace of the self-adjoint adjoint elements.
- $\mathcal{A}_{+} \subset \mathcal{A}_{\text {sa }}$ is the subset of positive elements.

Positive elements of C^{*}-algebras

Theorem 3.40.

The set of positive elements of a C* algebra is a convex cone, i.e.,
(1) For all $a \in \mathcal{A}_{+}$and $\lambda \geq 0, \lambda a \in \mathcal{A}_{+}$.
(2) For all $a, b \in \mathcal{A}_{+}$and $\lambda \in[0,1], \lambda a+(1-\lambda b) \in \mathcal{A}_{+}$.

Moreover, \mathcal{A}_{+}is closed in the norm topology of \mathcal{A}.
By Theorem 3.40, positivity defines an order on $\mathcal{A}_{\text {sa }}$.

- If $a \in \mathcal{A}_{\mathrm{sa}}$ is positive, we write $a \geq 0$.
- Given $a, b \in \mathcal{A}_{\text {sa }}$, we write $a \leq b$ if $b-a \geq 0$.

Proposition 3.41.

Given two positive elements $a, b \in \mathcal{A}_{+}$with $a \leq b$ the following hold:
(1) $\|a\| \leq\|b\|$.
(2) $\sqrt{a} \leq \sqrt{b}$.

3 If \mathcal{A} is unital and a, b are invertible, then $b^{-1} \leq a^{-1}$.

Example Approximarion of multiplication opeators
(X, Σ, μ) - probability measure space
$A=L^{\infty}(\mu)$ (abelian C^{*}-alpbra inder pointwise function multiplication) "space of classical obdervables"

$$
\begin{aligned}
& A_{s_{a}}=\left\{f \in L^{\infty}(\psi): f(x) \text { is real for } \mu-u-e-x \in X\right\} \\
& A_{+}=\left\{f_{f} b_{s a}: f(x) \geqslant 0 \text { for } \mu \text {-are_xє } x\right\}
\end{aligned}
$$

$H=L^{2}(r), B=B(H)$ (non-abelion C^{+}-alabore ueder opeator composition) "ppace of quimtum obveratles".

$$
\begin{aligned}
& \left.\left.\left.B_{s c}=\{a \in B(H):\langle\eta, a\}\rangle_{H}=\langle a \eta,\}\right\rangle, \forall \eta\right\} \in H\right\} \\
& \left.B_{H}=\left\{a \in B_{s a}:\langle\zeta, a\}\right\rangle_{H} \geqslant 0, \forall F_{f} H\right\}
\end{aligned}
$$

Important propery: $\sigma(f)=\sigma(\pi f), \forall f \in A$
$\pi: A \rightarrow B$ regular rep. $\pi f=a$ where $a \zeta=f f \quad \forall f \in H$ recall $\pi\left(f^{*}\right)=(\pi f)^{*} \quad \pi(f g)=(\pi f)(\pi g)$.
This implies fhat $\pi \mathrm{mas}$ to info $_{+} \beta_{+}$; shce $\pi\left(g^{*} g\right)=\pi\left(g^{*}\right) \pi(g)=(\pi g)^{*}(\pi g) \geqslant 0$

Let $\pi: H \rightarrow H$ be a projection i.e. $\pi=\pi^{*}=\pi^{2}$, st. $\pi A \subseteq A$ Then, given $f \in A_{+}, \quad \pi f$ is, in geneal, not positive.
Howere, $\Pi(\pi f) \pi \in B$ is positive
Cheek: $\forall \xi \in H,\langle\xi, \pi(\pi R) \pi \zeta\rangle=\langle\pi \xi,(\pi R) \pi \zeta\rangle \geqslant 0$ since $(\pi f) \geqslant 0$
Applicalin: Let $\left\{\phi_{0}, \phi_{1}, \ldots\right\}$ be an $O-N$ basis of $H, T_{L}=\operatorname{pooj}_{H_{L}}, H_{L}=\left\{\phi_{0}, \ldots, \phi_{L-1}\right\}$
Then $A_{L}:=\Pi_{L}\left(\pi^{f}\right) \pi_{L}$ is reperenteal by an $L \times L$ matrix with positive eigairolues
It cen be shown that for ency $\lambda \in \sigma(f)$, there is a sequence of eigenvalues $\lambda_{1}, \lambda_{2}, \ldots$ of A_{1}, A_{2}, \ldots, respectively, $s-t \ldots \lim _{L \rightarrow \infty} \lambda_{L}=\lambda$,

States

Definition 3.42.
A linear functional $\varphi: \mathcal{A} \rightarrow \mathbb{C}$ on a ${ }^{*}$-algebra \mathcal{A} is said to be positive if $\varphi a \geq 0$ whenever a is positive.

Definition 3.43.
A state $\varphi: \mathcal{A} \rightarrow \mathbb{C}$ on a unital ${ }^{*}$-algebra \mathcal{A} is a positive, linear unital functional, i.e.:

- $\varphi\left(a^{*} a\right) \geq 0$ for all $a \in \mathcal{A}$.
- $\varphi \mathbb{1}=1$.

The state space of \mathcal{A} is the set of its states, denoted as $S(\mathcal{A})$.

Examples
$\left(C_{i}\right) A$ is an ofelian unital C-algebra. Errs character of t defines a state.
(ii) $A=\mathbb{C}^{2}$ Let $x_{1}: t \rightarrow C^{*} X_{1}\binom{a}{b}=a, x_{2}\binom{a}{b}=b$

Let $p \in[0,1]$, define $\sigma_{p}: t \rightarrow C^{*}$ st. $G_{p}\binom{a}{b}=p x_{1}\binom{a}{b}+(1-p) X_{2}\binom{a}{b}$
Then any state of t is of the form G_{p} $\operatorname{dim} S(t)=1$
Every state $\varphi \in S(t)$ has a unique decomposition $G=p X_{1}+(1-p) X_{2}$ into pure states.

LS Every functional $q: A \rightarrow \mathbb{C}$ is of the form $q a=q^{\dagger}$ a for a rector $q=\binom{q_{1}}{q_{2}} \in C^{2}$ If q is a state, we have $q=\binom{p}{1-p}$ with $p \in[0,1]$.
(iii) $A=M_{2}(\mathbb{C})$. A has the structure of a Hilbert space equipped with the inner product $\langle a, b\rangle=\operatorname{tr}\left(a^{*} b\right)$. Thew, by the Ries 2 representation theorem, exc state $\varphi: t \rightarrow \mathbb{C}$ is of the form $\varphi(a)=\operatorname{tr}(\rho a)$ for some $p \in \mathcal{A}$. such a p is called a density matrix. Can verily that in order for 6 to be a state we must have:

1) $\rho \geqslant 0$
2) $\operatorname{tr}_{\mathrm{p}}=1$.

We can parameterize the ret $S(t)$ using Pauli matrices:

$$
\sigma_{1}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \quad \sigma_{2}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad \sigma_{3}=\left(\begin{array}{cc}
0 & i \\
-i & 0
\end{array}\right)
$$

Claim: Frey ${ }^{2 x^{2}}$ density matixx p can be written in the form

$$
\rho=\left(\begin{array}{cc}
1 / 2 & 0 \\
0 & 1 / 2
\end{array}\right)+a_{1} \sigma_{1}+a_{2} \sigma_{L}+a_{3} \sigma_{3}, \text {.f. } \quad \vec{a}=\left(a_{1}, a_{2}, a_{3}\right)\|\vec{a}\| \leqslant 1
$$

pure states correspond to points an surface of sphere i.e. $\|\vec{a}\|=1$. Such density matrices are rank-1 projection matrices, i.e., $p=99^{\top}$ for a unit vector q mixed states are in the interior $\operatorname{dim} S(l)=3$

Bloch sphere

Embedding states of \mathbb{C}^{2} into states of M_{2}
(1) $M_{\text {ap }} \zeta_{p} \in S\left(\mathbb{C}^{2}\right)$ with $p \in[0,1]$ into $\varphi_{p} \in S\left(M_{2}\right)$ with $p=\left(\begin{array}{cc}p & 0 \\ 0 & 1-p\end{array}\right)$

$$
\overline{\left(\Gamma_{1}\right.}: S\left(\mathbb{C}^{2}\right) \rightarrow S\left(M_{2}\right) \quad i_{2},, p=\frac{1}{2} I+\frac{1}{2} P \sigma_{1}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

(2) $M_{-p} \varphi_{p} \in S\left(\mathbb{a}^{2}\right)$ with $p \in[0,1]$ into $\left.\varphi_{p} \in S(y)^{2}\right)$ with $p=q q^{\top}$

$$
C_{r_{2}}: S\left(C^{2}\right) \rightarrow S\left(\mu_{2}\right) \quad q=\binom{\sqrt{p}}{\sqrt{1 p}}
$$

under (2) $s\left(\mathbb{C}^{2}\right)$ embeds noneine early into $S \mathrm{SCM}_{2}$] as a "meridian" connecting $\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$ and $\left(\begin{array}{c}-1 \\ 0 \\ 0\end{array}\right)$ Under (1); a_{a} $p=0$
as a line though the origin with end ports $\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$ and $\left(\begin{array}{c}0 \\ 0 \\ -1\end{array}\right)$

Embedding elements of \mathbb{C}^{2} into elements of M_{2}

- We use the regular representation of $\mathbb{C}^{2}, \pi: \mathbb{C}^{2} \rightarrow B\left(\mathbb{C}^{2}\right) \simeq M_{2}$

$$
\pi \underbrace{\binom{a_{1}}{a_{2}}}_{a}=\underbrace{\left(\begin{array}{ll}
a_{1} & 0 \\
0 & a_{2}
\end{array}\right)}_{m_{a}}
$$

"Classical qua fum consistency"
multiplication operation in the serve that

$$
m_{a}(\underbrace{\binom{b_{1}}{b_{2}}}_{b}=\binom{a_{1} b_{1}}{a_{2} b_{2}}=a b
$$

For every $\zeta_{p} \in S\left(\mathbb{C}^{2}\right)$ and $a \in \mathbb{C}^{2} \quad \varphi_{p} a=\left(\Gamma_{j} \varphi_{p}\right)(\pi a)$
III

$$
\text { e.g. }\left(\Gamma_{1} \zeta_{p}\right)(\pi a)=\operatorname{tr}\left(\left(\begin{array}{cc}
p & 0 \\
0 & 1-p
\end{array}\right)\left(\begin{array}{ll}
a_{1} & \\
& a_{2}
\end{array}\right)\right)=\operatorname{fr}\left(\begin{array}{cc}
p a_{1}+(1-p) a_{2} & 0 \\
0 & (1-p) a_{2}
\end{array}\right)=p a_{1}+(1-p) a_{2}
$$

To chide for Γ_{2}, observe that for a pare state of μ_{2} represented by $p=9 q^{\top}$ we hare $\varphi_{p} m=\operatorname{tr}(p m)=\operatorname{fr}\left(\left(q q^{\top}\right) m\right)=q^{\top} m q \equiv\langle q| m|q\rangle$ in Dirac c brakes notation

$$
\text { Thus, }\left(\Gamma_{2} \zeta_{p}\right) \pi a=q^{\top}(\pi a) q=(\sqrt{p} \sqrt{1-p})\left(\begin{array}{cc}
a_{1} & 0 \\
0 & a_{2}
\end{array}\right)\binom{\sqrt{p}_{p}}{r_{p}}=p a_{1}+(1-p) a_{2}
$$

States on C*-algebras
Proposition 3.44.
The following hold for every state $\varphi \in S(\mathcal{A})$ of a unital C*-algebra and elements $a, b \in \mathcal{A}$.
(1) $\varphi\left(a^{*}\right)=(\varphi a)^{*}$, for all $a \in \mathcal{A}$.
(2) $\left|\varphi\left(a^{*} b\right)\right| \leq \varphi\left(a^{*} a\right) \varphi\left(b^{*} b\right)$.
(3) $\|\varphi\|=1$.

Proposition 3.45.
The state space $S(\mathcal{A})$ of a unital C^{*}-algebra \mathcal{A} is a convex subset of the unit ball of \mathcal{A}^{*} which is closed in the weak-* topology. In particular, $S(\mathcal{A})$ is a weak-* compact subset of \mathcal{A}^{*}.
\rightarrow If q_{1}, q_{2}, \ldots is a recurrence of states gwen that $\forall a \in \mathcal{A}, \lim _{n \rightarrow \infty} q_{n} a=q a$ for sone $\varphi \in l^{*}$, then φ is abs a state.

States on C^{*}-algebras

Proposition 3.46.

For every self-adjoint element a of a C^{*}-algebra \mathcal{A}, there exists a state $\varphi \in S(\mathcal{A})$ such that $\varphi a=\|a\|$.

Theorem 3.47.
The set of states of a unital C^{*}-algebra \mathcal{A} separates the points of \mathcal{A}. That is, for every $a, b \in \mathcal{A}$ there exists $\varphi \in S(\mathcal{A})$ such that $\varphi a \neq \varphi b$.

Pure states
$\xi \in S(l)$ is an aticual $p^{m+m t}$ if there ore no $\varphi_{1}, q_{2} \in S(A)$ and $p \in(0,1)$:-1. $\beta=p q_{1}+(1-p) q_{2}$.

Definition 3.48.
A state φ of a unital C^{*}-algebra \mathcal{A} is said to be pure if it is an extremal point of $S(\mathcal{A})$. Otherwise, φ is said to be mixed.

Definition 3.49.
Let H be a Hilbert space. A state φ of $B(H)$ is said to be a vector state if there exists a (unit) vector $\xi \in H$ such that

L"wavefunction"

$$
\varphi a=\langle\xi, a \xi\rangle, \quad \forall a \in \mathcal{A} .
$$

Proposition 3.50.
Every vector state of $B(H)$ is pure.
C since the map a $\longmapsto\left\langle\left\langle=\frac{a}{?}\right\rangle\right.$ is a projection, and projections ace extremal pint t of the positive cove of $B(H)$.
If H is infinile-dinensional, there exist pure states that ore not vector staten.

Contuction of a pure state which is not a vechor state:
let $H=L^{2}(X, Y)$ (onsider $\delta_{x} \in C(X)^{*}$ (ealuation fuctional at x).
Let $e \subset B(H), \quad e=\pi(C(x)), e$ consuts of multiplication operators by regular rap
δ_{x} eith to a boundel eiveer functional Δ_{x} on $l, i-e, \Delta_{x}(\pi f)=\delta_{x} f$.
By Hahn-Bancch theorom Δ_{x} has on extasion to a continuous hanctional on $B(H)$ s.1. $\|\varphi\|=\left\|\Delta_{r}\right\|$ (and $\varphi(\pi f)=\delta_{x} f$). Such an entersion φ con be closen to be a pure state. However, for sach stutes there is no veelor $\zeta \in H$ s.1. $\varphi(a)=\{ \}, a\}\rangle$.

Projections

Definition 3.51.
An element a of $a{ }^{*}$-algebra \mathcal{A} is said to be a projection if $a=a^{*}=a^{2}$.

Proposition 3.52.

For a C*-algebra \mathcal{A}, the projections are the extremal points of the positive cone \mathcal{A}_{+}.

Projection-valued measures

Definition 3.53.

Let (X, Σ) be a measurable space and H a Hilbert space. A map
$E: \Sigma \rightarrow B(H)$ is said to be a projection-valued measure (PVM) if the following hold:
(1) For every $S \in \Sigma, E(S)$ is a projection.
(2) $E(\emptyset)=0$.
(3) $E(X)=I$.
(4) For every countable collection $\left\{S_{0}, S_{1}, \ldots\right\}$ of pairwise-disjoint sets $S_{j} \in E$ and $f \in H$, we have $E\left(\bigcup_{j=0}^{\infty} S_{j}\right) f=\sum_{j=0}^{\infty} E\left(S_{j}\right) f$.

$$
a_{J}=\sum_{\substack{j=0 \\ \text { strong evertor topology ry of }}}^{\substack{y}}\left(S_{j}\right) \text { converges in the }
$$

Example $H=\mathbb{C}^{n}, B(H) \simeq M_{n}(\mathbb{C})$ Let $a \in M_{n}$ Le self-adjoint.
By the spectral thm, for selt-adjoint matices, a has a nt ot real eigenvalues
$\lambda_{1}, \ldots, \lambda_{m} m \leq n$ and a set of ortmonormal eigenvectors $\left\{u_{i, j}\right\}$.f.
(i) $a u_{i, j}=\lambda_{i} u_{i, j}$,
(2) $\left\{a_{i, j}\right\}$ is an o- N basis of C^{n}

Let $B(\mathbb{C})$ denote the Borl σ-abebor of \mathbb{C} Dehine $E: B(\mathbb{C}) \rightarrow M_{n}$
s.t. $E(S)=\sum_{i: \lambda_{i} \in S} P_{i}$

where $P_{i}=\sum_{j} u_{i, j} u_{i, j}^{+}$
Hermition
$\hat{\zeta}_{\text {projection onto eijenspace of a }}$ corresponding to λ_{i}
C. Thes E is a projechin-valued measure.

Moreover, we hove $a=\sum_{i=1}^{m} \lambda_{i} P_{i} \equiv U \wedge U^{*}$ This is an example of a spectral megals

$$
a=\int_{C} \lambda d E(\lambda)
$$

Classical stafistics
Events ~ characteritic functions
Pricuion on
Quatrum theory abelicn clgebras "Quantum eronl:" ~projections on
war-occlian clgebras

Projection-valued measures

Proposition 3.54.

Let (X, Σ) be a measurable space, H a Hilbert space, and $E: \Sigma \rightarrow B(H)$ a projection-valued map such that $E(X)=I$. Then, the following are equivalent:
(1) E is a PVM.
(2) For every countable collection $\left\{S_{0}, S_{1}, \ldots\right\}$ of pairwise-disjoint sets $S_{j} \in E, \sum_{j=0}^{J} E_{j}$ converges as $J \rightarrow \infty$ in the weak operator topology.
3 For any two disjoint sets S and $T, E(S) E(T)=0$.

Projection-valued measures

Given a PVM $E: \Sigma \rightarrow B(H)$ and elements $\eta, \xi \in H$ we have:

- $E_{\eta, \xi}: \Sigma \rightarrow \mathbb{C}$ with $E_{\eta, \xi}(S)=\langle\eta, E(S) \xi\rangle$ is a finite complex measure.
- $E_{\eta}: \Sigma \rightarrow \mathbb{R}$ with $E_{\eta}(S)=E_{\eta, \eta}(S)=\langle\eta, E(S) \eta\rangle$ is a probability measure.

$$
\langle\eta, E(s) \eta\rangle^{*}=\left\langle E(s)_{\eta}, \eta\right\rangle=\left\langle\eta,(E(s))^{*} \eta\right\rangle=\langle\eta, E(s) \eta\rangle \Rightarrow\langle\eta, B C() \eta) \notin \mathbb{R}
$$

Spectral integrals

Theorem 3.55.
Given a PVM $E: \mathcal{B}(\mathbb{C}) \rightarrow B(H)$ and a bounded Borel-measurable function $f: \mathbb{C} \rightarrow \mathbb{C}$, there exists a unique operator a $\in B(H)$ such that

$$
\langle\eta, a \xi\rangle=\int_{\mathbb{C}} f(\lambda) d E_{\eta, \xi}(\lambda) .
$$

Symbolically, we write

$$
a=E(f)=\int_{\mathbb{C}} f(\lambda) d E(\lambda) .
$$

Spectral theorem

Theorem 3.56.
Let $a \in B(H)$ be a normal operator. Then, there exists a unique PVM $E: \mathcal{B}(\mathbb{C}) \rightarrow B(H)$, supported on the spectrum $\sigma(a) \subset \mathbb{C}$ such that

$$
a=\int_{\mathbb{C}} \lambda d E(\lambda) .
$$

Remark.

If $f: \mathbb{C} \rightarrow \mathbb{C}$ is continuous on $\sigma(a)$, then $E(f)$ is identical to $f(a)$ as defined via the continuous functional calculus.
W^{*}-algebras
Examples: $A=L^{*}(\mu), A=\left(L^{\prime}(\mu)\right)^{*}$-abclian $A=B(H), A=\left(B_{1}(H)\right)^{*}$ - non-abilian
Definition 3.57.
A W^{*}-algebra (or abstract vol Neumann algebra) \mathcal{A} is a C^{*}-algebra that has a predual as a Banach space, ie., we have $A=\left(\mathcal{A}_{*}\right)^{*}$ for a Banach space \mathcal{A}_{*}.

In addition to the norm and weak topologies, a W^{*}-algebra has the weak-* topology induced from the predial.
Definition 3.58. $C_{7} A$ sequeme $a_{1}, a_{2}, \ldots \in \mathcal{A}$ converges $t_{0} a \in b$ in

- A linear map $T: \mathcal{A} \rightarrow \mathcal{B}$ between W^{*}-algebras $\hat{\mathcal{A}}, \mathcal{B}$ is said to be normal if it is weak-* continuous.
- Correspondingly, a state $\varphi: \mathcal{A} \rightarrow \mathbb{C}$ of a W^{*}-algebra is called normal if there is $\rho \in \mathcal{A}_{*}$ such that

$$
\varphi a=a \rho, \quad \forall a \in \mathcal{A} .
$$

$B_{1}(H)$: trace-class operators on H
$B_{1}(H)=\{a \in B(H):$ tr a is file $\}$, equipped with the norm $\|a\|_{1}=\operatorname{tr}|a|$

$$
|a|=\sqrt{a+a}
$$

Examples of normal states
$t=L^{\infty}(\sim)$. Given a probability density $p \in L^{\prime}(F)$, i.e., $p \geqslant 0, \int p d r=1$, we hove a normal state $\varphi_{p}: A \rightarrow \mathbb{C}$ where $\varphi_{p} f=\int f_{p} d p$ All normal states of $L^{\infty}(\mu)$ are of this form.
$A=B(H)$. Given a density operator $\rho \in B_{1}(H)$, ie, $\rho \geq 0, \operatorname{tr} \rho=1$, we have a normal tate $\varphi_{p}: A \rightarrow \mathbb{C}$, where $\varphi_{p} a=\operatorname{tr}(\rho a)$. All normal states of $B(H)$ are of this form.
(Result: If $a \in B(H), b \in B_{1}(H)$ then $\left.a b \in B_{1}(H)\right)$
If $f \in L^{2}(\mu), g \in L^{\prime}(\mu)$ then $f_{g} \in L^{\prime}(\mu)$)

Commutants

$$
\begin{aligned}
& A=M_{n}(C) \\
& X=A, \quad X^{\prime}=\{c I, \quad c \in C\}
\end{aligned}
$$

Definition 3.59.
Let \mathcal{A} be an algebra. The commutant of a set $X \subseteq \mathcal{A}$, denoted as X^{\prime}, is the set elements of \mathcal{A} that commute with every element of X, ie.,

$$
X^{\prime}=\{a \in \mathcal{A}: a x=x a, \forall x \in X\} .
$$

The bicommutant of X, denoted as $X^{\prime \prime}$, is the commutant of X^{\prime}.

Proposition 3.60.

With notation as above, the following hold.

- X^{\prime} is a subalgebra of \mathcal{A}.
- If \mathcal{A} is unital, then X^{\prime} is unital.
- If \mathcal{A} is a *-algebra, then X^{\prime} is a *-algebra.
- $X \subseteq X^{\prime \prime}$.
- $X^{\prime \prime \prime}=X^{\prime}$.

W* *-algebras

Theorem 3.61.

The set of projections of a W^{*}-algebra \mathcal{A} spans a norm-dense subspace of \mathcal{A}. $\quad \rightarrow \mathcal{A}=L^{\infty}(\mu), \pi: L^{\infty}(\mu) \rightarrow R\left(L^{2}(\mu)\right)$
Definition 3.62. A W^{*}-algebra is said to be separable if it admits a faithful, normal representation on a separable Hilbert space H.

Proposition 3.63.
If a the predual \mathcal{A}_{*} of a W^{*}-algebra \mathcal{A} is separable in the norm topology, then \mathcal{A} is separable.

Proposition 3.64.

If a W^{*}-algebra is infinite-dimensional, then it is non-separable in the norm topology.

Von Neumann algebras

Definition 3.65.

Let H be a Hilbert space. A (concrete) von Neumann algebra is a *-subalgebra of $B(H)$ which is closed in the weak operator topology.
Theorem 3.66 (von Neumann). C If $a_{1}, a_{4} \ldots \in A$ and frevery $\eta \xi \in H$ Theorem 3.66 (von Neumann). $\left.\left.\lim _{n \rightarrow \infty}\left\langle\imath, a_{n}\right\}\right\rangle=\langle n, a\rangle\right\rangle$ ho $a \in B C H$), then Let H be a Hilbert space and M a unital ${ }^{*}$-subalgebra of $B(H)$. Then, a $\in \mathscr{b}$. the following are equivalent:
(1) M is a von Neumann algebra.
(2) M is closed in the strong operator topology.
(3) $M=M^{\prime \prime}$.

Examples annul nan-examples of won-Nenmann algebras
(i) $t=8(H)$
(ii) $($ Non-example) $A=K(H)$ (compact operodos on H : norm topology

$$
K(H)=\left\{a \in B(H): a=\lim _{n \rightarrow \infty} a_{n}, a_{n} \text { finite ran te }\right\}
$$

\rightarrow closed in norm topology but not cloxd in the weak opentor topology.
e.g. if $\left\{\phi_{0}, \phi_{1}, \ldots\right\}$ is an on-losis of H, then $a_{n}=\operatorname{proj}\left\{\phi_{0}, \phi_{1, \ldots}, \phi_{n-1}\right\}$ lie in $t(H)$ but converge weakly to the dankly which does not lie in $K(H)$ if H is os-dimensional
(iii) $H=L^{2}(r), \quad A=\left\{\right.$ multiplication operators by functions in $\left.L^{\infty}(\mu)\right\}$.

Von Neumann algebras

Theorem 3.67 (Sakai).

Every von Neumann algebra has a predual, and is thus a W*-algebra.
Moreover, the predual is unique up to isometric isomorphism.
Theorem 3.68.
Every abelian von Neumann algebra is isometrically isomorphic to $L^{\infty}(\mu)$ for some measure space (X, Σ, μ).

Analogously to our interpretation of the study of C^{*}-algebras as "non-commutative topology", we can interpret the study of von Neumann algebras as "non-commutative measure theory".

