Section 4

Embedding dynamical systems in operator algebras

Dirac-von Neumann axioms of guantum mechanics

- States are density operators, i.e., positive, trace-class operators $\rho: H \to H$ on a Hilbert space H, with tr $\rho = 1$.
- **2** Observables are self-adjoint operators, $A : D(A) \rightarrow H$.
- 3 Measurement expectation and probability: 2 5 H, domain . F A

$$\mathbb{E}_{\rho}A = \operatorname{tr}(\rho A), \quad \mathbb{P}_{\rho}(\Omega) = \mathbb{E}_{\rho}(E(\Omega)), \quad A = \int_{\mathbb{R}} a \, dE(a).$$
tary dynamics between measurements:
$$\begin{array}{c} (\\ E : B(\mathbb{R}) \to B(\mathbb{H}) \\ \hline P \setminus \mathcal{H} \end{array}$$

4 Unitary dynamics between measurements:

Projective measurement:

$$ho|_e = rac{\sqrt{e}
ho\sqrt{e}}{\mathrm{tr}(\sqrt{e}
ho\sqrt{e})}, \quad 0 < e \leq I.$$

quantum effect

"hon abelian fuzzy event"

Algebraic formulation: States and observables

- **①** Associated with a physical system is a unital C^* -algebra \mathcal{A} .
- 2 The set of states of the system is the state space S(A) of A.
- 3 The set of observables of the system is the set of self-adjoint elements A_{sa} of A.
- ④ The set of values that can be obtained in a measurement of *a* ∈ *A*_{sa} corresponds to the spectrum $\sigma(a) \subset \mathbb{R}$.
- 5 The expected value of a measurement of $a \in A_{sa}$ when the system is in state $\varphi \in S(A)$ is given by $\varphi(a)$.

Abe lion

$$\mathcal{A} = L^{\infty}(f)$$

 $\mathcal{A}_{SG} = \{f \in \mathcal{A} \mid \text{real-valued} \}$
 $\sigma(f) = e_{SKMin} | \text{real-valued} \}$

Algebraic formulation: Events and measurement probabilities

- The set of events (or effects) that can be observed is the set of positive elements e ∈ A₊ such that 0 ≤ e ≤ 1. If the system is in state φ ∈ S(A), the probability to observe e is given by φ(e).
- Supposing, further, that A is a W*-algebra, the measurement probability for a to take value in a set S ∈ B(ℝ) is given by φ(E(S)), where E : B(ℝ) → A is the PVM satisfying a = ∫_ℝ λ dE(λ).

e.g. M2(A) Completely positive maps $\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} b_{11} \\ b_{21} \end{pmatrix}$ (911-11+11-122 911-512+911-522 (211-511+122) 911-512+911-522 412) =

Notation.

 $\begin{array}{c} q_{ij} \in \mathcal{A} \\ h_{ij} \in \mathcal{A} \end{array} \begin{pmatrix} q_{i1} & q_{i2} \\ q_{i3} & q_{i3} \end{pmatrix} = \begin{pmatrix} q_{i1} & q_{i2} \\ q_{i1} & q_{i3} \end{pmatrix}$ Given a C^{*}-algebra $\mathcal{A}, \mathbb{M}_n(\mathcal{A})$ is the C^{*}-algebra of $n \times n$ matrices with entries in \mathcal{A} .

Definition 4.1.

Let $T : \mathcal{A} \to \mathcal{B}$ be a linear map between C^* -algebras \mathcal{A} and \mathcal{B} . Given $n \in \mathbb{N}$, we say that the map $T^{(n)} : \mathbb{M}_n(\mathcal{A}) \to \mathbb{M}_n(\mathcal{B})$ defined as $T^{(n)}([a_{ij}]) = [T(a_{ij})] \text{ is a matrix amplification of } T.$ $Rec_{M}, T \text{ positive } T(a) 70 \text{ whenever } a^{TO}$

Definition 4.2.

A linear map $T : A \to B$ between C^* -algebras A and B is said to be:

- *n*-positive if $T^{(n)}$ is positive.
- Completely positive if it is *n*-positive for every $n \in \mathbb{N}$.

Example of a positive map which	is not completely positive
$\mathcal{L} = M_{\mathcal{L}}(\mathbb{C}), T: \mathcal{L} \to \mathcal{L},$	T(a b) = (a c) (matrix transpose) (c d) (b d)
For any $x C'$, $a \in A_+$, we have	$ \langle x, T(a) x \rangle = \langle x, (a^* x^*)^* \rangle = \langle x^*, a^* x^* \rangle^* $ $ = \langle a x^*, x^* \rangle^* > 0 \Rightarrow T \text{ is positive.} $ $ = \langle 0 s A e \rangle $
<u>Claim</u> : T is not 2-positive.	Indeed, afd,
	$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 1 \end{pmatrix}$ = 7 T is not 2-positive.
positive as an element of Mz(A)	not positive smile the determinant is = -1

Completely positive maps

Theorem 4.3 (Stinespring).

Let \mathcal{A} be a C^* -algebra and H a Hilbert space. A linear map $T : \mathcal{A} \to B(H)$ is completely positive iff there is a Hilbert space K, a representation $\pi : \mathcal{A} \to B(K)$ and a bounded linear map $V : K \to H$ such that

$$Ta = V(\pi a)V^*, \quad \forall a \in \mathcal{A}.$$

Proposition 4.4.

With notation as above, if A is abelian then $T : A \to B(H)$ is completely positive iff it is positive.

Theorem 4.5 (Choi).

Let K and H be finite-dimensional Hilbert spaces of dimension m and n, respectively. Then, any completely positive map $T : B(K) \to B(H)$ take s the form $T(a) = \sum_{i=1}^{mn} V_i a V_i^*$ for some operators $V_i : K \to H$.

Quantum operations, quantum channels

Definition 4.6.

A linear map $T : \mathcal{B} \to \mathcal{A}$ between unital C^* -algebras \mathcal{B} and \mathcal{A} is said to be a quantum operation if:

- **2** $T \mathbb{1}_{\mathcal{B}} \leq \mathbb{1}_{\mathcal{A}}.$
- If $T \mathbb{1}_{\mathcal{B}} = \mathbb{1}_{\mathcal{A}}$, T is said to be a quantum channel.

Proposition 4.7.

If $T : \mathcal{B} \to \mathcal{A}$ is a quantum operation, then for every state $\omega \in S(\mathcal{A})$ $T^*\omega \in \mathcal{B}^*$ is a positive functional satisfying $(T^*\omega)\mathbb{1}_B \leq 1$. Moreover, if T is a quantum channel, $(T^*\omega)\mathbb{1}_B = 1$.

Corollary 4.8.

The adjoint $T^* : A^* \to B^*$ of a quantum channel $T : B \to A$ maps the state space S(A) into S(B).

Quantum operations, quantum channels

Proposition 4.9.

A normal (weak-* continuous) quantum operation $T : \mathcal{B} \to \mathcal{A}$ between W^* -algebras \mathcal{B} and \mathcal{A} has a predual, i.e., $T = (T_*)^*$ for a unique linear map $T_* : \mathcal{A}_* \to \mathcal{B}_*$.

State space dynamics

$$\begin{split} \Phi:\Omega\to\Omega\\ \Phi_*:\mathcal{M}(\Omega)\to\mathcal{M}(\Omega),\quad \Phi_*\alpha=\alpha\circ\Phi^{-1} \end{split}$$

- Φ: Invertible measure-preserving map.
- \mathcal{M} : Space of Borel measures on Ω .
- Φ_{*}: Pushforward map on measures.
- μ : Invariant probability measure, $\Phi_*\mu = \mu$.

Abelian formulation

 $egin{aligned} U:\mathcal{A}
ightarrow\mathcal{A}, & Uf=f\circ\Phi\ P:S_*(\mathcal{A})
ightarrow S_*(\mathcal{A}), & Pp=p\circ\Phi^{-1} \end{aligned}$

- $\mathcal{A} = L^{\infty}(\mu)$: Abelian von Neumann algebra.
- $\mathcal{A}_{sa} = \{f \in \mathcal{A} : f \text{ is real-valued}\}$: Classical observables.
- $U: \mathcal{A} \to \mathcal{A}$: Koopman operator.
- $\mathcal{A}_* = L^1(\mu)$: Predual.
- $S_*(\mathcal{A}) = \{ p \in \mathcal{A}_* : p \ge 0, \int_\Omega p \, d\mu = 1 \}$: Probability densities.
- $\mathbb{E}_p : \mathcal{A} \to \mathbb{C}$ with $p \in S_*(\mathcal{A})$: Normal states, $\mathbb{E}_p f = \int_{\Omega} f p \, d\mu$.
- $P: S_*(\mathcal{A}) \to S_*(\mathcal{A})$: Transfer operator.

Non-abelian formulation

 $\mathcal{U}: \mathcal{B} \to \mathcal{B}, \quad \mathcal{U}a = UaU^*$ $\mathcal{P}: \mathcal{S}_*(\mathcal{B}) \to \mathcal{S}_*(\mathcal{B}), \quad \mathcal{B}\rho = U^*\rho U$

- $H = L^2(\mu)$: Hilbert space.
- $U: H \rightarrow H$: Unitary Koopman operator, $Uf = f \circ \Phi$.
- $\mathcal{B} = \mathcal{B}(\mathcal{H})$: Non-abelian von Neumann algebra.
- $\mathcal{B}_{sa} = \{a \in \mathcal{B} : a \text{ is self-adjoint}\}$: Quantum observables.
- $\mathcal{U} : \mathcal{B} \to \mathcal{B}$: Induced Koopman operator.
- $\mathcal{B}_* = B_1(H)$: Predual.
- $S_*(\mathcal{B}) = \{ \rho \in \mathcal{B}_* : \rho \ge 0, \text{ tr } \rho = 1 \}$: Density operators.
- $\mathbb{E}_{\rho} : \mathcal{B} \to \mathbb{C}$ with $\rho \in \mathcal{S}_*(\mathcal{B})$: Normal states, $\mathbb{E}_{\rho} a = tr(a\rho)$.
- $\mathcal{P}: S_*(\mathcal{B}) \to S_*(\mathcal{B})$: Induced transfer operator.

Classical-quantum consistency

Proposition 4.10.

The maps $U : A \to A$ and $U : B \to B$ are quantum channels. Moreover, the following diagrams commute for the injective maps $\pi : A \to B$ and $\Gamma : S_*(A) \to S_*(B)$:

- $\pi : \mathcal{A} \to \mathcal{B}$: Regular representation, $\pi f = a$ with ag = fg for all $g \in H$.
- $\Gamma: S_*(\mathcal{A}) \to S_*(\mathcal{B})$: Mapping of probability densities into pure quantum states, $\Gamma(\pi) = \langle \sqrt{p}, \cdot \rangle \sqrt{p}$.

ALGEBRAIC FOR	MULATION OF MEASURE-PRESERVIN	VG DYNAMICAL SYSTEMS
• State space dy $\varphi: \Sigma \rightarrow \Sigma$ $\varphi_*: \mathcal{M}(\Sigma)$ $\varphi_* \mu = \mu$	$\frac{\text{Mamics}}{SZ} \qquad (SZ, standard Borel measurab) \\ \rightarrow \mathcal{M}(SZ), \qquad (\Psi_{\ast} V)(S) = V(\Psi^{-1}(S)) \\ \qquad \qquad$	(s))
	Abelian	Non-abelian
von Neumann algebra	$\mathcal{A} = L^{\infty}(\mu)$	$B = B(H), H = L(\mu)$
observalles	Assa = {real - rained elements {	Bsa = {self-chyoint anew mapsing
preducil	$d_{\mathbf{x}} = 1^{1} (\mathbf{u})^{1}$	$\mathcal{B}_{\mathbf{F}} = \mathcal{B}_{\mathbf{F}}(\mathbf{h})$
normal states	$S_{*}(\mathcal{A}) = \{ P \in L'(\mathcal{A}) : P^{2}O, \int P d\mathcal{A}^{-1} \}$ $E_{P} f = \int f \rho d\mathcal{A}, P \in S_{*}(\mathcal{A}), f \in \mathcal{A}$	$S_{\mathbf{x}}(\mathbf{B}) = \{ p \in B_1(\mathbf{H}) : p > 0, \ trp = 1 \}$ $\mathbf{E}_{\mathbf{p}} a = tr(pa), \ p \in \mathcal{B}(\mathbf{B}), \ a \in \mathbf{B}^{-1}$
Quantum channel	$U: A \rightarrow A$, $U \neq = f \circ \phi$ $f = f \circ \phi$ $U = 0 \neq 0 \neq 0$ $U = 0 \neq 0 \neq 0$ $U = 0 \neq 0 \neq 0$	$\mathcal{U}: B \rightarrow B, \mathcal{U}a = \mathcal{U}a\mathcal{U}^{*}$ $(\mathcal{U}: H \rightarrow H, unitary Koopman op$ $\mathcal{U}F = F \circ \phi \mathcal{U} \text{ is } cp by shinespring \\ Fhom$
Predual	$P = U_{*} : A_{*} \rightarrow A_{*}, P_{*} = \times \circ \Phi^{-1}$	$P = \mathcal{U}_{\star} : \mathcal{B}_{\star} \longrightarrow \mathcal{B}_{\star}, P_{\rho} = \mathcal{U}^{\star}_{\rho} \mathcal{U}$

EMBEDPING CLASSICAL (ABELIAN) DYNAMICS INTO QUANTUM (NON-ABELIAN) DYNAMICS

FINITE-DIMENSIONAL APPROXIMATION Observables States_ $\mathcal{B} \xrightarrow{\mathcal{U}} \mathcal{B}$ $S_{*}(B) \xrightarrow{P} S_{*}(B)$ $\widetilde{\Pi}_{L}$ π'_{L} $\dot{\mathcal{B}}_{L} \xrightarrow{\mathcal{U}_{L}} \dot{\mathcal{B}}_{L}$ $S_{\#}(B_{L}) \xrightarrow{P_{L}} S_{\#}(B_{L})$ · HI CHZC --- CH, HL finite-dimensional subspace (e.g. HL= 290, , 94-13 for an O-N basis (po, 1, 1,) of the second second second • $\pi_L: \mathcal{B} \rightarrow \mathcal{B}_L = \{\pi_L a \pi_L: a \in \mathcal{B}(\mathcal{H})\} \cong \mathcal{B}(\mathcal{H}_L)$ (see assignment 2) • $\mathcal{U}_L: \mathcal{B}_L \rightarrow \mathcal{Q}_L = 1$ · UL: BL -> BL, ULa = ULa UL*, UL= TILUTIL - projected KoopMan op In general, UL is not unitary, i.e., UL = UI, unless TLU=UTL. As a result, UL is not, in general a quantum channel (in particular, UL 11BE # 1BL). However, it is a quantum operation, i.e. UL is completely positive Cby Stinespring thm.) and ULIBLE IBL • Moreover the diagrams do not in general commute (unless TLU = UTL) • Projected states: TL(p) = TLp TL, Projected transfer operator: $P_L p = U_L^* p U_L$ • Projected multiplication operators: $T_L : A \rightarrow B_L$, $T_L = TL \circ T$, $T_L f = TL fel TT$, $fr(U_L^* p U_L)$

Reman	ks																					
<i>C</i> ì)	πf	12	not	a	mul	hiplice	chon	ope	zatu	r b	7 ⁽	en e	lem	212	in /	t e	~ ¶ ~	π	_F			
	TLP	(11)	$\Pi'_{L}($	(p)	۲ ر	not	م م	star	te	indi	nel	! L Z	<i>†</i> c	r P	noba	ا أط	۲	ders	17	,~ \$	k≠(+	()

RECONSTRUCTING CLASSICAL OBSERVABLES Goal: Given AL = TL & = TL (TTF) TL projected multiplication operator reconstruct a function f. EA st. f. approximates f in some serve. $\mathcal{I}_{\mathcal{I}}: \Omega \to \mathbb{C}$ Observe that starting from the CX-algebra C(I) SA we have the characters $S_x \in S(C(\Omega))$, $x \in \mathbb{R}$, $s \neq S_x f = f(x)$. There exists an extension $S_x \in S(\mathcal{L})$ i.e. Sxf = Sxf for all FEC(J). Given FEE this motivates defining f = J2-> C S.I. FCO = Sxf. However, Sx is not a normal state, so we cannot use the map F: S*(t) -> S*(B) to represent it que turn mechanically. Approach. Replace Jx by a normal state px E S*(t) that approximates pointwise evaluation. Consider p: SxS -> R continuous Markor ternel: (,) p >> 0 (ii) For every $x \in S2$, $p_x \equiv p(x, \cdot)$ is a probability density in $S_{x}(t)$ If px is "concentrated" around x, we have $\mathbb{E}_{P_{x}} f \cong f(\alpha) = \mathcal{F}_{x} f$ for $f \in C(\mathcal{I})$

$\frac{\text{Example: } \mathcal{L} = S', p: S' \times S' \longrightarrow \mathcal{R} p(x, x') = \frac{1}{I_0(Y_{\epsilon^2})} \exp\left(\frac{\cos\left(x - x'\right)}{\epsilon^2}\right)$ (Von - Mises termel)
With any such choice $p: D \times D \to \mathbb{R}$, define $\mathbb{R}: \mathcal{B} \to C(D)$ s.t. $g = \mathbb{R}a$, $g(x) = \mathbb{E}_{\Gamma(p_x)}a = \operatorname{tr}(\Gamma(p_x)a) = \langle \overline{P}_x, a \overline{P}_x \rangle$ If $a = \tau c f$ for some $f \in \mathcal{A}$, we have $g(x) = \mathbb{E}_{p_x} f \simeq f(c)$
Finite-dimensional approximation: $R_{L}: B_{L} \rightarrow C(S^{2})$ s.t. $g_{L} = R_{L}a, g_{L}(x) = \mathbb{E}_{T_{L}'}(\Gamma(p_{x})) = \operatorname{tr}(T_{L}'(\Gamma(p_{x}))a) = \frac{\langle T_{L}f_{P,x}, a, T_{L}f_{P,x} \rangle}{\ T_{L}f_{P,x}\ _{H}^{2}}$
Given a basis $\{\phi_0,, \phi_{L_1}\}$ for H_L a is represented by matrix $A_{ij} = \langle \phi_i, a\phi_j \rangle$ $\overline{T}_{x} = \frac{T[L_{D}P_{x}]}{\ T[L_{D}P_{x}]\ }$ $\Rightarrow g_L(x) = vTAv$

ASYMPTOTIC CONSISTENCY (L-20) $\frac{P_{pop}(a)}{P_{L}} = TT_{L}(p) = \frac{TT_{L} p}{TT_{L}} \quad Converge to p in the trace norm of S_{A}(B), for (TT_{L} p) = \frac{TT_{L} p}{Gr(TT_{L} p)}$ i.e. $\lim_{L \to \infty} \| \rho - \rho_L \|_1 = 0$ where $\| a \|_1 = tr | a |$, $| a | = \sqrt{a^* a}$, $a \in B_1(H)$. (b) For any bounded operator at B, a = That the converges to a in the strong topology of B, i.e., for eacy fith, lim aff = af Corollary: For any afB, pES*(B), lim Epa_ = Epa $\frac{PP}{PL} \quad Observe \quad E_{PL}a_{L} = tr(P_{L}a_{L}) = tr(P_{L}a_{L}T_{L}a_{L}T_{L}) = tr(T_{L}p_{L}T_{L}a_{L}) = tr(P_{L}a_{L}) = tr(P_{L}a_{$ Thus, $|E_{p_{L}}a_{L} - E_{p}a| = |t_{\eta}(p_{L}-p)a| \leq t_{r}|(p_{L}-p)a| \leq ||p_{L}-p||, ||a||$ => $\mathbb{E}_{p_{L}}a_{L} - \mathbb{E}_{pa} \xrightarrow{C \to \infty} O$ Similarly, for $P: S_{*}(B) \rightarrow S_{*}(B)$ and $P_{L}: S_{*}(B) \longrightarrow S_{*}(B_{L})$, we have $\lim_{L \to \infty} \mathbb{E}_{(P_L, \rho_L)} a_L = \mathbb{E}_{p_l} a_l$