Section 4

Embedding dynamical systems in operator algebras

Dirac-von Neumann axioms of quantum mechanics

(1) States are density operators, ie., positive, trace-class operators $\rho: H \rightarrow H$ on a Hilbert space H, with $\operatorname{tr} \rho=1$.
(2) Observables are self-adjoint operators, $A: D(A) \rightarrow H$.

3 Measurement expectation and probability: $L \subseteq H$, domain of A

$$
\mathbb{E}_{\rho} A=\operatorname{tr}(\rho A), \quad \mathbb{P}_{\rho}(\Omega)=\mathbb{E}_{\rho}(E(\Omega)), \quad A=\int_{\mathbb{R}} a d E(a)
$$

(4) Unitary dynamics between measurements: $E: B(R) \rightarrow B(H)$
PVM

$$
\rho_{t}=U^{t *} \rho_{0} U^{t} . \quad U^{t}: \underset{\text { unitary }}{H \rightarrow H}
$$

$$
\left.\rho\right|_{e}=\frac{\sqrt{e} \rho \sqrt{e}}{\operatorname{tr}(\sqrt{e} \rho \sqrt{e})}, \quad 0<e \leq 1 .
$$

quantum effect
"hon abclian fuzzy eras"

Algebraic formulation: States and observables
(1) Associated with a physical system is a unital C^{*}-algebra \mathcal{A}.
(2) The set of states of the system is the state space $S(\mathcal{A})$ of \mathcal{A}.

3 The set of observables of the system is the set of self-adjoint elements $\mathcal{A}_{\text {sa }}$ of \mathcal{A}.
4. The set of values that can be obtained in a measurement of $a \in A_{\text {sa }}$ corresponds to the spectrum $\sigma(a) \subset \mathbb{R}$.
(5. The expected value of a measurement of $a \in \mathcal{A}_{\text {sa }}$ when the system is in state $\varphi \in S(\mathcal{A})$ is given by $\varphi(a)$.

Abjection

$$
\begin{aligned}
t & =L^{\infty}(\uparrow) \\
f_{\text {sa }} & =\{f f t \mid \text { realmaloed }\} \\
\sigma(f) & =\text { esuanial cense of } t
\end{aligned}
$$

Non-abliten

$$
A=B(H)
$$

$d_{s}=\{a \in D(n)|\langle\varphi, a\}\rangle=\langle a, t\rangle\}$
$\sigma(s)=$ speadum of operator

Algebraic formulation: Events and measurement probabilities

- The set of events (or effects) that can be observed is the set of positive elements $e \in \mathcal{A}_{+}$such that $0 \leq e \leq \mathbb{1}$. If the system is in state $\varphi \in S(\mathcal{A})$, the probability to observe e is given by $\varphi(e)$.
- Supposing, further, that \mathcal{A} is a W^{*}-algebra, the measurement probability for a to take value in a set $S \in \mathcal{B}(\mathbb{R})$ is given by $\varphi(E(S))$, where $E: \mathcal{B}(\mathbb{R}) \rightarrow \mathcal{A}$ is the PVM satisfying $a=\int_{\mathbb{R}} \lambda d E(\lambda)$.

Completely positive maps \int ers. $M_{2}(t)$

Notation.

 entries in \mathcal{A}.

Definition 4.1.

Let $T: \mathcal{A} \rightarrow \mathcal{B}$ be a linear map between C^{*}-algebras \mathcal{A} and \mathcal{B}. Given $n \in \mathbb{N}$, we say that the map $T^{(n)}: \mathbb{M}_{n}(\mathcal{A}) \rightarrow \mathbb{M}_{n}(\mathcal{B})$ defined as $a=c^{*} c$ $T^{(n)}\left(\left[a_{i j}\right]\right)=\left[T\left(a_{i j}\right)\right]$ is a matrix amplification of T. Recall, T positive $\Leftrightarrow T(a) \geqslant 0$ wheneren arlo
Definition 4.2.
A linear map $T: \mathcal{A} \rightarrow \mathcal{B}$ between C^{*}-algebras \mathcal{A} and \mathcal{B} is said to be:

- n-positive if $T^{(n)}$ is positive.
- Completely positive if it is n-positive for every $n \in \mathbb{N}$.

Example of a positive mop which is not completely positive
$A=M_{2}(\mathbb{C}), T: A \rightarrow A, \quad T\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=\left(\begin{array}{ll}a & c \\ b & d\end{array}\right) \quad$ (matrix transpose)
For on $x \mathbb{C}^{2}$, $a \in \mathcal{A}_{+}$, we hare $\left\langle x, T(a)_{x}\right\rangle=\left\langle x,\left(a^{*} x^{*}\right)^{*}\right\rangle=\left\langle x^{*}, a^{*} x^{*}\right\rangle^{*}$

$$
=\underbrace{\left\langle a x^{*}, x^{*}\right\rangle^{*}}_{\substack{\geqslant 0 \text { since } \\ a \in b_{1}}} \geqslant 0 \Rightarrow T \text { is positive. }
$$

Clam: T is not 2-positive Indeed,

Completely positive maps

Theorem 4.3 (Stinespring).

Let \mathcal{A} be a C^{*}-algebra and H a Hilbert space. A linear map
$T: \mathcal{A} \rightarrow B(H)$ is completely positive eff there is a Hilbert space K, a representation $\pi: \mathcal{A} \rightarrow B(K)$ and a bounded linear map $V: K \rightarrow H$ such that

$$
T a=V(\pi a) V^{*}, \quad \forall a \in \mathcal{A} .
$$

Proposition 4.4.

With notation as above, if \mathcal{A} is abelian then $T: \mathcal{A} \rightarrow B(H)$ is completely positive iff it is positive.

Theorem 4.5 (Chi).

Let K and H be finite-dimensional Hilbert spaces of dimension m and n, respectively. Then, any completely positive map $T: B(K) \rightarrow B(H)$ take s the form $T(a)=\sum_{i=1}^{m n} V_{i} a V_{i}^{*}$ for some operators $V_{i}: K \rightarrow H$.
\rightarrow Kraus operators

Quantum operations, quantum channels

Definition 4.6.
A linear map $T: \mathcal{B} \rightarrow \mathcal{A}$ between unital C^{*}-algebras \mathcal{B} and \mathcal{A} is said to be a quantum operation if:
(1) T is completely positive.
(2) $T \mathbb{1}_{\mathcal{B}} \leq \mathbb{1}_{\mathcal{A}}$.

If $T \mathbb{1}_{\mathcal{B}}=\mathbb{1}_{\mathcal{A}}, T$ is said to be a quantum channel.

Proposition 4.7.

If $T: \mathcal{B} \rightarrow \mathcal{A}$ is a quantum operation, then for every state $\omega \in S(\mathcal{A})$
$T^{*} \omega \in \mathcal{B}^{*}$ is a positive functional satisfying $\left(T^{*} \omega\right) \mathbb{1}_{B} \leq 1$. Moreover, if T is a quantum channel, $\left(T^{*} \omega\right) \mathbb{1}_{B}=1$.

Corollary 4.8.

The adjoint $T^{*}: \mathcal{A}^{*} \rightarrow \mathcal{B}^{*}$ of a quantum channel $T: \mathcal{B} \rightarrow \mathcal{A}$ maps the state space $S(\mathcal{A})$ into $S(\mathcal{B})$.
$T^{*}{ }_{\varphi}=\varphi \cdot T$

Quantum operations, quantum channels

Proposition 4.9.

A normal (weak-* continuous) quantum operation $T: \mathcal{B} \rightarrow \mathcal{A}$ between W^{*}-algebras \mathcal{B} and \mathcal{A} has a predual, i.e., $T=\left(T_{*}\right)^{*}$ for a unique linear $\operatorname{map} T_{*}: \mathcal{A}_{*} \rightarrow \mathcal{B}_{*}$.

Algebraic formulation of measure-preserving dynamics

State space dynamics

$\phi: \Omega \rightarrow \Omega$

$$
\phi_{*}: \mathcal{M}(\Omega) \rightarrow \mathcal{M}(\Omega), \quad \phi_{*} \alpha=\alpha \circ \phi^{-1}
$$

- Φ : Invertible measure-preserving map.
- \mathcal{M} : Space of Borel measures on Ω.
- Φ_{*} : Pushforward map on measures.
- μ : Invariant probability measure, $\Phi_{*} \mu=\mu$.

Algebraic formulation of measure-preserving dynamics

$$
\begin{gathered}
\text { Abelian formulation } \\
U: \mathcal{A} \rightarrow \mathcal{A}, \quad U f=f \circ \Phi \\
P: S_{*}(\mathcal{A}) \rightarrow S_{*}(\mathcal{A}), \quad P p=p \circ \Phi^{-1}
\end{gathered}
$$

- $\mathcal{A}=L^{\infty}(\mu)$: Abelian von Neumann algebra.
- $\mathcal{A}_{\text {sa }}=\{f \in \mathcal{A}: f$ is real-valued $\}:$ Classical observables.
- $U: \mathcal{A} \rightarrow \mathcal{A}$: Koopman operator.
- $\mathcal{A}_{*}=L^{1}(\mu)$: Predual.
- $S_{*}(\mathcal{A})=\left\{p \in \mathcal{A}_{*}: p \geq 0, \int_{\Omega} p d \mu=1\right\}$: Probability densities.
- $\mathbb{E}_{p}: \mathcal{A} \rightarrow \mathbb{C}$ with $p \in S_{*}(\mathcal{A}):$ Normal states, $\mathbb{E}_{p} f=\int_{\Omega} f p d \mu$.
- $P: S_{*}(\mathcal{A}) \rightarrow S_{*}(\mathcal{A})$: Transfer operator.

Algebraic formulation of measure-preserving dynamics

Non-abelian formulation

$$
\begin{array}{rll}
\mathcal{U}: \mathcal{B} \rightarrow \mathcal{B}, & \mathcal{U} a=U a U^{*} \\
\mathcal{P}: \mathcal{S}_{*}(\mathcal{B}) \rightarrow S_{*}(\mathcal{B}), & \mathcal{B} \rho=U^{*} \rho U
\end{array}
$$

- $H=L^{2}(\mu)$: Hilbert space.
- U : H \rightarrow : Unitary Koopman operator, $U f=f \circ \Phi$.
- $\mathcal{B}=B(H)$: Non-abelian von Neumann algebra.
- $\mathcal{B}_{\text {sa }}=\{a \in \mathcal{B}: a$ is self-adjoint $\}$: Quantum observables.
- $\mathcal{U}: \mathcal{B} \rightarrow \mathcal{B}$: Induced Koopman operator.
- $\mathcal{B}_{*}=B_{1}(H)$: Predual.
- $S_{*}(\mathcal{B})=\left\{\rho \in \mathcal{B}_{*}: \rho \geq 0, \operatorname{tr} \rho=1\right\}$: Density operators.
- $\mathbb{E}_{\rho}: \mathcal{B} \rightarrow \mathbb{C}$ with $\rho \in \mathcal{S}_{*}(\mathcal{B})$: Normal states, $\mathbb{E}_{\rho} a=\operatorname{tr}(a \rho)$.
- $\mathcal{P}: S_{*}(\mathcal{B}) \rightarrow S_{*}(\mathcal{B})$: Induced transfer operator.

Algebraic formulation of measure-preserving dynamics

Classical-quantum consistency

Proposition 4.10.

The maps $U: \mathcal{A} \rightarrow \mathcal{A}$ and $\mathcal{U}: \mathcal{B} \rightarrow \mathcal{B}$ are quantum channels.
Moreover, the following diagrams commute for the injective maps $\pi: \mathcal{A} \rightarrow \mathcal{B}$ and $\Gamma: S_{*}(\mathcal{A}) \rightarrow S_{*}(\mathcal{B}):$

- $\pi: \mathcal{A} \rightarrow \mathcal{B}:$ Regular representation, $\pi f=a$ with $a g=f g$ for all $g \in H$.
- $\Gamma: S_{*}(\mathcal{A}) \rightarrow S_{*}(\mathcal{B})$: Mapping of probability densities into pure quantum states, $\Gamma(\pi)=\langle\sqrt{p}, \cdot\rangle \sqrt{p}$.

ALGEBRAIC FORMULATION OF MEASURE-PRESERVING DYNAMICAL SYSTEMS

- State pace dynamics
$\phi: \Omega \rightarrow \Omega \quad$ (Ω, standard Porch measurable pace)

$$
\phi_{*}: \mu(\Omega) \rightarrow \mu(\Omega),\left(\phi_{*} \nu\right)(s)=\nu\left(\phi^{-1}(s)\right)^{\prime}
$$

$\phi_{*} \mu=\mu$
(invariant probability measure)

EHPEDPING CLASSICAL (ARELIAN) DYNAMICS INTO QUANTUM (NON-ABELAN) DYNAMICS

Regular rep:
$\pi=t \rightarrow B$
$\pi f=a$ whet $a g=f_{y}$
forall $g \in H$

$$
\begin{aligned}
U\left(\pi^{f}\right) g & =U(\pi f) U^{*} g \\
& =U\left(f U^{*} g\right) \\
& =(U f) U U^{*} g \\
& =U f g=\pi(U f) g \\
\Rightarrow U \cdot \pi & =\pi \cdot U
\end{aligned}
$$

Embedding of $1 \sim 0$ - densities

$$
\begin{aligned}
& \Gamma: S_{*}(t) \rightarrow S_{*}(\beta) \\
& \Gamma_{p}=\rho, p g=\langle\sqrt{p}, g\rangle \sqrt{p}
\end{aligned}
$$

ho all $g \in H$
(Pure state)

$$
\begin{aligned}
& p\left(\Gamma_{p}\right)_{g}=U^{*}\left(\Gamma_{p}\right) U_{g}=U^{*}\left\langle V_{p}, U_{g}\right\rangle \Gamma_{p} \\
& =\left\langle\Gamma_{p} U_{g}\right\rangle U^{*} V_{p}=\left\langle U^{*} \Gamma_{p}, g\right\rangle U^{*} \sqrt{p} \\
& =\left\langle\sqrt{U^{*}}, g\right\rangle \sqrt{U^{*}} p=\left\langle\sqrt{P_{p}}, g\right\rangle \sqrt{P_{p}}=\Gamma\left(P_{p}\right) \\
& \Rightarrow p_{0} \Gamma=\Gamma_{0} p
\end{aligned}
$$

Classical-quentum consistency: $\forall f \in A, p \in S_{*}(t), \mathbb{E}_{p_{p}} f=\mathbb{E}_{p\left(r_{p}\right)}(\pi f)$

TOEPLITR MATRIX APPROXIMATION OF MULZLPLICATION OPERATORS
Given $f \in A=L^{\infty}\left(C_{\mu}\right)$, compute $A \in M_{2 c t 1}$ st.

$$
\begin{aligned}
& A_{i j}=\left\langle\phi_{i},(\pi f) \phi_{j}\right\rangle=\left\langle\phi_{i}, f \phi_{j}\right\rangle \quad i, j f-2 e, \ldots, 2 l \\
& f=\sum_{k \in \mathbb{Z}} \hat{f}_{k} \phi_{k} \Rightarrow A_{i j}=\left\langle\phi_{i}, \sum_{k} \hat{f}_{k} \phi_{k} \phi_{j}\right\rangle=\sum_{k \in \mathbb{Z}}\left\langle\phi_{i}, \phi_{j} \phi_{k}\right\rangle \hat{f}_{k} \\
&=\sum_{k \in \mathbb{Z}}\left\langle\phi_{i}, \phi_{j+k}\right\rangle \hat{f}_{k}=\sum_{k \in \mathbb{Z}} \delta_{i, j+k} \hat{f}_{k}=\hat{f}_{i-j}
\end{aligned}
$$

Rrample: $l=2 \quad A=\left(\begin{array}{l}\hat{f}_{f_{0}} \hat{f}_{-1} \hat{f}_{-2} \hat{f}_{-3} \hat{f}_{-4} \\ \hat{f}_{1} \\ \hat{f}_{2} \\ \hat{f}_{3} \\ \hat{f}_{4}\end{array}\right)$
$A u_{j}=a_{j} u_{j} \quad u_{j}^{+} u_{l}=\delta_{k} \quad\left(a_{j} \geqslant 0\right.$ whenescs $\left.f \geqslant 0\right)$.
$u_{j}=\left(u_{-c_{j}}, \ldots, u_{c j}\right)^{\top} \in \mathbb{C}^{2 l+1}$ - stores expanion coelticients of eigenfunctions of

$$
\psi_{j}=\sum_{k=-l}^{l} u_{k i} \phi_{j}
$$

Teigenfunction

FINITE-DIMENSIONAL APPROXIMATION

Observables

States

- $H_{1} \subset H_{2} \subset \ldots \subset H$, H_{L} finite-dimensional subspace (e.g. $H_{L}=\left\{\phi_{0}, \ldots, \phi_{L-1}\right\}$ for an doN basis $\left\{\phi_{0}, \phi_{1}, \ldots\right\}$ of H
Projections: $\pi_{L}: H \rightarrow H, \operatorname{ran} \pi_{L}=H_{L}$
- $\pi_{L}: B \rightarrow \beta_{L}=\left\{\pi_{L a} \pi_{L}: a \in B(H)\right\} \approx B\left(H_{L}\right)$
(see assignment 2)
- $U_{L}: B_{L} \rightarrow B_{L}, U_{L} a=U_{L}$ a $U_{L}^{*}, U_{L}=\pi_{L} U \pi_{L}$ - projected Koopman op

In gene rale, U_{L} is not unitary, ie, $U_{L}^{*} \neq U_{L}^{-1}$, unless, $\pi_{L} U=U \pi_{L}$. As a result, U_{L} is not, in general a quantum channel (in particular, $U_{L} \mathbb{1}_{B_{L}} \neq \mathbb{1}_{B L}$). However, it is a quantum operation, ie. U_{L} is completely positive (by stinesping tum.) and $U_{L} \mathbb{1}_{B_{L}} \leqslant \mathbb{1}_{B_{L}}$

- Moreover the diagrams do not in general comate (unless) $\pi_{L} U=U T L$)
- Projected states: $\pi_{L}(\rho)=\frac{\pi_{L} \rho \pi_{L}}{\operatorname{tr}\left(\pi_{L} \rho \pi_{L}\right)}$. Projected transfer operator: $P_{L} \rho=U_{L}^{*} \rho U_{L}$
- Projected multiplication operators: $\operatorname{tr}^{\left(\pi_{L} \rho \pi_{L}\right)} \pi_{L}: A \rightarrow B_{L}, \pi_{L}=\pi_{L} \circ \pi, \pi_{L} f=\pi_{L}\left(\pi_{L} R\right) \pi_{C} \quad \overline{\operatorname{tr}\left(U_{L}^{*} p U_{L}\right)}$
\rightarrow (bee assignment 3)

Remarks
$\left.C_{i}\right) \pi_{L} f$ is not a multiplication operator by an element in A egg. $\Pi_{L} f$
(ii) $\Gamma_{L} p \equiv \pi_{L}^{\prime}\left(\Gamma_{p}\right)$ is not a state induced ty a probability density in $S_{*}(t)$

RECONSTRUCTING CLASSICAL OBSERVABLES
Goal: Given $A_{L}=\pi_{L} f \equiv \pi_{L}(\pi f) \pi_{L}$ projected multiplication operator reconstruct a function $f_{L} \in \mathcal{A}$ it. f_{L} approximates f in some sense.

$$
\mathcal{C f}_{L}: \Omega \rightarrow \mathbb{C}
$$

Observe that starting from the C^{*}-alebro $C(\Omega) \subseteq A$ we hare the characters $\delta_{x} \in S(c(\Omega))$, $x \in \Omega$, sit. $\delta_{x} f=f(x)$. There exits an exterion $\tilde{\delta}_{x} \in S(t)$ i.e. $\tilde{\delta}_{x} f=\delta_{x} f$ for all $f_{\in} C(\Omega)$. Given $f_{f} t$ this motivates dehning $\widetilde{\tilde{f}}: \Omega \rightarrow C$
s.1. $\tilde{f}(x)=\widetilde{\delta}_{x} f$. However, $\tilde{\delta} x$ is not a normal state, so we cannot u_{x} the map $\Gamma: S_{*}(t) \rightarrow S_{*}(B)$ to represent it qua-thum mechanically.
Approach: Replace $\tilde{\delta}_{x}$ by a normal state $p_{*} \in S_{*}(t)$ that apprasinatio pointuive evaluation.
Consider $p: \Omega \times \Omega \rightarrow \mathbb{R}$ continuous Marker ternel:
(i) $p \geqslant 0$
(ii) For every x $\in \Omega, p_{x} \equiv p(x, \cdot)$ is a probability density in $S_{*}(t)$

If p_{x} is "concentrated" aron-d x, we here

$$
\mathbb{E}_{p_{x}} f \approx f(\Omega)=\delta_{x} f \text { for } f_{\in} c(\Omega)
$$

Example: $\Omega=s^{\prime}, p: s^{\prime} \times s^{\prime} \rightarrow \mathbb{R} \quad p\left(x, x^{\prime}\right)=\frac{1}{I_{0}\left(1 / \varepsilon^{2}\right)} \exp \left(\frac{\cos \left(x-x^{\prime}\right)}{\varepsilon^{2}}\right)$
(Von-Mises kernel)
With any such choice $p: \Omega \times \Omega \rightarrow \mathbb{R}$, define $R: B \rightarrow c(\Omega)$ s.t.

$$
g=R a, \quad g(x)=\mathbb{E}_{r\left(p_{x}\right)} a=\operatorname{tr}\left(\Gamma\left(p_{x}\right) a\right)=\left\langle\sqrt{p_{x}}, a \sqrt{p_{x}}\right\rangle
$$

If $a=\pi f$ for some $f \in A$, we hare $g(x)=\mathbb{E}_{p_{x}} f \approx f\left(C_{x}\right)$
Finite-dimensional appreximation: $R_{L}: B_{L} \rightarrow C(\Omega)$ s.t.

$$
g_{L}=R_{L} a, \quad g_{L}(x)=\mathbb{E}_{\pi_{L}^{\prime}\left(r\left(p_{x}\right)\right)}=\operatorname{tr}\left(\pi_{L}^{\prime}\left(r\left(p_{x}\right)\right)_{a}\right)=\frac{\left\langle\pi_{L} \sqrt{p_{x}}, a \pi_{L} \sqrt{p_{x}}\right\rangle}{\left\|\pi_{L} \Gamma_{p_{x}}\right\|_{H}^{2}}
$$

Giren a basis $\left\{\phi_{0,}, \ldots, \phi_{1 i}\right\}$ for H_{L} a is reprecented L_{y} matix $A_{i j}=\left\langle\phi_{i}, a \phi_{j}\right\rangle$

$$
\begin{aligned}
& \quad f_{x}=\frac{\pi_{L} \sqrt{p_{x}}}{\| \pi_{L} V_{x}} \| \\
& \Rightarrow g_{L}(x)=\text { is repesented by vecfor } v_{j}=\left\langle\phi_{j}, f_{x}\right\rangle
\end{aligned}
$$

ASYMPTOTIC CONSISTENCY $(L \rightarrow \infty)$
Pap (a) For any density operator $p \in S_{*}(B)$, the projected density operators
$\rho_{L}=\pi_{L}^{\prime}(\rho)=\frac{\pi_{L} \rho \pi_{L}}{\operatorname{tr}_{r}\left(\pi_{L} \rho \pi_{L}\right)}$ converge to ρ in the trace norm of $S_{N}(\beta)$,
ie. $\lim _{L \rightarrow \infty}\left\|p-p_{L}\right\|_{1}=0$ whee $\|a\|_{1}=\operatorname{tr}|a|,|a|=\sqrt{a^{*} a}, a \in B_{1}(H)$.
(b) For any bounded operator $a \in \beta, \quad a_{L}=\Pi_{L} a \Pi_{L}$ converges to a in the throng top logy of B, i.s, for envy $f_{\in} H, \lim _{L \rightarrow \infty} a_{L} f=$ af
Corollary: for any $a \in \beta, p \in S_{*}(\beta), \lim _{L \rightarrow \infty} \mathbb{E}_{p_{L}} a_{L}=\mathbb{E}_{p} a$
Pf. Observe $\mathbb{E}_{\rho_{L}} a_{L} \equiv \operatorname{tr}\left(\rho_{L} a_{L}\right)=\operatorname{tr}\left(\rho_{L} \pi_{L} a \pi_{L}\right)=\operatorname{tr}\left(\pi_{L} \rho_{L} \pi_{L} a\right)=\operatorname{tr}\left(\rho_{L} a\right)$
Thus, $\left.\left|\mathbb{E}_{\rho_{L}} a_{L}-\mathbb{E}_{\rho} a\right|=\mid \operatorname{tr}\left(\rho_{L}-\rho\right) a\right)|\leqslant \operatorname{tr}|\left(\rho_{L}-\rho\right) a \mid \leqslant\left\|\rho_{L}-\rho\right\|_{1}\|a\|$ $\Rightarrow\left|\mathbb{E}_{\rho_{L}} a_{L}-\mathbb{E}_{\rho} a\right| \xrightarrow[L \rightarrow \infty]{ } 0$.
Similerly, for $P: S_{*}(B) \rightarrow S_{*}(B)$ and $P_{L}: S_{*}(B) \rightarrow S_{*}\left(B_{L}\right)$,
we hare $\lim _{L \rightarrow \infty} \mathbb{E}_{\left(p_{L} p_{L}\right)} a_{L}=\mathbb{E}_{p_{p}} a$.

