
Section 4

Embedding dynamical systems in operator
algebras



Dirac–von Neumann axioms of quantum mechanics

1 States are density operators, i.e., positive, trace-class operators
⇢ : H ! H on a Hilbert space H, with tr ⇢ = 1.

2 Observables are self-adjoint operators, A : D(A) ! H.
3 Measurement expectation and probability:

E⇢A = tr(⇢A), P⇢(⌦) = E⇢(E (⌦)), A =

Z

R
a dE (a).

4 Unitary dynamics between measurements:

⇢t = U
t⇤⇢0U

t .

5 Projective measurement:

⇢|e =
p
e⇢

p
e

tr(
p
e⇢

p
e)

, 0 < e  I .
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↑
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non abelian fuzzy event
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Algebraic formulation: States and observables

1 Associated with a physical system is a unital C⇤-algebra A.
2 The set of states of the system is the state space S(A) of A.
3 The set of observables of the system is the set of self-adjoint

elements Asa of A.
4 The set of values that can be obtained in a measurement of a 2 Asa

corresponds to the spectrum �(a) ⇢ R.
5 The expected value of a measurement of a 2 Asa when the system is

in state ' 2 S(A) is given by '(a).

Abelian Non-abelian

1- =L (t ) 1- = BCH )
Asa = / f- c- A / real-valued } As_ = { ac.PH/Cza3S=Gqt>}
off / = essential range of 1- • (a) = spectrum of operator



Algebraic formulation: Events and measurement probabilities

• The set of events (or effects) that can be observed is the set of
positive elements e 2 A+ such that 0  e  . If the system is in
state ' 2 S(A), the probability to observe e is given by '(e).

• Supposing, further, that A is a W
⇤-algebra, the measurement

probability for a to take value in a set S 2 B(R) is given by '(E (S)),
where E : B(R) ! A is the PVM satisfying a =

R
R � dE (�).



Completely positive maps

Notation.
Given a C

⇤-algebra A, Mn(A) is the C
⇤-algebra of n ⇥ n matrices with

entries in A.

Definition 4.1.
Let T : A ! B be a linear map between C

⇤-algebras A and B. Given
n 2 N, we say that the map T

(n) : Mn(A) ! Mn(B) defined as
T

(n)([aij ]) = [T (aij)] is a matrix amplification of T .

Definition 4.2.
A linear map T : A ! B between C

⇤-algebras A and B is said to be:
• n-positive if T (n) is positive.
• Completely positive if it is n-positive for every n 2 N.

e. g. Malt)
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,
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Example of a positive map which is not completely positive

b- = MIE)
,
T : b- →A

,

1-(: 1) = (; %) (matrix transpose )

for
any ✗ G

"

,
a c- A+

,
we have ↳ tax> = { × , (a*×*)* > = (✗*

,
a*×* >

*

=<÷É¥÷* ≥ ◦ ⇒ Tis positive .

a. C-At
claim : T is not 2-positive . Indeed

,

⇒HE:) = ] ⇒ T is not 2-poitier
°

, % 0 I

O O O I

-

positive as an element ⇒pÉÉ
of IMCA ) determinant is = - I



Completely positive maps

Theorem 4.3 (Stinespring).
Let A be a C

⇤-algebra and H a Hilbert space. A linear map
T : A ! B(H) is completely positive iff there is a Hilbert space K , a
representation ⇡ : A ! B(K ) and a bounded linear map V : K ! H

such that
Ta = V (⇡a)V ⇤, 8a 2 A.

Proposition 4.4.
With notation as above, if A is abelian then T : A ! B(H) is completely
positive iff it is positive.

Theorem 4.5 (Choi).
Let K and H be finite-dimensional Hilbert spaces of dimension m and n,
respectively. Then, any completely positive map T : B(K ) ! B(H) take
s the form T (a) =

Pmn
i=1 ViaV

⇤
i for some operators Vi : K ! H.

↳ Kraus operators



Quantum operations, quantum channels

Definition 4.6.
A linear map T : B ! A between unital C⇤-algebras B and A is said to
be a quantum operation if:

1 T is completely positive.
2 T B  A.

If T B = A, T is said to be a quantum channel.

Proposition 4.7.
If T : B ! A is a quantum operation, then for every state ! 2 S(A)
T

⇤! 2 B⇤ is a positive functional satisfying (T ⇤!) B  1. Moreover, if
T is a quantum channel, (T ⇤!) B = 1.

Corollary 4.8.
The adjoint T ⇤ : A⇤ ! B⇤ of a quantum channel T : B ! A maps the
state space S(A) into S(B).

1-
*

q
= got



Quantum operations, quantum channels

Proposition 4.9.
A normal (weak-⇤ continuous) quantum operation T : B ! A between
W

⇤-algebras B and A has a predual, i.e., T = (T⇤)⇤ for a unique linear
map T⇤ : A⇤ ! B⇤.



Algebraic formulation of measure-preserving dynamics

State space dynamics

� : ⌦ ! ⌦

�⇤ : M(⌦) ! M(⌦), �⇤↵ = ↵ � ��1

• �: Invertible measure-preserving map.
• M: Space of Borel measures on ⌦.
• �⇤: Pushforward map on measures.
• µ: Invariant probability measure, �⇤µ = µ.



Algebraic formulation of measure-preserving dynamics

Abelian formulation

U : A ! A, Uf = f � �
P : S⇤(A) ! S⇤(A), Pp = p � ��1

• A = L
1(µ): Abelian von Neumann algebra.

• Asa = {f 2 A : f is real-valued}: Classical observables.
• U : A ! A: Koopman operator.
• A⇤ = L

1(µ): Predual.
• S⇤(A) = {p 2 A⇤ : p � 0,

R
⌦ p dµ = 1}: Probability densities.

• Ep : A ! C with p 2 S⇤(A): Normal states, Epf =
R
⌦ fp dµ.

• P : S⇤(A) ! S⇤(A): Transfer operator.



Algebraic formulation of measure-preserving dynamics

Non-abelian formulation

U : B ! B, Ua = UaU
⇤

P : S⇤(B) ! S⇤(B), B⇢ = U
⇤⇢U

• H = L
2(µ): Hilbert space.

• U : H ! H: Unitary Koopman operator, Uf = f � �.
• B = B(H): Non-abelian von Neumann algebra.
• Bsa = {a 2 B : a is self-adjoint}: Quantum observables.
• U : B ! B: Induced Koopman operator.
• B⇤ = B1(H): Predual.
• S⇤(B) = {⇢ 2 B⇤ : ⇢ � 0, tr ⇢ = 1}: Density operators.
• E⇢ : B ! C with ⇢ 2 S⇤(B): Normal states, E⇢a = tr(a⇢).
• P : S⇤(B) ! S⇤(B): Induced transfer operator.



Algebraic formulation of measure-preserving dynamics

Classical–quantum consistency
Proposition 4.10.
The maps U : A ! A and U : B ! B are quantum channels.
Moreover, the following diagrams commute for the injective maps
⇡ : A ! B and � : S⇤(A) ! S⇤(B):

A A

B B

U

⇡ ⇡

U

S⇤(A) S⇤(A)

S⇤(B) S⇤(B)

P

� �

P

• ⇡ : A ! B: Regular representation, ⇡f = a with ag = fg for all
g 2 H.

• � : S⇤(A) ! S⇤(B): Mapping of probability densities into pure
quantum states, �(⇡) = hpp, ·ipp.



ALGEBRAIC FORMULATION OF MEASURE -PRESERVING DYNAMICAL SYSTEMS

• State space dynamics :

00%1∅ :D → R CR
,
standard Borel measurable space )

∅*:Mlr)→rcr ) ,
(0*46)=40%1)

9*4 =p Cinrcriant probability measure) r

Abelian Non-abelian

von Neumann algebra A-- EG ) B- BCH ) , 4--124 )

observables Asa -_ Local - valued elements } Bsa =/ self-adjoint eireermapsints}
oft

8*1--13,4-1 )
preclude d-* = L'4)
normal states s*(A) = { pet '4) :p≥9fP4= '} * (B)=/ PEACH) : pro,trp=1}
↳ Epf = ffpdfn , Ptfxlt) , fft Epa = trlpa.pt#lB7,atB .

Quantum channel V. 1- →A
,
Uf=f◦∅ U :B →B

,
Ua=UaU*

( fro⇒ of ≥0 ( U :H→H , unitary Koopman op .

ot-foo.Uiscp.by stinespring)
Uiscp . since 1- isabdia

)
fhm

Prednal P=U*:A*→A*,Px=✗◦∅
"

P=U*:iB*→B*
, Pp=U*pU



EMBEDDING CLASSICAL (ABELIAN) DYNAMICS INTO QUANTUM (NON-ABELIAN) DYNAMICS

Observables @ormad states
1- A s*Ct ) > s*(t )
* / / IT r f
r

u

fr
B.→ B✓ g. (B)→ s*CB)

Regular rep : Embeddingof prob - densities

E- b- →B T :S# (A) → * (B)
tf = a where ag=fg rp =p , pg

= {Fp, g) Tp
forall g C- H for all get

our state )
*f) g=U⇔u*g Pfp)g=U*☒)Ug=U*(rp, g) Tp=U(fU*g ) =/ Fi, Ug> UFpn.EU#rp,g7U*Fp

=@ f) UU*g =(Ñ*p , g) ✓0*7 = ftp..pl , g) Tpp '=r(Pp)g
= Ufg = pilot)g

⇒ µot=TTf- ⇒ /Po F- To P Heisenberg

↓
Classical- quantum consistency : Hf c- A > PES* (A) , #ppf = #

perp )
↳

☒ rpµGf) )Heisenberg -7 Ep@ f)% ↑ sehrodinger



TOEPLITZ MATRIX APPROXIMATION OF MULTIPLICATION OPERATORS

Given f e A =L (f) , compute A c- Meet , s -t
.

Aij = { fi
,
@ f) &; > = <&i

,
f & ; > i. j f - 29 - -

,
Ze

f- = Fez, Ñe∅k ⇒ Ai
,

-

= Hi
, If:& &; > = ¥i,∅i&• > Ik

= ¥2,49 , title > Is = I di,i+k↑e = Ñi
;

be f-21

•⇒ ee
:
" • •

)
A Nj = Aj Uj Ujt My = off &; ≥ 0 whenever f- 2/0 ) .

•Ui = (Kej , - -
. . ,Ue;)

"

E E
""

- stores expansion coefficients of eigenfunctions •t

e the operator represented by A

µ; = [ Maj cfj
k=- e

↑ eigenfunction



FINITE - DIMENSIONAL APPROXIMATION

Observables States

B
U

> B ↳ (B)
P

> S*(B)

ñ
. * I ñ:

✓
B
,

%
> BL s*CBa)

"
> S* (Bn)

• Hi a Hzc _ . _

a H
,

HL finite- dimensional subspace fe.g.tk = { do, . . > 4<-1} for an o-N
basis 119,9 , _ . As •f H .

•Projections : TIL : H → H
,
ran TIL =time assignment 2)

• Flu :B → Bin = { That : a c- BCH) } ≈ BCHL )
• UL : Ba → Ba

,
tha = U

,
a UE

, Un = TIL UTIL - projected Koopman op
In general , vi. is not unitary ,

i -ee
,
0¥ =/ UE '

,
unless TKU =URL . As a result,

UL is not , in general a quantum channel (in particular, Uh ftp.a-ttl-BL ) .
However

,
it is

a quantum operation ,
i.e . Uh is completely positive (by Stinespring trim .) andWIBLE ftp.a .

• Moreover the diagrams do not in general commute [unless TKU = UTK )
•Projected states : Tilo ) = The TIL

froggy
.
Proieefed transfer operator : Pap = UEI put

• Projected multiplication operators : tou : A → B , , reflate
,
ref-_TIL# IT,

↳ (UEM)
↳ [see assignment 3)



Remarks

Ci ) Thf is not a multiplication operator by an element in A e.g. TEF

Cii) Ip = TIL@p) is not a state induced by a probability density in S*(A)



RECONSTRUCTING CLASSICAL OBSERVABLES

Goal : Given A
,
= T4_fI1TL@ifT.L projected multiplication operator reconstruct

a function f- C-A s -t -
f
, approximates f in some terse .

TfL : R → ①

Observe that starting from the C*- algebra CCR ) ≤ A are hare the characters

&, c- SCCCR) )
,
✗ c-R
,
sit

.

8×7 = f-G)
.

There exists an extension & c- SCA)

i.e. If = off for all f- c- Ccr) . Given fat this motivates defining Ñ=R→ €

g. t .

f-G) = Ñf .

However
,

§✗ is not a normal state
, so we cannot use the map

or :S* (A)→ S* (B) to represent it quantum mechanically .

Approach : Replace Ji by a normal state pits# (t ) that approximates pointwise
evaluation .

Consider p : R✗R → ☒ continuous Markov kernel :

Ciip ≥ 0
Cii) For every ✗ ER

, p✗=- plxi ) is a probability density in S# (A)
or

If px is
"

concentrated " around ×
,
we hare

F-p×f ≈ fed = off for f-c- Cfr)
±
"



Example : D= S
'

, p :S
'

✗ S
'
→ RI pcx,×

' ) =
%,

exp (c◦>(E )
( Von - Miss kernel)

with any such choice p : rxr → ☒
,
define R :B→ CCR ) sit .

g =
Ra

, gcx) = F- xp,
a = tr@ (A) a) = { Fx, a Fx >

If a= Tcf for some f-c- A
,
we have glad = F-pxf ≈ f-G)

Finite-dimensional approximation : RL :B [→ CCR) sat
.

9L = Rra , I'd = Etter ( repay = tr ( Tlilrcpx) )a) = {TILE, aTkrp✗
>

11%8×11 ;

Gim a basis { do
,
_ .

.

, 01<+1 for HL a is represented by matrix Ais = <di , adi >

7-✗ = T¥E%p
,
, ,

" represented by vector v
;
= < ∅;

,
7×7

⇒ gild = it Av



ASYMPTOTIC CONSISTENCY ( L→ • )
Poop (a) For any density operator p

c- S* (B)
,
the projected density operators

% = Mlp ) = %q¥p⇒ ' converge to p in the trace norm of S# (B),

i.e . figg 119-9<111--0 where Hall
,
= trlal.la/--Va*a-,ac-BiCtD .

(b) For any bounded operator a c- B
,
a<=TkaTk converges to a in the

strong topology of B, i. e- , for every f-EH , Lingo auf = af .

Corollary : For any atB , q C- s*CB)
, Ling F-gain

= Epa
PI observe ftp.q-tr/qaJ=trfqTkaTk)--tr(TkquTka)--tr/qa)
Thus

, / Ega, - Epa / =/ tr④- g) a) I ≤ true - e) a / ≤ 11%-911 , Hall

⇒ / Ega, - Epa /⇒ ◦
.

Similarly ,
for P :S* (B) → * (B) and K :S*(B) → S*(B.a) ,

we hare tiff ftp.pyar = ftp.pa .


