
Section 5

Spectral theory of one-parameter evolution
groups



Setting and objectives

General assumptions

• � : G ⇥ ⌦ ! ⌦: Continuous-time, continuous flow on compact,
metrizable space ⌦.

• µ: Ergodic invariant Borel probability measure.
• X : ⌦ ! X continuous observation map into metric space X .
• U

t : F ! F : Koopman operator on Banach space F of
complex-valued observables.

Given. Time-ordered samples

xn = X (!n), !n = �tn(!0), tn = (n � 1)�t.

Goal. Using the data xn, identify a collection of observables ⇣j : ⌦ ! Y
which have the property of evolving coherently under the dynamics in a
suitable sense.



Setting and objectives

We recall the following facts from Section 2 (see Proposition 2.7 and
Theorems 2.29, 2.30).

Theorem 5.1.
1 {U t : C (⌦) ! C (⌦)}t2R is a strongly continuous group of

isometries.
2 {U t : Lp(µ) ! L

p(µ)}t2R, p 2 [0,1) is a strongly continuous group
of isometries. Moreover, U t : L2(µ) ! L

2(µ) is unitary.
3 {U t : L1(µ) ! L

1(µ)}t2R is a weak-⇤ continuous group of
isometries.

Notation.
• F : Any of the C (⌦) or Lp(µ) spaces with 1  p  1.
• F0: Any of the C (⌦) or Lp(µ) spaces with 1  p < 1.
• C0 (semi)group ⌘ strongly continuous (semi)group.
• C

⇤
0 (semi)group ⌘ weak-⇤ continuous (semi)group.



Generator of C0 semigroups

Definition 5.2.
Let {S t}t�0 be a C0 semigroup on a Banach space E . The generator
A : D(A) ! E of the semigroup {S t}t�0 is defined as

Af = lim
t!0

S
t
f � f

t
, f 2 D(A),

where the limit is taken in the norm of E , and the domain D(A) ✓ E

consists of all f 2 E for which the limit exists.

GEE
,
domain

of A

Example (Circle rotation

∅ᵗ : s '→ sʰ, ∅%) =@ + ✗ f) mod Ltc ,
✗ ER (frequency parameter) .

Consider

Uᵗ :((S ' ) → Ccs ' ) .
For f- £ Cʰ(sᵗ )

,

we have

Y◦0ᵗʰ-flI =% t.IM?-flo)-=fi;gflotg.t)-fI-..ei;gfl0tgtf-tIx--xf
to

111

Af 107
Moreover

,

% 110%-1 - ✗HI,,,
= % :* 11-19%-1-1 - a fin / = 0 .

Thus, G) D(A) 30151 ; Iii) For te C'(8) , Af = ✗
f
'

.
In fact

,
in this case D (A) = C

'

(5) .

More generally for a flow &ᵗ : r→or on a manifold, where (4%7)= ✓ (4%1), we
have A = %



Moreover
,
A is an nnboundedopeator_ .

Recall that A :D (A) → E is bounded iff sup

feeyo } "↑¥¥-_ <
*

.
A is said to be unbounded

if no meh bound exists .

For our example
,
we can take the sequence for C- Ct (S

' ) with fnlo) = ei
"°

, giving

"A,¥%% =
" ✗ fillets 's = llainfnllccs , = HI n

Thus
,
fu is a sequence of Nuit rectors in CCS

') for which 11 Afnllccs' ) increases without bound
.

⇒ A is unbounded
.

-1hm .

A linear operator A : F→ F- from a normed space F to a Bauch space E is continuous

iff it is bounded . That is
,

if Ying, Afn = Af for every sequence fu s-f.fig.fm = f then A

is bounded
.

Det . A :D (A) → F- is closed if for every fu c- PCAI converging to f- c- F-

such that gu = Afn converges to off F- we have

lit f. c- DCA)

Iii) g-_ Af .



Initial -value problem
iolt ) = ✓ (WH) ) v : IT

'

→ R2 rotor field

w(o) = Wo .

↑"
•

time - t solution map : ∅ᵗ : IT
'
→ IT? ∅ Two) = alt)

e- Assume : dir ✓ = 8¥
.

+ %÷ = °
→

The flow ∅ᵗ preserves the Lebesgue measure-112
→ ⇒ Uᵗ : it2) → L'CTI

' )

off = to ∅ᵗ is a G unitary
locution

group .

Generator V :D(v ) → til-112 ) . Given fe C'(Ti) CDCV)
,
we have

tf = figg Uᵗfjf_ = v. Tf

↑
Generator is a directional derivative on observables .



Generator of C0 semigroups

Theorem 5.3.
With the notation of Definition 5.2, the following hold.

1 A is closed and densely defined.
2 For all f 2 D(A) and t � 0, the function t 7! S

t
f is continuously

differentiable, and satisfies

d

dt
S
t
f = AS

t
f = S

t
Af .

3 A uniquely characterizes the semigroup {S t}, i.e., if {S̃ t} is another
C0 semigroup on E with the same generator A, then S

t = S̃
t for all

t � 0.



Generator of C ⇤
0 semigroups

Definition 5.4.
Let {S t}t�0 be a C

⇤
0 semigroup on a Banach space E with predual E⇤.

The generator A : D(A) ! E of the semigroup {S t}t�0 is defined as the
weak-⇤ limit

hg ,Af i = lim
t!0

hg , S t
f � f i
t

, f 2 D(A), 8g 2 E⇤,

where the domain D(A) ✓ E consists of all f 2 E for which the limit
exists.



Theorem 5.5.
With the notation of Definition 5.4, the following hold.

1 A is weak-⇤ closed and densely defined.
2 For all f 2 D(A) and t � 0, the function t 7! S

t
f is weak-⇤

continuously differentiable, and satisfies
⌧
g ,

d

dt
S
t
f

�
= hg ,AS t

f i = hg , S t
Af i.

3 A uniquely characterizes the semigroup {S t}, i.e., if {S̃ t} is another
C

⇤
0 semigroup on E with the same generator A, then S

t = S̃
t for all

t � 0.



Generator of unitary C0 groups

Theorem 5.6 (Stone).
Let {S t}t�0 be a unitary C0 group on a Hilbert space H. Then, the
generator A : D(A) ! H is skew-adjoint, i.e.,

A
⇤ = �A.

Conversely, if A : D(A) ! H is skew-adjoint, it is the generator of a
unitary evolution group.

¥112

Generalizes the result from matrix algebra that it A- C- Mn ( E ) is stew - adjoint
,

sᵗ = eᵗA (defined, in this case by Taylor series ) is unitary.

Note : A*= -A ⇒ {f
,
A-g) = - If, A

*g) = - {Af,g) ⇒ A- is antisymmetric

In infinite dimensions antisymmetric -1-7 stew - ad,ont .



Generator of Koopman evolution groups

Corollary 5.7.
Under our general assumptions the following hold:

1 The Koopman evolution groups U
t : F0 ! F0 are uniquely

characterized by their generator V : D(V ) ! F0, where

Vf = lim
t!0

U
t
f � f

t
.

Moreover, for F0 = L
2(µ), V is skew-adjoint.

2 The Koopman evolution group U
t : L1(µ) ! L

1(µ) is uniquely
characterized by its generator V : D(V ) ! F0, where

Vf = lim
t!0

U
t
f � f

t

in weak-⇤ sense.



Generator of Koopman evolution groups

Theorem 5.8 (ter Elst & Lemańczyk).
Let (⌦,⌃) be a compact metrizable space equipped with its Borel
�-algebra ⌃. Let µ be a Borel probability measure on ⌦ and
U

t : L2(µ) ! L
2(µ) a C0 unitary evolution group with generator

V : D(V ) ! L
2(µ). Then, the following are equivalent.

1 For every t 2 R there exists a µ-a.e. invertible, measurable, and
measure-preserving flow �t : ⌦ ! ⌦ such that U t

f = f � �t .
2 The space A(V ) = D(V ) \ L

1(µ) is an algebra with respect to
function multiplication, and V is a derivation on A:

V (fg) = (Vf )g + f (Vg), 8f , g 2 A(V ).

Counter - example .
Let V = i

,
A Laplacian (2nd order self-adjoint operator) .

A does not satisfy the Leibniz rule, i.e . 1- f. g s - t . Alfg) = @f)gt f@g) .

Thus , the unitary group generated by ID
,
Ut =eifA

,
is a-t a Koopman group,

i.e. there is no classical flow lot :D→r S.f. Utf = f- ◦∅ᵗ
,



Point spectrum

Definition 5.9.
Let A : D(A) ! E be an operator on a Banach space with domain
D(A) ✓ E . The point spectrum of A, denoted as �p(A) ✓ C is defined as
the set of its eigenvalues. That is, � 2 C is an element of �p(A) iff there
is a nonzero vector u 2 E (an eigenvector) such that

Au = �u.

Notation.
• We use the notation �p(A;E ) when we wish to make explicit the

Banach space on which A acts.

Spectrum : • (A) = { I c-6 : A-12 has no bounded inverse }

e.

there is no bounded operator Bs.t.CA-127 • Bf = f- for all FEE s- t . B f- c- DCA)
BIA -22) 1- = f- for all f- c- DCA)

.

Note : op (A)≤ OCA)



Eigenvalues and eigenfunctions

Definition 5.10.
Let A : D(A) ! E be the generator of a C0 semigroup {S t}t�0 on a
Banach space E . We say that � 2 C is an eigenvalue of the semigroup if
� is an eigenvalue of A, i.e., there exists a nonzero u 2 D(A) such that

Au = �u.

Lemma 5.11.
With notation as above, � is an eigenvalue of {S t} if and only if z is an
eigenvector of S t for all t � 0, i.e., there exist ⇤t 2 C such that

S
t
u = ⇤t

u, 8t � 0.

In particular, we have ⇤t = e
�t .

i



Eigenvalues of the generator on [(g) for meanie- preserving flows :

let Vu = In with Hulk,q,
= 1-

.

We have

1 = 14mn> = (n, In ) = ( u
,
Vu> = ( ✓

*
n
, n> = - < Vu

,
u> = - Edu, a) = - 14am)

= -2¥

⇒ 2=-1
*

⇒ I = is for ✗ c- R .

I ↑
eigenvalues "

eigenfrequency
"

lie in the imaginary
line

Recall from thm 5-6 that ACV) = DCV)nL°4) is an algebra and V acts on tcu)

as a derivation
.

Given Mi
, Na EACH eigenvectors corresponding to eigenvalues di,1z 6-her

✓ (Muz) = ✗Mi) U2 f Mi@ Nz ) = 7 , Nina + IL Ui Na = @ + d) Milk ( a)-

⇒ Mini is an cigar rotor corresponding to eigenvalue Iet 22

Moreover since Uᵗf= f- ◦ lot
, @

f- f) * = (f. ∅ᵗ)* = f-
*
◦ ∅ᵗ ± Of(f *) and thus ,

@ f)
*

= V(f*) for any f-c- DCv7 .

⇒ If Vn = In and 2=-7*1
,
then Vu* = @a)

*
= ②

*
= -
1n*É

⇒ u* is an eigenvector corresponding to eigenvalue -t.CZ#ttMcfur of an
Also, we hae V1 = ok ⇒ 0 c- of (V ) v1 additive group



FAI for a measure - preserving flow
, every eigenfunction U of V is a periodic observable

with period 2142 Where ✗ is the corresponding eigenfrequency :

Uᵗw = Atm = eat u = eixt a ⇒ 01-1-2^4 U
= U



Point spectra for measure-preserving flows

Theorem 5.12.
Let �t : ⌦ ! ⌦ a be a measure-preserving flow of a probability space
(⌦,⌃, µ). Let U t : Lp(µ) ! L

p(µ) be the associated Koopman operators
on L

p(µ), p 2 [1,1], and V : D(V ) ! L
p(µ) the corresponding

generators. Then, the following hold.
1 For every p, q 2 [1,1] and t 2 R, �p(U t , Lp(µ)) = �p(U t , Lq(µ)).
2 �p(V , Lp(µ)) = �p(V , Lq(µ)).
3 �p(U t) is a subgroup of S1.
4 �p(V ) is a subgroup of iR.

Corollary 5.13.
Every eigenfunction of V lies in L

1(µ), and thus in L
p(µ) for every

p 2 [1,1].

Given � = i↵ 2 �p(V ), we say that ↵ is an eigenfrequency of V .

~ At .AE c- op
lot/ ⇒ A.ᵗa¥ c- op lot)



Generating frequencies

Definition 5.14.
Assume the notation of Theorem 5.12.

1 We say that {ia0, ia1, . . .} ✓ �p(V ) is a generating set if for every
i↵ 2 �p(V ) there exist j1, j2, . . . , jn 2 Z and k1, k2, . . . , kn 2 N such
that

↵ = j1↵k1 + j2↵k2 + . . .+ jn↵kn .

2 We say that �p(V ) is finitely generated if it has a finite generating
set.

3 A generating set is said to be minimal if it does does not have any
proper subsets which are generating sets.

Lemma 5.15.
1 The elements of a minimal generating set are rationally independent.
2 If a minimal generating set has at least two elements, then �p(V ) is

a dense subset of the imaginary line.

ii ↑



Example Ergodic notation on 11-2

∅ᵗ(Wi, w , ) = (wit ✗ it , wz 1- ✗ et ) mod 217
, Rydz ER , rationally independent

.in

w:(Wi
,wit

c- -112
Vector field : vlwywz) = @ ,a) , wilt) = vlwlt) )

Generator : Uf (Wi
,
we) = lim Utflwi

,
U2) -Hwi , Wal = ✗,gf /wi,wit ✗2%-71-1%0

_)
C-→ o t

= v. of for FEC't)
consider the Fourier functions § ; /we,wy = ei

' w' +5202 )
j=(j,jy c- 212

.

We get V01; = i (✗ijit ✗i. ji ) ∅ ;
-

eigintrequeacy ✗
j

S " 'e { &; } jazz forms an orthonormal basis of (2/4) uehae computed all e-hero -TV

oplv ) = Lini } ; +212 .

hid ,
,

in } is a minimal generating set



Generating frequencies

Lemma 5.16.
Let g1, g2, . . . be eigenfunctions corresponding to the eigenvalues of the
generating set in Definition 5.14, i.e., Vgj = i↵jgj . Then, for every
i↵ 2 �p(V ) with ↵ = j1↵k1 + j2↵k2 + . . .+ jn↵kn ,

z = g
j1
k1
g
j2
k2
· · · g jn

kn

is an eigenfunction of V corresponding to the eigenfrequency ↵.



Invariant subspaces
Notation.
• Hp = span{u 2 L

2(µ): u is an eigenfunction of V }.
• Hc = H

?
p .

• {z0, z1, . . .}: Orthonormal eigenbasis of Hp, Vzj = i↵jzj .

Theorem 5.17.
Let �t : ⌦ ! ⌦ be a measure-preserving flow on a completely metrizable
space with an invariant probability measure µ.

1 Hp and Hc are U
t -invariant subspaces.

2 Every f 2 Hp satisfies

U
t
f =

1X

j=0

f̂je
i↵j tzj , f̂j = hzj , f iL2(µ).

3 Every f 2 Hc satisfies

lim
T!1

1
T

Z T

0
|hg ,U t

f iL2(µ)| = 0, 8g 2 L
2(µ).



Pure point spectrum

Definition 5.18.
With the notation of Theorem 5.17, we say that a measure-preserving
flow �t : ⌦ ! ⌦ has pure point spectrum if Hp = L

2(µ).

Remark 5.19.
For a system with pure point spectrum:

1 The spectrum of V is not necessarily discrete.
2 The continuous spectrum is not necessarily empty.

1=7 ✓ is di agon elizalde

↳ For pure _ point Matruh systems ofV7 = 0pct

- s . for ergodic rotation on
IT

, op ( v) = / it kat , i. 1421,
✗ 'KHQ}

(
op ( v)

is a dense subset ◦tip



Point spectra for ergodic flows

Proposition 5.20.
With the notation of Theorem 5.12, assume that �t : ⌦ ! ⌦ is ergodic.

1 Every eigenvalue � 2 �p(V ) is simple.
2 Every corresponding eigenfunction z 2 L

p(µ) normalized such that
kzkLp(µ) = 1 for any p 2 [1,1] satisfies |z | = 1 µ-a.e.



Factor maps

Definition 5.21.
Let T1 : ⌦1 ! ⌦1 and T2 : ⌦2 ! ⌦2 be measure-preserving
transformations of the probability spaces (⌦1,⌃1, µ1) and (⌦2,⌃2, µ2).
We say that T2 is a factor of T1 if there exists a T1-invariant set S1 2 ⌃1
with µ2(S+1) = 1, a T2-invariant set S2 2 ⌃2 with µ2(S2) = 1, and a
measure-preserving, surjective map ' : S1 ! S2 such that

T2 � ' = ' � T1.

Such a map ' is called a factor map and satisfies the following
commutative diagram:

M1 M1

M2 M2

T1

' '

T2

.

MI
Thi

Thi /
Mz



Metric isomorphisms

Definition 5.22.
With the notation of Definition 5.21, we say that T1 and T2 are
measure-theoretically isomorphic or metrically isomorphic if there is a
factor ' : S1 ! S2 with a measurable inverse.

Theorem 5.23 (von Neumann).
Let �t : ⌦ ! ⌦ be a measure-preserving flow on a completely metrizable
probability space (⌦,⌃, µ) with pure point spectrum. Then, �t is
metrically isomorphic to a translation on a compact abelian group G.
Explicitly, G can be chosen as the character group of the point spectrum
�p(V ).



Metric isomorphisms

Corollary 5.24.
If �p(V ) is finitely generated, then �t is metrically isomorphism to an
ergodic rotation on the d-torus, where d is the number of generating
frequencies of �p(V ). Explicitly, supposing that {i↵1, . . . , i↵d} is a
minimal generating set of �p(V ) with corresponding unit-norm
eigenfunctions z1, . . . , zd we have

R
t � ' = ' � �t ,

where R
t : Td ! Td is the torus rotation with frequencies ↵1, . . . ,↵d ,

and
'(!) = (z1(!), . . . , zd(!)), µ-a.e.

or r

etTᵈ¥d



Spectral isomorphisms

Definition 5.25.
With the notation of Definition 5.22, let U1 : L2(µ1) ! L

2(µ1) and
U2 : L2(µ2) ! L

2(µ2) be the Koopman operators associated with T1 and
T2, respectively. We say that T1 and T2 are spectrally isomorphic if there
exists a unitary map U : L2(µ1) ! L

2(µ2) such that

U2 � U = U � U1.

Theorem 5.26 (von Neumann).
Two measure-preserving flows with pure point spectra are metrically
isomorphic iff they are spectrally isomorphic.



Spectral isomorphisms

Definition 5.25.
With the notation of Definition 5.22, let U1 : L2(µ1) ! L

2(µ1) and
U2 : L2(µ2) ! L

2(µ2) be the Koopman operators associated with T1 and
T2, respectively. We say that T1 and T2 are spectrally isomorphic if there
exists a unitary map U : L2(µ1) ! L

2(µ2) such that

U2 � U = U � U1.

Theorem 5.26 (von Neumann).
Two measure-preserving flows with pure point spectra are metrically
isomorphic iff they are spectrally isomorphic.


