Section 5

Spectral theory of one-parameter evolution groups

Setting and objectives

General assumptions

- $\Phi: G \times \Omega \rightarrow \Omega$: Continuous-time, continuous flow on compact, metrizable space Ω .
- μ : Ergodic invariant Borel probability measure.
- $X : \Omega \to X$ continuous observation map into metric space \mathcal{X} .
- *U^t* : *F* → *F*: Koopman operator on Banach space *F* of complex-valued observables.

Given. Time-ordered samples

$$x_n = X(\omega_n), \quad \omega_n = \Phi^{t_n}(\omega_0), \quad t_n = (n-1)\Delta t.$$

Goal. Using the data x_n , identify a collection of observables $\zeta_j : \Omega \to \mathcal{Y}$ which have the property of evolving coherently under the dynamics in a suitable sense.

Setting and objectives

We recall the following facts from Section 2 (see Proposition 2.7 and Theorems 2.29, 2.30).

Theorem 5.1.

- $\{U^t : C(\Omega) \to C(\Omega)\}_{t \in \mathbb{R}}$ is a strongly continuous group of isometries.
- 2 { $U^t : L^p(\mu) \to L^p(\mu)$ }_{t∈ℝ}, $p \in [0, \infty)$ is a strongly continuous group of isometries. Moreover, $U^t : L^2(\mu) \to L^2(\mu)$ is unitary.
- 3 {U^t : L[∞](µ) → L[∞](µ)}_{t∈ℝ} is a weak-* continuous group of isometries.

Notation.

- \mathcal{F} : Any of the $C(\Omega)$ or $L^p(\mu)$ spaces with $1 \le p \le \infty$.
- \mathcal{F}_0 : Any of the $C(\Omega)$ or $L^p(\mu)$ spaces with $1 \leq p < \infty$.
- C_0 (semi)group \equiv strongly continuous (semi)group.
- C_0^* (semi)group \equiv weak-* continuous (semi)group.

Generator of C_0 semigroups

Definition 5.2. Let $\{S^t\}_{t\geq 0}$ be a C_0 semigroup on a Banach space E. The generator $A: D(A) \to E$ of the semigroup $\{S^t\}_{t\geq 0}$ is defined as $f \in E$, domin A A $Af = \lim_{t\to 0} \frac{S^t f - f}{t}, \quad f \in D(A),$

where the limit is taken in the norm of E, and the domain $D(A) \subseteq E$ consists of all $f \in E$ for which the limit exists. Example (Circle rotation) $\phi^{6}: s^{1} \rightarrow s^{1}, \phi^{\ell}(\theta) = (\theta + \alpha t) \mod l\pi, \quad \alpha \in \mathbb{R}$ (frequency parameter). Consider $\mathcal{V}^{t}: \mathcal{C}(S') \rightarrow \mathcal{C}(S')$. For $f \in \mathcal{C}^{t}(S^{t})$, we have $\lim_{t\to0} \frac{(j^{t}f(\theta)-f(\theta))}{6} = \lim_{t\to0} \frac{f(\phi^{t}(\theta))-f(\theta)}{6} = \lim_{t\to0} \frac{f(\theta;\alpha t)-f(\theta)}{6} = \lim_{t\to0} \frac{f(\theta;\alpha t)-f(\theta)}{6} = \lim_{t\to0} \frac{f(\theta;\alpha t)-f(\theta)}{\alpha t} = \alpha f(\theta)$ Ăf (0) Horearer, $\lim_{f\to 0} \left\| \frac{\psi(f-f)}{f} - \kappa f' \right\|_{\mathcal{C}(S^1)} = \lim_{f\to 0} \max_{\Theta \in S^1} \left| \frac{f(\Theta + \kappa f) - f(\Theta)}{f} - \kappa f'(\Theta) \right| = 0.$ Thus, G) $D(A) \ge C'(S')$; (F) For $f \in C'(S')$, $Af = \alpha f'$. In fact, in this case D(A) = C'(S'). More generally by a flow ϕ^{f} : I = 22 on a markold, where $\frac{1}{d_{E}}(\phi^{f}(\omega)) = v(\phi^{f}(\omega))$, we have $A = \sqrt[3]{2}$.

Moreover, A is an unbounded operator
Recall that $A:D(A) \rightarrow E$ is bounded iff sup $\frac{\ Af\ _E}{\ F\ _E} < \infty$. A is said to be unlounded $f \in E \setminus \{0\}$
if no such bound exists.
For our example, we can take the sequence $f_n \in C^1(S')$ with $f_n(\theta) = e^{in\theta}$, giving
$\frac{\ Afn\ _{\mathcal{C}(S')}}{\ f_n\ _{\mathcal{C}(S')}} = \ \alpha infn\ _{\mathcal{C}(S')} = \alpha n$
Thus, he is a sequence of whith vectors in C(S') for which Afallc(s') increases without bound
> A is unbounded,
Thm. A linear peratur A: F > E Rom a normed space F to a Banch space E is continuous iff it is bounded. That is, if lim Afn = Af for every sequence for s.f. line for = f then A is bounded.
Def. $A: D(A) \rightarrow E$ is closed if for every fine $D(A)$ converging to $f \in E$ such that $gn = Afn$ converges to $g \in E$ we have (i) $f \in D(A)$

$f_{u} = \int_{0}^{\infty} \int_{0}^$	
$T^{2} \qquad T^{2} \qquad \stackrel{\text{(he flow f flow f flow for the construct}}{=} U^{t} : L^{2}(T^{2}) \rightarrow L^{1}(T^{2})$ $\text{(he flow f f f f f f f f f f f f f f f f f f f$	
$Vf = \lim_{t \to 0} \frac{U^{f}f - f}{t} = v \cdot \nabla f$ Crenerator is a directional derivative on observables.	

Generator of C_0 semigroups

Theorem 5.3.

With the notation of Definition 5.2, the following hold.

- **1** A is closed and densely defined.
- 2 For all $f \in D(A)$ and $t \ge 0$, the function $t \mapsto S^t f$ is continuously differentiable, and satisfies

$$\frac{d}{dt}S^tf = AS^tf = S^tAf.$$

3 A uniquely characterizes the semigroup $\{S^t\}$, i.e., if $\{\tilde{S}^t\}$ is another C_0 semigroup on E with the same generator A, then $S^t = \tilde{S}^t$ for all $t \ge 0$.

Generator of C_0^* semigroups

Definition 5.4.

Let $\{S^t\}_{t\geq 0}$ be a C_0^* semigroup on a Banach space E with predual E_* . The generator $A: D(A) \to E$ of the semigroup $\{S^t\}_{t\geq 0}$ is defined as the weak-* limit

$$\langle g, Af
angle = \lim_{t \to 0} rac{\langle g, S^t f - f
angle}{t}, \quad f \in D(A), \quad \forall g \in E_*,$$

where the domain $D(A) \subseteq E$ consists of all $f \in E$ for which the limit exists.

Theorem 5.5.

With the notation of Definition 5.4, the following hold.

- A is weak-* closed and densely defined.
- 2 For all $f \in D(A)$ and $t \ge 0$, the function $t \mapsto S^t f$ is weak-* continuously differentiable, and satisfies

$$\left\langle g, \frac{d}{dt}S^tf \right\rangle = \langle g, AS^tf \rangle = \langle g, S^tAf \rangle.$$

3 A uniquely characterizes the semigroup $\{S^t\}$, i.e., if $\{\tilde{S}^t\}$ is another C_0^* semigroup on E with the same generator A, then $S^t = \tilde{S}^t$ for all $t \ge 0$.

Generator of unitary C_0 groups

Theorem 5.6 (Stone).

Let $\{S^t\}_{t \ge 0}^{t \in \mathbb{N}}$ be a unitary C_0 group on a Hilbert space H. Then, the generator $A : D(A) \to H$ is skew-adjoint, i.e.,

$$A^* = -A$$

Conversely, if $A : D(A) \rightarrow H$ is skew-adjoint, it is the generator of a unitary evolution group.

Generalizes the result from making algebra that it A & Ma (C) is stew-adjoint, st = etA (defined, in this case by Taylor perior) is unitary.

Note: $A^{\#}=-A \implies \langle f, Ag \rangle = -\langle f, A^{\#}g \rangle = -\langle Af, g \rangle \Rightarrow A$ is antisymmetric In infinite dimensions antisymmetric \oiint solew-adjoint. Generator of Koopman evolution groups

Corollary 5.7.

Under our general assumptions the following hold:

1 The Koopman evolution groups $U^t : \mathcal{F}_0 \to \mathcal{F}_0$ are uniquely characterized by their generator $V : D(V) \to \mathcal{F}_0$, where

$$Vf = \lim_{t \to 0} \frac{U^t f - f}{t}$$

Moreover, for $\mathcal{F}_0 = L^2(\mu)$, V is skew-adjoint.

2 The Koopman evolution group U^t : L[∞](µ) → L[∞](µ) is uniquely characterized by its generator V : D(V) → F₀, where

$$Vf = \lim_{t \to 0} \frac{U^t f - f}{t}$$

in weak-* sense.

Generator of Koopman evolution groups

Theorem 5.8 (ter Elst & Lemańczyk).

Let (Ω, Σ) be a compact metrizable space equipped with its Borel σ -algebra Σ . Let μ be a Borel probability measure on Ω and $U^t: L^2(\mu) \to L^2(\mu)$ a C_0 unitary evolution group with generator $V: D(V) \to L^2(\mu)$. Then, the following are equivalent.

- **●** For every $t \in \mathbb{R}$ there exists a μ -a.e. invertible, measurable, and measure-preserving flow $\Phi^t : \Omega \to \Omega$ such that $U^t f = f \circ \Phi^t$.
- 2 The space $\mathfrak{A}(V) = D(V) \cap L^{\infty}(\mu)$ is an algebra with respect to function multiplication, and V is a derivation on \mathfrak{A} :

$$V(fg) = (Vf)g + f(Vg), \quad \forall f, g \in \mathfrak{A}(V).$$

Counter-example. Let
$$V = i \Delta$$
, Δ Laplacian (2nd order sulf-adjoint opendor).
 Δ does not satisfy the hidmin rule, i.e. $\partial f_{ig} s + \Delta(f_{ig}) = (f_{ig} + f(k_{ig}))$.
Thus, the unitery group generated by i Δ , $U^{t} = e^{if\Delta}$, is and a kayman group,
i.e. there is no classical flow $\phi^{k}: \Omega = \Omega S + U^{t} = f_{ig} \phi^{t}$.

Point spectrum Point spectrum Definition 5.9. Let $A: D(A) \to E$ be an operator on a Banach space with domain $D(A) \subseteq E$. The point spectrum of A, denoted as $\sigma_p(A) \subseteq \mathbb{C}$ is defined as the set of its eigenvalues. That is, $\lambda \in \mathbb{C}$ is an element of $\sigma_p(A)$ iff there is a nonzero vector $u \in E$ (an eigenvector) such that $p(A) \subseteq f(A) = f(A)$

 $Au = \lambda u.$

Notation.

 We use the notation σ_p(A; E) when we wish to make explicit the Banach space on which A acts.

Eigenvalues and eigenfunctions

Definition 5.10.

Let $A: D(A) \to E$ be the generator of a C_0 semigroup $\{S^t\}_{t\geq 0}$ on a Banach space E. We say that $\lambda \in \mathbb{C}$ is an eigenvalue of the semigroup if λ is an eigenvalue of A, i.e., there exists a nonzero $u \in D(A)$ such that

$$Au = \lambda u.$$

Lemma 5.11. With notation as above, λ is an eigenvalue of $\{S^t\}$ if and only if \mathbf{z}' is an eigenvector of S^t for all $t \ge 0$, i.e., there exist $\Lambda^t \in \mathbb{C}$ such that

$$S^t u = \Lambda^t u, \quad \forall t \ge 0.$$

In particular, we have $\Lambda^t = e^{\lambda t}$.

Eigenvalues of the generator on L ² (p) for measure-preserving flows:
Let $V_{\mathcal{H}} = 2u with \ u \ _{\mathcal{C}(4)} = 1$. We have
$\begin{aligned} 1 &= 1 \langle u, u \rangle = \langle u, 2u \rangle = \langle u, Vu \rangle = \langle V^* u, u \rangle = - \langle Vu, u \rangle = - \langle 2u, u \rangle = -2^* \langle 0, u \rangle \\ &= -2^* \end{aligned}$
$= 2^{2} - A^{*} = \lambda - i \alpha$ for $\alpha \in \mathbb{R}$
eigenralues "eigenfrequency" le in the imaginary
Recall from thm 5.6 that $A(V) = D(V) \cap L^{\infty}(p)$ is on algebra and Vach on $L(V)$
as a derivation (river M1, M2 & to(V) eignaches corresponding to eigenvalues 21, 12 then
$V(u_1u_2) = (Vu_1)u_2 + U_1(Vu_2) = \lambda_1 u_1u_2 + \lambda_2 u_1u_2 = (\lambda_1 + \lambda_2) u_1u_2 (1)$
=> Mille is an eigenrector corresponding to eigenvalue dit de
Horeover since $U^{t}f = f \cdot \phi^{t}$, $(U^{t}f)^{*} = (f \cdot \phi^{t})^{*} = f^{*} \cdot \phi^{t} = U^{t}(f^{*})$ and thus, $(Vf)^{*} = V(f^{*})$ for any $f \in D(V)$.
\Rightarrow If $Vu = Iu$ and $J = -J^{*}$, then $Vu^{*} = (Vu)^{*} = -Ju^{*}$
=> ut is an eigennector corresponding to eigenvalue -> (2) structure of an
Also, we have $V1 = 01 = 70 \in \sigma_{f}(V)$ (3) additive gove

Fact	For a	measure	-prefering	flow, every	eigenhun chion	n of V is	a periodic obt	ervelole
with	periol	212/2	where a is	fle corresp	onding eigenfr	eyveniz:		
· · ·		· · · ·			$L_{L} 2R/n$			
\mathcal{U}^{t}	n = 1	1° re =	e ^{at} u = e	$e^{i\alpha t} n =)$	0 ^{°°} u	$= \mathcal{U}$		

Point spectra for measure-preserving flows

Theorem 5.12.

Let $\Phi^t : \Omega \to \Omega$ a be a measure-preserving flow of a probability space (Ω, Σ, μ) . Let $U^t : L^p(\mu) \to L^p(\mu)$ be the associated Koopman operators on $L^p(\mu)$, $p \in [1, \infty]$, and $V : D(V) \to L^p(\mu)$ the corresponding generators. Then, the following hold.

1 For every $p, q \in [1, \infty]$ and $t \in \mathbb{R}$, $\sigma_p(U^t, L^p(\mu)) = \sigma_p(U^t, L^q(\mu))$. $\sigma_p(V, L^p(\mu)) = \sigma_p(V, L^q(\mu))$. $\sigma_p(U^t)$ is a subgroup of S^1 . $\sim \Lambda_1^t, \Lambda_2^t \in \sigma_p(U^t) = \Lambda_1^t, \Lambda_2^t \in \sigma_p(U^t)$ $\sigma_p(V)$ is a subgroup of $i\mathbb{R}$.

Corollary 5.13.

Every eigenfunction of V lies in $L^{\infty}(\mu)$, and thus in $L^{p}(\mu)$ for every $p \in [1, \infty]$.

Given $\lambda = i\alpha \in \sigma_p(V)$, we say that α is an eigenfrequency of V.

Generating frequencies

Definition 5.14.

Assume the notation of Theorem 5.12.

- We say that $\{ia_0, ia_1, \ldots\} \subseteq \sigma_p(V)$ is a generating set if for every $i\alpha \in \sigma_p(V)$ there exist $j_1, j_2, \ldots, j_n \in \mathbb{Z}$ and $k_1, k_2, \ldots, k_n \in \mathbb{N}$ such that $\alpha = j_1 q_{k_1} + j_2 q_{k_2} + \ldots + j_n q_{k_n}$.
- $\alpha = J_1 \alpha_{k_1} + J_2 \alpha_{k_2} + \ldots + J_n \alpha_{k_n}.$ 2 We say that $\sigma_p(V)$ is finitely generated if it has a finite generating
- set.
 3 A generating set is said to be minimal if it does does not have any proper subsets which are generating sets.

Lemma 5.15.

- The elements of a minimal generating set are rationally independent.
- 2 If a minimal generating set has at least two elements, then $\sigma_p(V)$ is a dense subset of the imaginary line.

Example Ergodi	c notection on t	\mathbb{T}^{2}			
$\phi^t(\omega,\omega)$	$= (\omega_1 + \alpha_1 t, \omega)$	2 + or 2 +) mod 27	$K_{i}, K_{2} \in \mathbb{R}$	rationally	ndependent
$ \begin{split} & \omega = (\omega_{i,j}\omega_{i,j}) \\ & \in \mathcal{T}^{2} \end{split} $	Veetur fiel	$\mathcal{A}:=\mathcal{V}(\omega_1,\omega_2):=(\ll_1,\infty)$	(f) = (f)	v (a (f))	
Generator: V‡	(W,W) = lim (-)	$ \begin{array}{c} $	$(w_z) = \alpha_1 \frac{\partial f}{\partial \omega_1}$	f (w, uz) + K	$\frac{\partial f}{\partial \omega_{1}} f(\omega_{1}, \omega_{2})$
Consider the Four	ier functions of;	$(\omega_{i},\omega_{r}) = e^{i(j_{1}\omega_{i} +$	$j_{\iota}u_{2})$ $j=(j_{\iota},j_{2})$) <i>e Z</i> ²	
We get V \$ j	$= i (x_i j_i + x_k j_i)$	$(\mathbf{r}) \phi_{j} = \mathbf{r} + \mathbf{r} +$			
	ei sun frequ	neacy d			
Since 20 Jie 22	forms an orthe	normal basis of L	2(p) ve har	(omputed ce	ll e-hircs-tV
$\sigma_{P}(V) = \{id$; ² ; e 2 ²				
(id., id.)	is a minimal	generating ret			

Generating frequencies

Lemma 5.16.

Let g_1, g_2, \ldots be eigenfunctions corresponding to the eigenvalues of the generating set in Definition 5.14, i.e., $Vg_j = i\alpha_j g_j$. Then, for every $i\alpha \in \sigma_p(V)$ with $\alpha = j_1\alpha_{k_1} + j_2\alpha_{k_2} + \ldots + j_n\alpha_{k_n}$,

$$z = g_{k_1}^{j_1} g_{k_2}^{j_2} \cdots g_{k_n}^{j_n}$$

is an eigenfunction of V corresponding to the eigenfrequency α .

Invariant subspaces

Notation.

- $H_p = \overline{\operatorname{span}\{u \in L^2(\mu): u \text{ is an eigenfunction of } V\}}.$
- $H_c = H_p^{\perp}$.
- $\{z_0, z_1, \ldots\}$: Orthonormal eigenbasis of H_p , $Vz_j = i\alpha_j z_j$.

Theorem 5.17.

Let $\Phi^t : \Omega \to \Omega$ be a measure-preserving flow on a completely metrizable space with an invariant probability measure μ .

- H_p and H_c are U^t-invariant subspaces.
- **2** Every $f \in H_p$ satisfies

$$U^t f = \sum_{j=0}^{\infty} \hat{f}_j e^{i \alpha_j t} z_j, \quad \hat{f}_j = \langle z_j, f \rangle_{L^2(\mu)}.$$

3 Every $f \in H_c$ satisfies

$$\lim_{T o\infty}rac{1}{T}\int_0^T |\langle g, U^t f
angle_{L^2(\mu)}|=0, \quad orall g \in L^2(\mu).$$

Pure point spectrum

Definition 5.18. With the notation of Theorem 5.17, we say that a measure-preserving flow $\Phi^t : \Omega \to \Omega$ has pure point spectrum if $H_p = L^2(\mu)$. ET V is disjon disable Remark 5.19. For a system with pure point spectrum: 1) The spectrum of V is not necessarily discrete. 2 The continuous spectrum is not necessarily empty. (stor pure-point spedium systems o (V) = op(V) S E.s. for equalic rotation on \mathbb{T}^n , $\sigma_p(v) = \{i(jx, \pm kx_c), j, k \in \mathbb{Z}, \alpha_i/\alpha_c \notin \mathbb{R}\}$ $\int_{\sigma_p}(v) is = dent substation R$ Point spectra for ergodic flows

Proposition 5.20.

With the notation of Theorem 5.12, assume that $\Phi^t : \Omega \to \Omega$ is ergodic.

- **1** Every eigenvalue $\lambda \in \sigma_p(V)$ is simple.
- 2 Every corresponding eigenfunction $z \in L^{p}(\mu)$ normalized such that $||z||_{L^{p}(\mu)} = 1$ for any $p \in [1, \infty]$ satisfies |z| = 1 μ -a.e.

Factor maps

Definition 5.21.

Let $T_1: \Omega_1 \to \Omega_1$ and $T_2: \Omega_2 \to \Omega_2$ be measure-preserving transformations of the probability spaces $(\Omega_1, \Sigma_1, \mu_1)$ and $(\Omega_2, \Sigma_2, \mu_2)$. We say that T_2 is a factor of T_1 if there exists a T_1 -invariant set $S_1 \in \Sigma_1$ with $\mu_2(S_1) = 1$, a T_2 -invariant set $S_2 \in \Sigma_2$ with $\mu_2(S_2) = 1$, and al measure-preserving, surjective map $\varphi: S_1 \to S_2$ such that M_2

$$T_2 \circ \varphi = \varphi \circ T_1.$$

Such a map φ is called a factor map and satisfies the following commutative diagram:

$$\begin{array}{ccc} M_1 & \stackrel{T_1}{\longrightarrow} & M_1 \\ \varphi & & & \downarrow \varphi \\ \varphi & & & \downarrow \varphi \\ M_2 & \stackrel{T_2}{\longrightarrow} & M_2 \end{array}$$

Metric isomorphisms

Definition 5.22.

With the notation of Definition 5.21, we say that T_1 and T_2 are measure-theoretically isomorphic or metrically isomorphic if there is a factor $\varphi : S_1 \rightarrow S_2$ with a measurable inverse.

Theorem 5.23 (von Neumann).

Let $\Phi^t : \Omega \to \Omega$ be a measure-preserving flow on a completely metrizable probability space (Ω, Σ, μ) with pure point spectrum. Then, Φ^t is metrically isomorphic to a translation on a compact abelian group \mathcal{G} . Explicitly, \mathcal{G} can be chosen as the character group of the point spectrum $\sigma_p(V)$.

Metric isomorphisms

Corollary 5.24.

If $\sigma_p(V)$ is finitely generated, then Φ^t is metrically isomorphism to an ergodic rotation on the d-torus, where d is the number of generating frequencies of $\sigma_p(V)$. Explicitly, supposing that $\{i\alpha_1, \ldots, i\alpha_d\}$ is a minimal generating set of $\sigma_p(V)$ with corresponding unit-norm eigenfunctions z_1, \ldots, z_d we have

$$R^t \circ \varphi = \varphi \circ \Phi^t,$$

where $R^t : \mathbb{T}^d \to \mathbb{T}^d$ is the torus rotation with frequencies $\alpha_1, \ldots, \alpha_d$, and

Spectral isomorphisms

Definition 5.25.

With the notation of Definition 5.22, let $U_1 : L^2(\mu_1) \to L^2(\mu_1)$ and $U_2 : L^2(\mu_2) \to L^2(\mu_2)$ be the Koopman operators associated with T_1 and T_2 , respectively. We say that T_1 and T_2 are spectrally isomorphic if there exists a unitary map $\mathcal{U} : L^2(\mu_1) \to L^2(\mu_2)$ such that

$$U_2 \circ \mathcal{U} = \mathcal{U} \circ U_1.$$

Theorem 5.26 (von Neumann).

Two measure-preserving flows with pure point spectra are metrically isomorphic iff they are spectrally isomorphic.

Spectral isomorphisms

Definition 5.25.

With the notation of Definition 5.22, let $U_1 : L^2(\mu_1) \to L^2(\mu_1)$ and $U_2 : L^2(\mu_2) \to L^2(\mu_2)$ be the Koopman operators associated with T_1 and T_2 , respectively. We say that T_1 and T_2 are spectrally isomorphic if there exists a unitary map $\mathcal{U} : L^2(\mu_1) \to L^2(\mu_2)$ such that

$$U_2 \circ \mathcal{U} = \mathcal{U} \circ U_1.$$

Theorem 5.26 (von Neumann).

Two measure-preserving flows with pure point spectra are metrically isomorphic iff they are spectrally isomorphic.