Section 5

Spectral theory of one-parameter evolution
groups



Setting and objectives

General assumptions

e &: G xQ— Q: Continuous-time, continuous flow on compact,
metrizable space Q.

® 1 Ergodic invariant Borel probability measure.
® X :Q — X continuous observation map into metric space X.

e Ut: F — F: Koopman operator on Banach space F of
complex-valued observables.

Given. Time-ordered samples
xp = X(wn), wp=0"(wo), t,=(n—1)At.
Goal. Using the data x,, identify a collection of observables (j : Q@ — Y

which have the property of evolving coherently under the dynamics in a
suitable sense.



Setting and objectives

We recall the following facts from Section 2 (see Proposition 2.7 and
Theorems 2.29, 2.30).

Theorem 5.1.

@ {U': C(Q) — C(Q)}ter is a strongly continuous group of
isometries.

@ {U': LP(u) = LP(u)}eer, p € [0,00) is a strongly continuous group
of isometries. Moreover, Ut : L?(u) — L?(u) is unitary.

@ {U": L°°(n) = L°°(p) }rer is @ weak-* continuous group of
isometries.

Notation.
e F: Any of the C(Q2) or LP(u) spaces with 1 < p < 0.
Fo: Any of the C(Q) or LP(u) spaces with 1 < p < 0.

Co (semi)group = strongly continuous (semi)group.

® (¢ (semi)group = weak-* continuous (semi)group.



Generator of Cy semigroups
Definition 5.2.

Let {S*}+>0 be a Co semigroup on a Banach space E. The generator
A: D(A) — E of the semigroup {S*};>¢ is defined as
CE, domin tr

-#;A i S f f

Af = lim , feD(A),
t—0 t

where the limit is taken in the norm of E, and the domain D(A)

, i CE
consists of all f € E for which the limit exists
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Generator of Cy semigroups

Theorem 5.3.
With the notation of Definition 5.2, the following hold.

@ A is closed and densely defined.

@ For all f € D(A) and t > 0, the function t — S*f is continuously
differentiable, and satisfies

d
S StF = AS'f = S'AF.
dt
® A uniquely characterizes the semigroup {S'}, i.e., if {5t} is another

Co semigroup on E with the same generator A, then St = St for all
t>0.



Generator of C§ semigroups

Definition 5.4.

Let {S*}:>0 be a C§ semigroup on a Banach space E with predual E..
The generator A : D(A) — E of the semigroup {S'};> is defined as the
weak-* limit

<g75tf_ f>
t

(g, Af) , feD(A), VgekE,,

= lim

t—0
where the domain D(A) C E consists of all f € E for which the limit
exists.



Theorem 5.5.
With the notation of Definition 5.4, the following hold.

@ A is weak-* closed and densely defined.

@ For all f € D(A) and t > 0, the function t — S'f is weak-*
continuously differentiable, and satisfies

(2.55) = (6.AS') = lg.5°An),

® A uniquely characterizes the semigroup {S'}, i.e., if {5t} is another
G semigroup on E with the same generator A, then St = S* for all
t>0.



Generator of unitary Cy groups

Theorem 5.6 (Stone).

Let {St}gfombe a unitary Cy group on a Hilbert space H. Then, the
generator A : D(A) — H is skew-adjoint, i.e.,

A= —A.

Conversely, if A: D(A) — H is skew-adjoint, it is the generator of a
unitary evolution group.
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Generator of Koopman evolution groups

Corollary 5.7.
Under our general assumptions the following hold:

@ The Koopman evolution groups Ut : Fo — Fo are uniquely
characterized by their generator V : D(V) — Fo, where

te
Vf = lim Uit f.
t—0 t

Moreover, for Fo = L?(u1), V is skew-adjoint.

@ The Koopman evolution group Ut : L>(u) — L (u) is uniquely
characterized by its generator V' : D(V) — Fo, where

te
VFf = lim Uir - f
t—0 t

in weak-* sense.



Generator of Koopman evolution groups

Theorem 5.8 (ter Elst & Lemanczyk).

Let (Q2,X) be a compact metrizable space equipped with its Borel
o-algebra . Let 11 be a Borel probability measure on 2 and

Ut : L2(n) — L2(p) a Co unitary evolution group with generator
V : D(V) — L?(u). Then, the following are equivalent.

@ For every t € R there exists a ji-a.e. invertible, measurable, and
measure-preserving flow &t : Q — Q such that U'f = f o ®°.

@ The space A(V) = D(V) N L>(u) is an algebra with respect to
function multiplication, and V is a derivation on 2:

V(fg) = (Vf)g+ f(Vg), Vif,geAd(V).
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Point spectrum e Hae i o Lowndsl b § 2.4
_— (A-19-g 4 = } hot feE st $PeD(A)
Definition 5.9. B(A-2)4 = 4 for < Fepiay,

Let A: D(A) — E be an operator on a Banach space with domain

D(A) C E. The point spectrum of A, denoted as 0,(A) C C is defined as

the set of its eigenvalues. That is, A € C is an element of ¢,(A) iff there

is a nonzero vector u € E (an eigenvector) such that wob: (D E OK)

Au = \u.

Notation.

® We use the notation o,(A; E) when we wish to make explicit the
Banach space on which A acts.



Eigenvalues and eigenfunctions

Definition 5.10.

Let A: D(A) — E be the generator of a Cy semigroup {S'};>0 on a
Banach space E. We say that A € C is an eigenvalue of the semigroup if
A is an eigenvalue of A, i.e., there exists a nonzero u € D(A) such that

Au = du.

Lemma 5.11. n
With notation as above, X is an eigenvalue of {S'} if and only if/is an
eigenvector of St for all t > 0, i.e., there exist A* € C such that

Stu=Awu, Vt>0.

In particular, we have N\t = e*t.
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Point spectra for measure-preserving flows

Theorem 5.12.
Let ® : Q — Q a be a measure-preserving flow of a probability space

(0, X, ). Let Ut LP(u) — LP(u) be the associated Koopman operators
on LP(u), p € [1,00], and V : D(V) — LP(u) the corresponding
generators. Then, the following hold.
@ Forevery p,q € [l,00] and t € R, o,(U", LP(u)) = op(UY, LI(1)).
@ op(V, LP(p)) = op(V, L9(1))-
£,3 +
® o,(UY) is a subgroup of S1. e~ A]‘,Axf’&ff{(ﬁ) =2 ANl eop (v )
@ o,(V) is a subgroup of iR.
Corollary 5.13.
Every eigenfunction of V lies in L>°(), and thus in LP(u) for every
p € [1, 0]

Given A\ = ia € 0,(V), we say that « is an eigenfrequency of V.



Generating frequencies

Definition 5.14.
Assume the notation of Theorem 5.12.

@ We say that {iag, ia1,...} C 0,(V) is a generating set if for every
ia € op(V) there exist ji,jo,...,jn € Z and ky, ko, ..., k, € N such
that

.o .o . %
a = g + gk + -+ inGlh,
@ We say that o0,( V) is finitely generated if it has a finite generating
set.

® A generating set is said to be minimal if it does does not have any
proper subsets which are generating sets.

Lemma 5.15.
@ The elements of a minimal generating set are rationally independent.

@ If a minimal generating set has at least two elements, then o,(V) is
a dense subset of the imaginary line.
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Generating frequencies

Lemma 5.16.

Let g1, 8>, ... be eigenfunctions corresponding to the eigenvalues of the
generating set in Definition 5.14, i.e., Vgj = icjgj. Then, for every

ia € op(V) with a = jroug + ok, + ... + jnQik,,

is an eigenfunction of V' corresponding to the eigenfrequency «.



Invariant subspaces

Notation.

® H, =span{u € L?(p): u is an eigenfunction of V}.

* H. = Hy.

o {zo,zl,. .}: Orthonormal eigenbasis of H,, Vz; = iajz;.
Theorem 5.17.

Let ®t : Q — Q be a measure-preserving flow on a completely metrizable
space with an invariant probability measure .

@ H, and H. are Ut-invariant subspaces.
@ Every f € H, satisfies

= Z f/j-e"(ljtzh 6 = <ZJ7 f>L2(l‘)'
Jj=0

® Every f € H, satisfies

T—oo

lim —/|g,Ut iz =0, Vg € L?(n).



Pure point spectrum

Definition 5.18.

With the notation of Theorem 5.17, we say that a measure-preserving

flow ®* : Q — Q has pure point spectrum if H, = L?(p). L
]/ Vs dAcfon vL\uL

Remark 5.19. 4 ) J

For a system with pure point spectrum:

@ The spectrum of V is not necessarily discrete.

@ The continuous spectrum is not necessarily empty.
Ly Soc qur- ok Skt sy (V)= o (v)
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Point spectra for ergodic flows

Proposition 5.20.
With the notation of Theorem 5.12, assume that ®t : Q — Q is ergodic.
@ Every eigenvalue \ € o,(V) is simple.

@ Every corresponding eigenfunction z € LP(u) normalized such that
|zllp(uy = 1 for any p € [1, 0q] satisfies |z| = 1 p-a.e.



Factor maps

Definition 5.21.

Let 77 : Q1 — Qy and T, : Q5 — Q5 be measure-preserving
transformations of the probability spaces (Q1, %1, 1) and (Qz, X2, 12).
We say that T, is a factor of T; if there exists a Ti-invariant set 7 € Y1

with p2(S¢1) =1, a Ty-invariant s t/Sz/e Y5 with ug(Z{) =1, and a!
measure-preserving, surjective map ¢: S; — S, such that

Toop=¢poT;.
Such a map ¢ is called a factor map and satisfies the following
commutative diagram:

Ml L Ml

o lo-

MQLMQ



Metric isomorphisms

Definition 5.22.

With the notation of Definition 5.21, we say that T; and T, are
measure-theoretically isomorphic or metrically isomorphic if there is a
factor ¢ : S; — S, with a measurable inverse.

Theorem 5.23 (von Neumann).

Let & : Q — Q be a measure-preserving flow on a completely metrizable
probability space (2, X, ) with pure point spectrum. Then, ®* is
metrically isomorphic to a translation on a compact abelian group G.
Explicitly, G can be chosen as the character group of the point spectrum
op(V).



Metric isomorphisms

Corollary 5.24.

If o,(V) is finitely generated, then ® is metrically isomorphism to an
ergodic rotation on the d-torus, where d is the number of generating

frequencies of o,(V). Explicitly, supposing that {icu, ..., iag} is a
minimal generating set of o,(V') with corresponding unit-norm
eigenfunctions zi, . .., zq we have

R'op = o df,
where Rt : T9 — T js the torus rotation with frequencies as, . .., oq,
and

olw) = (z(w),...,zg(w)), p-a.e
(]56
n—>0n
f
ol )

[ ———ﬂ‘—d



Spectral isomorphisms

Definition 5.25.

With the notation of Definition 5.22, let Uy : L?(p1) — L?(u11) and

Uz : L2(12) — L2(p2) be the Koopman operators associated with T; and
T>, respectively. We say that T; and T, are spectrally isomorphic if there
exists a unitary map U : L2(pu1) — L?(p2) such that

UQOL[:Z/{OU1.

Theorem 5.26 (von Neumann).

Two measure-preserving flows with pure point spectra are metrically
isomorphic iff they are spectrally isomorphic.
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