Section 6

Representation of classical dynamics in quantum circuits

Classical and quantum bits

$$
\begin{aligned}
& \rightarrow \text { Charades } \delta_{1}: \mathbb{C}^{2} \rightarrow \mathbb{C} \\
& \delta_{2}: \mathbb{C}^{2} \rightarrow \mathbb{C} \\
& \delta_{1}\binom{a}{b}=a, \delta_{2}\binom{a}{b}=b
\end{aligned}
$$

- A (classical) bit is a pure state of the abelian algebra \mathbb{C}^{2}.
- A quantum bit, or quit, is a pure state of the matrix algebra $B\left(\mathbb{C}^{2}\right) \simeq \mathbb{M}_{2}(\mathbb{C})$.
- Noisy classical bits and qubits are represented by mixed states of \mathbb{C}^{2} and \mathbb{M}_{2}, respectively.

Quantum computers

A quantum computer is a finite-dimensional quantum mechanical system associated with the tensor product Hilbert space $\mathbb{B}_{n} \equiv \mathbb{B}^{\otimes n}$ with $\mathbb{B}=\mathbb{C}^{2}$.
Notation.

$$
\operatorname{Lim}_{\operatorname{dm}} B_{n}=2^{n}
$$

- $|0\rangle$ and $|1\rangle$ are orthonormal basis vectors of \mathbb{B} known as computational basis vectors.
- $\left|b_{1} \cdots b_{n}\right\rangle \equiv\left|b_{1}\right\rangle \otimes \cdots \otimes\left|b_{n}\right\rangle$ are orthonormal basis vectors of \mathbb{B}_{n}. $b_{i} \in\{0,1\}$
$|0\rangle \leadsto\binom{1}{0}$
$|1\rangle \leadsto \sim\binom{0}{1}$

TENSOR PRODUCT OF VECTOR SPACES
Given two vector spaces V_{1}, V_{2} over a field K, the tensor product space $V_{1} \otimes V_{2}$ is a reeds space consisting of liver combinations of elements of the form $V_{1} \otimes V_{2}$ with $V_{1} \in V_{1}, V_{2} t V_{2}$ under the following identifications:

$$
\begin{array}{ll}
\left(k v_{1}\right) \otimes v_{2}=v_{1} \otimes\left(k v_{2}\right)=k\left(v_{1} \otimes v_{2}\right) \\
\left(u_{1}+v_{1}\right) \otimes v_{2}=u_{1} \otimes v_{2}+v_{1} \otimes v_{2} \\
v_{1} \otimes\left(u_{2}+v_{2}\right)=v_{1} \otimes u_{2}+v_{1} \otimes v_{2} & , \forall k \in K, \\
u_{1}, v_{1} \in V_{1} \\
u_{1} v_{2} \in v_{2}
\end{array}
$$

If $\operatorname{dim} V_{1}=d_{1}$ and $d_{m} V_{2}=d_{2}$, then $\operatorname{dim} V_{1} \otimes V_{2}=d_{1} d_{2}$.

If V_{1}, V_{2} are hilbert spaces, then $V_{1} \otimes V_{2}$ becomes a hilbert space equipped with He inner product

$$
\left\langle u_{1} \otimes u_{2}, v_{1} \otimes v_{2}\right\rangle_{u_{\otimes} V_{2}}=\left\langle u_{1}, v_{1}\right\rangle_{1}\left\langle u_{2}, v_{2}\right\rangle_{v_{2}}, \quad \forall u_{1}, v_{1} \in V_{1}, u_{2}, v_{2} \in V_{2}
$$

Quantum computers

IBM Q One
AWS Borealis

Physical qubit implementations include superconducting charges, trapped ions, and photons.

Quantum circuits

A quantum circuit consists of wires, representing individual qubits, and gates representing operations (quantum channels) on qubits.
\rightarrow meames, the runtire of the guarinn olforithem

- The depth of a quantum circuit is the longest path in the circuit.

Quantum circuits

A quantum circuit consists of wires, representing individual quits, and gates representing operations (quantum channels) on quits.

- The depth of a quantum circuit is the longest path in the circuit.

Goal. Given a C_{0} group of unitary Koopman operators $U^{t}: H \rightarrow H$ induced by a measure-preserving flow with skew-adjoint generator $V: D(V) \rightarrow H$ and a subspace $H_{L} \subset D(V) \subset H$ of dimension 2^{n}, find a unitary $W: H_{L} \rightarrow \mathbb{B}_{n}$ such that $e^{t G_{L}}$ with $G_{L}=W \Pi_{L} V \Pi_{L} W^{*}$ is representable by a circuit of low depth.

Representation of pure states of M_{2} on the Bloch sphere
Unit veetr $\xi=\cos \left(\frac{\theta}{2}\right)|0\rangle+e^{i \phi} \sin \left(\frac{\theta}{2}\right)|1\rangle \in \mathbb{C}^{2} \equiv B, \theta \in(\theta, 2 \pi), \phi \in(0,2 \pi)$
Density operator $\rho=\langle\xi, \cdot\rangle \xi \simeq \xi \xi^{+}=\binom{\cos \theta / 2}{e^{i \phi} \phi(\theta / 2)}\left(\cos \theta / 2, e^{-i \phi} \sin \theta / 2\right)$

$$
\begin{aligned}
& =\left(\begin{array}{cc}
\cos ^{2} \theta / 2 & e^{-i \phi} \cos (\theta / 2) \sin (\theta / 2) \\
e^{i \phi} \cos \theta / 2 \sin \theta / 2 & \sin ^{2} \theta / 2
\end{array}\right)=\left(\begin{array}{cc}
(1+\cos \theta) / 2 & \left(e^{-i \phi} \sin \theta\right) / 2 \\
\left(e^{i \phi} \sin \theta\right) / 2 & (1-\cos \theta) / 2 \\
\cos \phi+i \sin \phi
\end{array}\right) \\
& =\frac{1}{2}\left(\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)+\left(\begin{array}{cc}
\operatorname{co} \theta & 0 \\
0 & -\cos \theta
\end{array}\right)+\left(\begin{array}{cc}
0 & \sin \theta \\
\cos \phi \\
\sin \theta \cos \phi & 0
\end{array}\right)+\left(\begin{array}{cc}
0 & -i \sin \theta \sin \phi \\
i \sin \theta \sin \phi & 0
\end{array}\right)\right) \\
& =\frac{1}{2}(\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)+\cos \theta \underbrace{\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)}_{\sigma_{1}}+\sin \theta \cos \phi \underbrace{\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)}_{\sigma_{2}}+-\sin \theta \sin \phi \underbrace{\left(\begin{array}{cc}
0 & i \\
-i & 0
\end{array}\right)}_{\sigma_{3}})
\end{aligned}
$$

Examples of quantum gates

$$
\begin{aligned}
& X=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \leftrightarrow N O T \text { gate } \\
& H=\frac{1}{\sqrt{2}}\left(\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right) \quad \begin{array}{l}
H|0\rangle=\frac{1}{\sqrt{2}}\left(\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right)\binom{1}{0}=\frac{1}{\sqrt{2}}\binom{1}{1} \\
H|1\rangle=\frac{1}{\sqrt{2}}\left(\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right)\binom{0}{1}=\frac{1}{\sqrt{2}}\binom{1}{-1}
\end{array}
\end{aligned}
$$

$\rightarrow R_{x}(\theta)=e^{-\frac{1}{2} i \theta x} \sim$ Rotation gate by ayle θ about x-axis.

$$
\begin{aligned}
& R_{y}(\theta)=e^{-\frac{1}{2} i \theta y} \\
& R_{z}(\theta)=e^{-\frac{1}{2} i \theta z}
\end{aligned}
$$

CNOT gate $\left(a c t s\right.$ on, $B_{2}=B \bigcirc B \simeq \mathbb{C}^{4}$

$$
\left(\begin{array}{ll|ll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
\hline 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right)=\left(\begin{array}{l}
a \\
b \\
d \\
c
\end{array}\right) B+\perp
$$

$$
\left(\begin{array}{ll|ll}
1 & 0 & 0 & 0 \\
\hdashline & 1 & 0 \\
\hdashline \vdots & 0 & 0
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
\frac{b}{d} \\
d
\end{array}\right)=\left(\begin{array}{l}
a \\
b \\
d \\
d
\end{array}\right)+\underline{a+1}-\vec{u}
$$

$W: H_{L} \longrightarrow \mathbb{B}_{n} \quad$ unitary
Given orthonormal basis $\left\{\phi_{0}, \phi_{1}, \ldots, \phi_{L}\right\}$ of $H_{L}, \operatorname{dm} H_{L}=2^{n}$ define

$$
W \phi_{l}=|b\rangle=\left|b_{1}\right\rangle \otimes \ldots \theta\left|b_{n}\right\rangle
$$

where $b=\left(b, \ldots, b_{n}\right) \in\{0,1]^{n}$ gives the binary representionon of l

$$
l=\sum_{i=1}^{n} b_{i} 2^{n-i}
$$

Example: $n=2, L=4$

l	b
0	00
1	0
2	10
3	1

Measurement in the quantim computationd basis
Associctel with the quartum computational basis $\left.\{|b\rangle\}_{b \in\{0,1}\right\}^{n}$ of B_{n} is a
projection-dalened measure $\varepsilon_{n}: \sum_{-\{0,1]^{n}} \longrightarrow B\left(\mathbb{B}_{n}\right) \simeq M_{n}$

$$
\begin{aligned}
& { }_{\rightarrow} \sigma^{-a+l y c h a} \\
& \text { of }\{0,1\}^{n} \text { i.c. alle } \\
& \text { binary stings of Cength in } \\
& \varepsilon_{n}(s)=\sum_{b \in s} \underbrace{|b\rangle\langle b|}_{\substack{\text { L orno gonal } \\
\text { onto } \\
|b\rangle}}
\end{aligned}
$$

That is, if the quarum computer is M a sfate associated with state reeter $|\xi\rangle \in \mathbb{B}_{n}$ a measurement of ε_{n} jure a bincry sting $b \in\{0,1\}^{n}$ with probability

$$
\langle\zeta| \ln (\{b\})|\zeta\rangle
$$

Rather than E_{n} rdeally we would libe to measude fle PVM Fn chich is the spectal measure of the obfer rable $A_{L}=W\left(\pi_{1} f\right) W^{*}$
prected mutiplication oprafor

Solution: Compute eigendecomposition of A_{L} :

$$
\begin{aligned}
& \text { compute eigendecompoition of } A_{L}:{A_{L}}_{L}\left|u_{j}\right\rangle=a_{j}\left|u_{j}\right\rangle, \quad\left|u_{j}\right\rangle=\sum_{k=0}^{2^{n}-1} u_{k j}\left|b_{k}\right\rangle \\
& \tau_{\text {binary ref of } k}
\end{aligned}
$$

Define the unitary $T: \mathbb{B}_{n} \rightarrow \mathbb{B}_{n}$ with matrix rep. $\left(\begin{array}{ccc}u_{0} 0 & \cdots & u_{n, L-1} \\ \vdots & \vdots \\ u_{L-1,0} & & u_{L-1, L-1}\end{array}\right)$
Then $T^{*} A_{L} T$ is a diagonal operator in the quatum computational basis.
Then a measurement of F_{n} on a state $|\xi\rangle$ is equiralent to a unconerement of ε_{n} on the state vector $T|\xi\rangle$

Implementetivn for system with pre point spectrim
Assune thet state sace dynamis $\phi^{t}: \Omega \longrightarrow \Omega$ is conjujate to a rotation $R^{+}: T^{d} \rightarrow T^{d}$ for some diwenion d
Let $\left\{\phi_{e}\right\}_{l \in \mathbb{Z}^{d}}$ be an orthonormul lasis of $H=L^{2}\left(\mathcal{L}^{\text {nre }}\right)^{\text {such }}$ such

$$
V \phi_{l}=i_{\alpha_{l}} \phi_{l}
$$

$F_{x} n \in \mathbb{N}$ st. n / d is on integr. Depme $H_{L}=\sin \left\{\phi_{c}: l=\left(l_{\text {niddi-1 }} l_{a}\right)\right.$
vith $l_{i}\left\{\left\{-2^{n}, \ldots,-1,1, \ldots, 2^{n / d-1}\right\}\right\}$
Then $\operatorname{dim} H_{L}=2^{n}$.
Deme $\beta: \mathbb{Z}^{d} \rightarrow\{0,1\}^{n}$, it $\beta(c)$ is a bincy or. of the multi-ndex l,

$$
W: H_{L} \rightarrow B_{n} \text { as } W \phi_{C}=|\beta(l)\rangle
$$

Claim: The projected seneator $\tilde{V}^{*}=W \Pi_{L} V T_{L} W$ is diagonal in tle $\{|b\rangle\}$ beas of Bu. Moe over;

$$
\begin{aligned}
& \tilde{V}=\tilde{h}_{0} Z \otimes 1 \otimes \ldots \theta I \\
& +\tilde{h}_{1} I \otimes \mid \otimes I_{x} \otimes 2 \\
& \text { wher tle cocthiciens } \tilde{h}_{\mathrm{e}} \text { ace juen by a } \\
& \text { Walsh- Founer franjorm of the munction } \\
& b \mapsto \alpha_{\beta^{-1}}(b) \\
& +\tilde{h}_{n-1} 1 \otimes \cdots \otimes 1 \otimes 2 \Rightarrow e^{t \tilde{V}_{n}}=e^{t \tilde{t}_{0} 2} \otimes e^{t \tilde{n}_{1} 2} \otimes \cdots \theta e^{\tilde{h}_{n-1} z}
\end{aligned}
$$

