Section 6

Representation of classical dynamics in quantum circuits

Classical and quantum bits

- A (classical) bit is a pure state of the abelian algebra \mathbb{C}^2 .
- A quantum bit, or qubit, is a pure state of the matrix algebra $B(\mathbb{C}^2) \simeq \mathbb{M}_2(\mathbb{C}).$
- Noisy classical bits and qubits are represented by mixed states of \mathbb{C}^2 and $\mathbb{M}_2,$ respectively.

Quantum computers

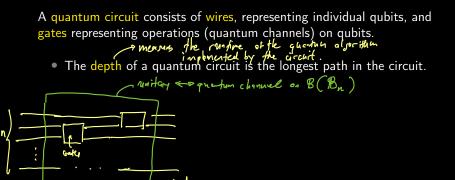
A quantum computer is a finite-dimensional quantum mechanical system associated with the tensor product Hilbert space $\mathbb{B}_n \equiv \mathbb{B}^{\otimes n}$ with $\mathbb{B} = \mathbb{C}^2$.

Notation.

- $\dim \mathbb{B}_n = 2^n$
- $|0\rangle$ and $|1\rangle$ are orthonormal basis vectors of $\mathbb B$ known as computational basis vectors.
- $|b_1 \cdots b_n\rangle \equiv |b_1\rangle \otimes \cdots \otimes |b_n\rangle$ are orthonormal basis vectors of \mathbb{B}_n . b; $\{ \begin{array}{c} c \\ c \\ c \end{array} \}$

 $|\circ\rangle \longleftrightarrow \begin{pmatrix} \circ \\ \circ \end{pmatrix} \\ |\circ\rangle \longleftrightarrow \begin{pmatrix} \circ \\ \circ \end{pmatrix} \\ |\circ\rangle \longleftrightarrow \langle \circ \rangle \\ |\circ\rangle$

TENSOR PRODUCT OF VECTOR SPACES
Given two vector spaces V_1 , V_2 over a field K , the tensor product space $V_1 \otimes V_2$ is a vector space consisting of linear combinations of elements of the form $V_1 \otimes V_2$ with $V_1 \in V_1$, $V_2 \in V_2$ under the following identifications: $(kV_1) \otimes V_2 = V_1 \otimes (kV_2) = k(V_1 \otimes V_2)$ $(u_1 + V_1) \otimes V_2 = u_1 \otimes V_2 + V_1 \otimes V_2$, $\forall k \in K$, $u_1, v_1 \in V_1$ $v_1 \otimes (u_2 + V_2) = v_1 \otimes U_2 + v_1 \otimes V_2$
If $\dim V_1 = d_1$ and $\dim V_2 = d_2$, then $\dim V_1 \otimes V_2 = d_1 d_2$.
If V, Vz are hillert space, then $V_1 \otimes V_2$ becomes a Hilbert space equipped with the inner product $\langle u_1 \otimes u_2, v_1 \otimes v_2 \rangle_1 = \langle u_1, V_1 \rangle_1 \langle u_2, v_2 \rangle_2$, $\forall u_1, v_1 \in V_1$, $u_2, v_2 \in V_2$.


Quantum computers

Physical qubit implementations include superconducting charges, trapped ions, and photons.

Quantum circuits

impureds

Quantum circuits

A quantum circuit consists of wires, representing individual qubits, and gates representing operations (quantum channels) on qubits.

• The depth of a quantum circuit is the longest path in the circuit.

Goal. Given a C_0 group of unitary Koopman operators $U^t : H \to H$ induced by a measure-preserving flow with skew-adjoint generator $V : D(V) \to H$ and a subspace $H_L \subset D(V) \subset H$ of dimension 2^n , find a unitary $W : H_L \to \mathbb{B}_n$ such that e^{tG_L} with $G_L = W \prod_L V \prod_L W^*$ is representable by a circuit of low depth.

Centrator Koopman evolution + Efficient initialization $V \qquad H \qquad U^+ \qquad H \qquad + \qquad Readout$ $V_L = T_L \vee T_L \qquad H_L \qquad U^+ \qquad H_L$ $V_L = T_L \vee T_L \qquad H_L \qquad W \qquad W$ $G_L = W \vee U_N^* \qquad B_n \qquad B_n$

Representation of jure states of Me on the Bloch sphere Unit vector $F = cos(\frac{\Theta}{2})|o\rangle + e^{i\phi}sin(\frac{\Theta}{2})|i\rangle \in \mathbb{C}^2 \equiv \mathbb{B}$, $\Theta(0, 2\pi)$, $\phi(0, 2\pi)$ Density operator $\rho = \langle \xi, \cdot \rangle \xi \simeq \xi = (\cos\theta_{\ell}) (\cos\theta_{\ell}) (\cos\theta_{\ell}) (\cos\theta_{\ell})$ $= \begin{pmatrix} (0)^{\alpha}\theta/2 & e^{i\phi}\cos(\theta/2) \sin(\theta/2) \\ e^{i\phi}\cos(\theta/2) & \sin(\theta/2) \\ e^{i\phi}\cos(\theta/2) \sin(\theta/2) & \sin(\theta/2) \end{pmatrix} = \begin{pmatrix} (1+\cos\theta)/2 & (e^{-i\phi}\sin\theta)/2 \\ (e^{i\phi}\sin(\theta)/2) & ((-\cos\theta)/2) \\ (e^{i\phi}\sin(\theta/2))/2 & ((-\cos\theta/2)/2) \\ (e^{i\phi}\sin(\theta/2$ $=\frac{1}{2}\left(\begin{pmatrix}1&0\\0&1\end{pmatrix}+\cos\left(\begin{pmatrix}1&0\\0&-1\end{pmatrix}\right)+\sin\left(\cos\left(\begin{pmatrix}1&0\\0&-1\end{pmatrix}\right)+\sin\left(\cos\left(\begin{pmatrix}1&0\\-i&0\\-i&0\end{pmatrix}\right)\right)\right)$ \mathbf{i}

Examples of quantum gates
$ X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \iff NOT gale \longrightarrow $
$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \qquad H \mid 0 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$
$H\left(1\right) = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$
$ Q R_{x}(0) = e^{-\frac{1}{2}i\theta X} $ (Rotation gate by anyle 0 about x-oxis
$R_{\gamma}(\theta) = e^{-\frac{1}{2}i\theta} \gamma$ $R_{z}(\theta) = e^{-\frac{1}{2}i\theta} Z$
CNOT gate (acts on $B_z = B \otimes B \simeq C^4$
$\begin{pmatrix} (& 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} = \begin{pmatrix} a \\ b \\ -d \\ c \\ d \end{pmatrix} Bit 2$

 $\begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \\ c \\ d \end{pmatrix} = \begin{pmatrix} a \\ b \\ -b \\ -d \\ c \\ c \end{pmatrix}$ Bit 2 [C

$W: H_L$		Br	unita	Y					
sien or W Pe	$fbonormal = b\rangle$: (المط (الما ({ φο, φι, . Θε	, φ _L } 3 lbn >	of He	, dim HL =	= 2 ⁿ d	ehne	
	М		0,1]			representation			
	$\sum_{i=1}^{n} b_i d$								
Example:	n=2,	<i>L = 4</i>							
O 	0 0 0 0)							
· · · 3 · ·									

Measurement in the quantum computational basis
Associated with the quantum computational basis 21576620,7m of Bn is a
projection-valued measure En: Zoin > B(Bn) ~ Mn Logithan consisting of all subjects
et {0,1} i.e. all binary stings of length n $E_n(S) = \sum_{b \in S} \frac{ b\rangle \langle b }{ b\rangle}$ $L_{S} orthogonal projection onto 1b7 That is, if the guarham computer is may state associated with state reefer 17> EBn$
a measurement of En jives a binary string be 20,13" with probability
$\langle \mathcal{J} \mathcal{E}_n(\mathcal{I}b\mathcal{J}) \mathcal{J} \rangle$
Pather than En ideally we would like to measure the PVM Fn which is the spectral massure of the observable $A_L = W(TC_L f)W^*$ principal multiplication
okrahr.

Jolution :	Compute e Alluj	gendecomposition of A = a_{j} u_{j} > , v_{j}	$\begin{aligned} u_{j} &= \sum_{k=0}^{2^{n}-1} u_{kj} b_{k} \rangle \\ k &= 0 \end{aligned}$	rep. of k
Define the	unitary -	T: Bn -> Bn with	Matrix rep. (400	$ = \left(\begin{array}{c} \mathcal{M}_{\mathbf{p}_{j}} \mathcal{L}_{-} \mathcal$
Then	T*ALT is	s a diagonal operate	or in the quantum compu	
		t of Fn on a style e veedor T13>	177 is equivalent to	a meanvoulent

Koopman evolution circuit 90 ¹⁰⁷ 107 Uinit 9n-107 C	TIME a string 15) that represents a string 15) that represents an infeger CEED,, 2 ⁿ -13 Our prediction for the true classical evolution UfCr) is the classical evolution UfCr) is the cigenvalue at of AL
Want: Unit: $\mathbb{B}_{n} \rightarrow \mathbb{B}_{n}$ in iterary such that Unit $10 \rightarrow 0 \ge 1 \hat{\xi}_{x} \ge$ where $1 \hat{\xi}_{x} \ge W \hat{\xi}_{x}$ $\hat{\xi}_{x} \in H_{L}$ is the state reador in the conceptuality to classical state x .	Ultrouf: $Bn \rightarrow Bn$ represents the transfer operator in the quantum computational basis, i.e. Utrouf = $WU_L^*W_L^*$ projected transfer operator $U_L^d = TT_LU^*TL$ Gs a Hente (crlo cenerate of an entimble of such measurements [b]

Implementation for systems with pure point spectrum
Assume that state space dynamis \$t: 2-> I is conjugate to a rotation
Rt. II -> Id for some dimension d (inv. meas.
let { pesceza be an orthonormal basis of H = L2(m) such that
$V\phi_e = i\kappa_e\phi_e$
Fix $n \in N$ s.t. n/d is an integer. Define $H_L = gan \{ \varphi_c : c = (e_1, d_1, c_n) $ with $c_1 + \frac{1}{2}, \ldots, -1, 1, \ldots, 2^{n/d-1} \}$
uith litz-2, -, -1, 1,, 2 ^{1/d -1}
Then $\dim H_{1} = 2$
Define $\beta: Z^{d} \longrightarrow {0,1}^{n}$ s.t. $\beta(c)$ is building of the multi-index l_{j}
$W: H_L \rightarrow B_n \Leftrightarrow W\phi e = \beta(e)\rangle$
Claim The projected generator V=WTLVTTLW is diagonal in the {16} bosis
t B Mar area
V=hoZOIOOI where the coefficients he are juice by a
$V = h_0 Z_0 I_0 = 0 T$ where the coefficients he are just by a + h_1 Z_0 Z_0 I_x. $0 Z$ Walsh-Fourier transform of the function
$b \mapsto K_{B^{-1}}(b)$
+ hn-1 2 0 10 27 = etv = etho 2 @ eth, 2 0 ethn-1 2