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Section 1

Introduction



Ergodic theory

Ergodic theory studies the statistical behavior of measurable actions of
groups or semigroups on spaces.

Definition 1.1.
A left action, or flow, of a (semi)group G on a set Ω is a map
Φ : G × Ω → Ω with the following properties:

1 Φ(e, ω) = ω, for the the identity element e ∈ G and all ω ∈ Ω.
2 Φ(gh, ω) = Φ(g ,Φ(h, ω)), for all g , h ∈ G and ω ∈ Ω.

The set Ω is called the state space.

In this course, G will be an abelian group or semigroup that represents
the time domain. Common choices include:

N, Z, R+, R.

We write Φg ≡ Φ(g , ·), n ∈ N,Z, and t ∈ R+,R.



Ergodic theory

Ludwig Boltzmann James Clerk Maxwell

Ergodic theory has its origin in the mid 19th century with the work of
Boltzmann and Maxwell on statistical mechanics.

The term ergodic is an amalgamation of the Greek words ergo (έργο),
which means work, and odos (οδός), which means street.



Ergodic theory

George David Birkhoff
Bernard Osgood Koopman 

Bernard Osgood
Koopman

John von Neumann

The mathematical foundations of the subject were established by
Koopman, von Neumann, Birkhoff, and many others, in work dating to
the 1930s.

Modern ergodic theory is a highly diverse subject with connections to
functional analysis, harmonic analysis, probability theory, topology,
geometry, number theory, and other mathematical disciplines.



Observables and ergodic hypothesis

Rather than studying the flow Φ directly, ergodic theory focuses on its
induced action on linear spaces of observables, e.g.,

F = {f : Ω → Y},

for a vector space Y (oftentimes, Y = R or C).

Drawing on intuition from mechanical systems, Boltzmann postulated
that time averages of observables should well-approximate expectation
values with respect to a reference distribution, µ.

This is encapsulated in the ergodic hypothesis,

lim
N→∞

1
N

N−1∑
n=0

f (Φn(ω))︸ ︷︷ ︸
time average

=

∫
Ω

f dµ︸ ︷︷ ︸
space average

,

which is stipulated to hold for typical initial conditions ω ∈ Ω and
observables f : Ω → Y in a suitable class.



Operator-theoretic perspective

Definition 1.2.
1 For every g ∈ G , the composition operator, or Koopman operator, is

the linear map Ug : F → F defined as

Ug f = f ◦ Φg .

2 The transfer operator Pg : F ′ → F ′ is the adjoint of Ug , defined as

Pgν = ν ◦ Ug .

Koopman and transfer operators allow the study of nonlinear dynamics
using techniques from linear operator theory.



Quantum mechanics

Niels Bohr Albert Einstein Max Planck

Quantum mechanics arose in the late 19th to early 20th century when it
was realized that classical physics does not adequately describe
phenomena such as the blackbody radiation spectrum, the photoelectric
effect, and atomic spectral lines.



Quantum mechanics

Paul Dirac Werner Heisenberg Emmy Noether Erwin Schrödinger

The mathematical formalism of quantum mechanics was developed by
Schrödinger, Heisenberg, Dirac, Noether, von Neumann, and many
others. The modern formulation of quantum mechanics makes heavy use
of operator theory.



Dirac–von Neumann axioms of quantum mechanics

1 States are density operators, i.e., positive, trace-class operators
ρ : H → H on a Hilbert space H, with tr ρ = 1.

2 Observables are self-adjoint operators, A : D(A) → H.
3 Measurement expectation and probability:

EρA = tr(ρA), Pρ(Ω) = Eρ(E (Ω)), A =

∫
R
a dE (a).

4 Unitary dynamics between measurements:

ρt = U t∗ρ0U
t .

5 Projective measurement:

ρ|e =
√
eρ

√
e

tr(
√
eρ

√
e)

, 0 < e ≤ I .



Interpretation of quantum mechanics

A vast subject in its own right, the interpretation of quantum mechanics
can be approached by asking the following question:

• Does quantum mechanics describe the world, or an observer’s
knowledge of the world?

Quantum informational interpretations take the latter point of view.

• Quantum information is the study of the information processing
tasks that can be accomplished using quantum mechanical systems.
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Connections with ergodic theory
Classical statistical P(µ) P(µ)

Quantum mechanical Q(H) Q(H)

Pt

Γ Γ

P t

For a measure-preserving flow Φt : Ω → Ω on a probability space
(Ω,Σ, µ):

• The Koopman operator U t : H → H is unitary on H = L2(µ) and
thus defines a quantum system.

• The classical statistical dynamics on the space of probability
densities with respect to µ, P(µ), induced by the transfer operator
P t consistently embeds into the quantum dynamics induced by U t

on the space of density operators Q(H).
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Section 2

Measure-preserving transformations;
Ergodic theorems



Measure-preserving dynamical systems

Definition 2.1.
Let (Ω,Σ, µ) be a measure space.

1 A measurable map T : Ω → Ω is said to be measure-preserving if
T∗µ = µ, i.e.,

µ(T−1(S)) = µ(S), ∀S ∈ Σ.

Conversely, we say that µ is an invariant measure for T .
2 A measure-preserving map T : Ω → Ω is said to be invertible

measure-preserving if T is bijective and T−1 is also
measure-preserving.

3 A measurable action Φ : G × Ω → Ω is µ-preserving if Φg : Ω → Ω
is µ-preserving for every g ∈ G .



Recurrence

Theorem 2.2 (Poincaré).
Let T : Ω → Ω be a measure-preserving transformation of the probability
space (Ω,Σ, µ). Let S ∈ Σ be a measurable set with µ(S) > 0. Then,
under iteration by T , almost every point of S returns to S infinitely often.
That is, for µ-a.e. ω ∈ S , there exists a sequence n1 < n2 < n3 < · · · of
natural numbers, increasing to infinity, such that T nj (ω) ∈ S for all j .



Ergodicity

Definition 2.3.
Let (Ω,Σ, µ) be a probability space.

1 A measurable map T : Ω → Ω is said to be ergodic if for every
T -invariant set, i.e., every S ∈ Σ such that T−1(S) = S we have
either µ(S) = 0 or µ(S) = 1.

2 A measurable action Φ : G × Ω → Ω is ergodic if for every S ∈ Σ
such that Φ−g (S) = S for all g ∈ G we have either µ(S) = 0 or
µ(S) = 1.



Measure-theoretic characterization of ergodicity

Theorem 2.4.
Let T : Ω → Ω be a measure-preserving transformation of the probability
space (Ω,Σ, µ). Then, the following are equivalent.

1 T is ergodic.
2 The only measurable sets S ∈ Σ such that µ(T−1(S)△S) = 0 have

either µ(S) = 0 or µ(S) = 1.
3 For every S ∈ Σ with µ(S) > 0, we have µ(

⋃∞
n=1 T

−n(S)) = 1.
4 For every R,S ∈ Σ with µ(R) > 0 and µ(S) > 0, there exists n > 0

with µ(T−n(R) ∩ S) > 0.



Measure-theoretic characterization of ergodicity

Theorem 2.5.
Let (Ω,Σ, µ) be a probability space.

1 A measure-preserving action Φ : N× Ω → Ω is ergodic iff

lim
N→∞

1
N

N−1∑
n=0

µ(Φ−n(R) ∩ S) = µ(R)µ(S), ∀R,S ∈ Σ.

2 A measure-preserving action Φ : R+ × Ω → Ω is ergodic iff

lim
T→∞

1
T

∫ T

0
µ(Φ−t(R) ∩ S) dt = µ(R)µ(S), ∀R,S ∈ Σ.



Koopman operators on Lp spaces

Definition 2.6.
A measurable map T : Ω → Ω on a measure space (Ω,Σ, µ) is said to be
nonsingular if it preserves null sets, i.e., if whenever µ(S) = 0 we have
T∗µ(S) = µ(T−1(S)) = 0.

Notation.
• L(Σ) = {f : Ω → R : f is Σ-measurable}.
• L(µ) = {[f ]µ : f ∈ L(Σ)}.
• Lp(µ) = {[f ]µ ∈ L(µ) :

∫
Ω
|f |p dµ < ∞} .

• L∞(µ) = {[f ]µ ∈ L(µ) : esssupµ|f | < ∞}.



Koopman operators on Lp spaces

Proposition 2.7.
With notation as above, the following hold.

1 If T is measurable, then the composition map U : f 7→ f ◦ T maps
L(Σ) into itself.

2 If T is nonsingular, then U : L(µ) → L(µ) with U [f ]µ = [Uf ]µ is a
well-defined linear map.

3 If T is nonsingular, then L∞(µ) is invariant under U , i.e.,

UL∞(µ) ⊆ L∞(µ).

4 If T is measure-preserving, then U is an isometry of Lp(µ),
1 ≤ p ≤ ∞, i.e.,

∥U [f ]µ∥Lp(µ) = ∥[f ]µ∥Lp(µ).

5 If T is invertible measure-preserving, then U is an isomorphism of
Lp(µ), 1 ≤ p ≤ ∞, i.e., U and U−1 are both isometries.

Henceforth, we abbreviate [f ]µ ≡ f , U ≡ U .



Koopman operators on L2

Notation.
• ⟨f1, f2⟩L2(µ) =

∫
Ω
f ∗1 f2 dµ.

The Koopman operator induced by a µ-preserving map T : Ω → Ω
preservers Hilbert space inner products,

⟨Uf1,Uf2⟩L2(µ) = ⟨f1, f2⟩L2(µ).

If, in addition, T is invertible measure-preserving, then U is a unitary
operator,

U∗ = U−1.



Duality of Lp spaces

Notation.
For a probability space (Ω,Σ, µ), we let:

• Mq(Ω, µ) =
{

measures ν ≪ µ with density dν
dµ ∈ Lq(µ)

}
.

• Duality pairing: ⟨·, ·⟩µ : Lp(µ)∗ × Lp(µ) → R, ⟨α, f ⟩µ = αf .

For 1 ≤ p < ∞, we can identify functionals in Lp(µ)∗ with measures in
Mq(Ω, µ), 1

p + 1
q = 1, through the map ιq : Mq(Ω, µ) → Lp(µ)∗,

(ιqν)f =

∫
Ω

f ρ dµ, ρ =
dν

dµ
.

Equipping Mq(Ω, µ) with the norm

∥ν∥Mq(Ω,ν) =

∥∥∥∥dνdµ
∥∥∥∥
Lq(µ)

,

ιq becomes an isomorphism of Banach spaces. Thus, we have

Lp(µ)∗ ≃ Mq(Ω, µ) ≃ Lq(µ), 1 ≤ p < ∞,
1
p
+

1
q
= 1.



Transfer operators on Lp

Definition 2.8.
With the notation of Proposition 2.7, the transfer operator
P : L1(µ) → L1(µ) is is the unique operator satisfying∫

S

Pf dµ =

∫
T−1(S)

f dµ, ∀f ∈ L1(µ).

We define P : Lp(µ) → Lp(µ), 1 < p ≤ ∞ by restriction of
P : L1(µ) → L1(µ).

Proposition 2.9.
Under the identification L1(µ)∗ ≃ L∞(µ), the transpose
P ′ : L1(µ)∗ → L1(µ)∗ of the transfer operator P : L1(µ) → L1(µ) is
identified with the Koopman operator U : L∞(µ) → L∞(µ); that is,∫

Ω

f (Pg) dµ =

∫
Ω

(Uf )g dµ, ∀f ∈ L∞(µ), ∀g ∈ L1(µ).



Duality between Koopman and transfer operators

Proposition 2.10.
Let 1 ≤ p < ∞. Then, under the identification Lp(µ)∗ ≃ Lq(µ),
1
p + 1

q = 1, the following hold:

1 The transpose U ′ : Lp(µ)∗ → Lp(µ)∗ of the Koopman operator
U : Lp(µ) → Lp(µ) is identified with the transfer operator
P : Lq(µ) → Lq(µ); that is,

⟨f ,Ug⟩µ = ⟨Pf , g⟩µ, ∀f ∈ Lq(µ), ∀g ∈ Lp(µ).

2 The transpose P ′ : Lp(µ)∗ → Lp(µ)∗ of the transfer operator
P : Lp(µ) → Lp(µ) is identified with the Koopman operator
U : Lq(µ) → Lq(µ); that is,

⟨f ,Pg⟩µ = ⟨Uf , g⟩µ, ∀f ∈ Lq(µ), ∀g ∈ Lp(µ).



Duality between Koopman and transfer operators

Corollary 2.11.

1 For 1 < p < ∞, U : Lp(µ) → Lp(µ) and P : Lp(µ) → Lp(µ) satisfy

U = U ′′, P = P ′′.

2 In the Hilbert space case, p = 2, we have P = U∗.
3 For 1 ≤ p ≤ ∞, P has unit operator norm, ∥P∥Lp(µ) = 1.

Lemma 2.12.
With the notation of Proposition 2.8, if T : Ω → Ω is invertible
measure-preserving then P : Lp(µ) → Lp(µ) is the inverse of
U : Lp(µ) → Lp(µ), P = U−1.



Spectral characterization of ergodicity

Observe that the Koopman operator U : F → F on any function space
F has an eigenvalue equal to 1 with a constant corresponding
eigenfunction, 1 : Ω → R,

U1 = 1, 1(ω) = 1.

Theorem 2.13.
Let T : Ω → Ω be a measure-preserving transformation of a probability
space (Ω,Σ, µ). Then, µ is ergodic iff the eigenvalue equal to 1 of the
associated Koopman operator U on L(µ) (and thus on any of the Lp(µ)
spaces with 1 ≤ p ≤ ∞) is simple, i.e.,

Uf = f =⇒ f = const. µ-a.e.



Spectral characterization of ergodicity

Theorem 2.14.
1 Let Φ : N× Ω → Ω be a measure-preserving action and Un, n ∈ N,

the associated Koopman operators on any of L(µ) or Lp(µ),
1 ≤ p ≤ ∞. Then Φ is ergodic iff Unf = f for all n ∈ N implies that
f is constant µ-a.e.

2 Let Φ : R+ × Ω → Ω be a measure-preserving action and U t ,
t ∈ R+, the associated Koopman operators on any of L(µ) or Lp(µ),
1 ≤ p ≤ ∞. Then, Φ is ergodic iff U t f = f for all t ∈ R+ implies
that f is constant µ-a.e.



Pointwise ergodic theorem

Theorem 2.15 (Birkhoff).
Let T : Ω → Ω be a measure-preserving transformation of a probability
space (Ω,Σ, µ) with associated Koopman operator U : L1(µ) → L1(µ).
Then, for every f ∈ L1(µ) and µ-a.e. ω ∈ Ω,

fN(ω) :=
1
N

N−1∑
n=0

f (T n(ω))

converges to a function f̄ ∈ L1(µ) that satisfies

Uf̄ = f̄ ,

∫
Ω

f dµ =

∫
Ω

f̄ dµ.

In particular, if T is ergodic, then for µ-a.e. ω ∈ Ω,

f̄ (ω) =

∫
Ω

f dµ.



Mean ergodic theorem

Theorem 2.16 (von Neumann).
Let T : Ω → Ω be a measure-preserving transformation of a probability
space (Ω,Σ, µ) with associated Koopman operator U : L2(µ) → L2(µ).
Let Π : L2(µ) → L2(µ) be the orthogonal projection onto the eigenspace
of U corresponding to eigenvalue 1. Then, the sequence of operators
UN = N−1 ∑N−1

n=0 Un converges strongly to Π, i.e.,

lim
N→∞

UN f = Πf , ∀f ∈ L2(µ).

In particular, if T is ergodic, Π is the projection onto the 1-dimensional
subspace of L2(µ) containing µ-a.e. constant functions, i.e.,

Πf = ⟨1, f ⟩L2(µ)1 =

(∫
Ω

f dµ

)
1.



Topological dynamics

Of particular interest is the case where (G , τG ) and (Ω, τΩ) are
topological spaces and Φ : G × Ω → Ω is a continuous, and thus
Borel-measurable, action. We let B(Ω) denote the Borel σ-algebra of Ω.

Definition 2.17.
The support of a measure µ : B(Ω) → [0,∞] is the set

suppµ := {ω ∈ Ω : µ(Nω) > 0, ∀Nω ∈ τΩ}.

Lemma 2.18.
With notation as above, the following hold.

1 suppµ is a closed (and thus Borel-measurable) subset of Ω.
2 If Ω is Hausdorff, and µ is a Radon measure, every Borel-measurable

set S ⊂ Ω \ suppµ has µ(S) = 0.
3 If µ is invariant under a continuous map T : Ω → Ω, then suppµ is

also invariant,
T−1(suppµ) ⊆ suppµ.



Existence of invariant measures

Theorem 2.19 (Krylov-Bogoliubov).
Let (Ω, τΩ) be a compact metrizable space and T : Ω → Ω a continuous
map. Then, there exists an invariant Borel probability measure under T .



Existence of dense orbits

Theorem 2.20.
Let (Ω, τΩ) be a compact metrizable space, T : Ω → Ω a continuous
map, and µ an ergodic, invariant Borel probability measure with
suppµ = Ω. Then, µ-a.e. ω ∈ Ω has a dense orbit {T n(ω)}∞n=0.



Geometry of invariant measures

Theorem 2.21.
Let T : Ω → Ω be a continuous map on a compact metrizable space. Let
M(Ω;T ) denote the set of T -invariant Borel probability measures on Ω.
Then, the following hold:

1 M(Ω;T ) is a weak-∗ compact, convex space.
2 µ is an extreme point of M(Ω;T ) iff it is ergodic.
3 If µ and ν are distinct, ergodic measures in M(Ω;T ), then they are

mutually singular.



Equidistributed sequences

Definition 2.22.
Let T : Ω → Ω be a continuous map on a compact metrizable space
(Ω, τΩ) and µ a Borel probability measure. A sequence ω0, ω1, . . . with
ωn = T n(ω0) is said to be µ-equidistributed if

lim
N→∞

1
N

N−1∑
n=0

f (ωn) =

∫
Ω

f dµ, ∀f ∈ C (Ω).

Remark.
µ-equidistribution of ω0, ω1, . . . is equivalent to weak-∗ convergence of
the sampling measures µN = N−1 ∑N−1

n=0 δωn to the measure µ.



Basin of a measure

Definition 2.23.
With the notation of Definition 2.22 the basin of µ is the set

B(µ) = {ω0 ∈ Ω : ω0, ω1, . . . is µ-equidistributed}.

By the pointwise ergodic theorem (Theorem 2.15), if Ω is a metrizable
space and µ is an ergodic invariant measure with compact support, then
µ-a.e. ω ∈ Ω lies in B(µ).



Observable measures

Definition 2.24.
With the notation of Definition 2.23, let ν be a reference Borel probability
measure on Ω. The measure µ is said to be ν-observable if there exists a
Borel set S ∈ B(Ω) with ν(S) > 0 such that ν-a.e. ω ∈ S lies in B(µ).

Intuitively, we think of ν as the measure from which we draw initial
conditions. ν-observability of µ then means that the statistics of
observables with respect to µ can be approximated from experimentally
accessible initial conditions.



Koopman operators on spaces of continuous functions

Proposition 2.25.
Let T : Ω → Ω be a continuous map on a locally compact Hausdorff
space. Then, the Koopman operator U : f 7→ f ◦ T is well-defined as a
linear map from C (Ω) into itself. Moreover:

1 U is a contraction, i.e.,

∥Uf ∥C(Ω) ≤ ∥f ∥C(Ω), ∀f ∈ C (Ω),

with equality if T is invertible.
2 U has operator norm ∥U∥ = 1.
3 U has the properties

U(fg) = (Uf )(Ug), U(f ∗) = (Uf )∗, ∀f , g ∈ C (Ω),

i.e., it is a ∗-homomorphism of the C∗-algebra C (Ω).



Transfer operators on Borel measures

Notation.
• M(Ω): Space of signed Borel measures on topological space (Ω, τΩ).

Definition 2.26.
Let T : Ω → Ω be a continuous map on a compact metrizable space.
The transfer operator P : C (Ω)∗ → C (Ω)∗ is the transpose (dual)
operator to the Koopman operator U : C (Ω) → C (Ω),

Pα = α ◦ U.



Unique ergodicity

Definition 2.27.
Let T : Ω → Ω be a continuous map on a compact metrizable space
(Ω, τΩ). T is said to be uniquely ergodic if there is only one T -invariant
Borel probability measure.

Theorem 2.28.
With notation as above, the following are equivalent.

1 T is uniquely ergodic.
2 For every f ∈ C (Ω), N−1 ∑N−1

n=0 f (T n(ω)) converges to a constant,
uniformly with respect to ω ∈ Ω.

3 For every f ∈ C (Ω), N−1 ∑N−1
n=0 f (T n(ω)) converges pointwise to a

constant.
4 There exists an invariant Borel probability measure µ such that

lim
N→∞

1
N

N−1∑
n=0

f (T n(ω)) =

∫
Ω

f dµ, ∀ω ∈ Ω.



Strong and weak continuity of continuous-time (semi)flows

Theorem 2.29.
Let Φt : Ω → Ω, t ≥ 0, be a continuous-time, continuous, semiflow on a
compact metrizable space Ω with associated Koopman operators
U t : C (Ω) → C (Ω). Then, as t → 0, U t converges strongly to the
identity,

lim
t→0

∥U t f − f ∥C(Ω) = 0, ∀f ∈ C (Ω).

Theorem 2.30.
Let Φt : Ω → Ω, t ≥ 0, be a continuous-time, measurable semiflow with
invariant probability measure µ and associated Koopman operators
U t : Lp(µ) → Lp(µ). Then, the following hold as t → 0:

1 For 1 ≤ p < ∞, U t converges strongly to the identity,

lim
t→0

∥U t f − f ∥Lp(µ) = 0, ∀f ∈ Lp(µ).

2 For p = ∞, U t converges in weak-∗ sense to the identity,

lim
t→0

∫
Ω

g(U t f ) dµ =

∫
Ω

gf dµ, ∀f ∈ L∞(µ), ∀g ∈ L1(µ).



Mixing

Recall from Theorem 2.4 that a measure-preserving transformation is
ergodic iff

lim
N→∞

1
N

N−1∑
n=0

µ(T−n(R) ∩ S) = µ(R)µ(S), ∀R,S ∈ Σ.

Definition 2.31.
Let T : Ω → Ω be a measure-preserving transformation of the probability
space (Ω,Σ, µ).

1 T is said to be weak-mixing if

lim
N→∞

1
N

N−1∑
n=0

|µ(T−n(R) ∩ S)− µ(R)µ(S)| = 0, ∀R,S ∈ Σ.

2 T is said to be strong-mixing, or mixing, if

lim
n→∞

µ(T−n(R) ∩ S) = µ(R)µ(S), ∀R,S ∈ Σ.



Mixing

Theorem 2.32.
Let T : Ω → Ω be a measure-preserving transformation of the probability
space (Ω,Σ, µ). Then, the following are equivalent.

1 T is weak-mixing.
2 There is a subset N ⊂ N of zero density such that

lim
n→∞
n/∈N

µ(T−n(R) ∩ S) = µ(R)µ(S), ∀R,S ∈ Σ.



Observable-centric characterization of ergodicity and mixing

Let T : Ω → Ω be a measure-preserving transformation of the probability
space (Ω,Σ, µ). Let U : L2(µ) → L2(µ) be the associated Koopman
operator on L2.

For f , g ∈ L2(µ), define the cross-correlation function Cfg : N → R, where

Cfg (n) = ⟨f ,Ung⟩L2(µ),

and the autocorrelation function Cf = Cff .

Consider also the expectation values f̄ =
∫
Ω
f dµ and ḡ =

∫
Ω
g dµ.

Theorem 2.33.
With notation as above, the following are equivalent.

1 T is ergodic.
2 For all f , g ∈ L2(µ), limn→∞ N−1 ∑N−1

n=0 Cfg (n) = f̄ ḡ .

3 For all f ∈ L2(µ), limn→∞ N−1 ∑N−1
n=0 Cf (n) = f̄ 2.



Observable-centric characterization of ergodicity and mixing

Theorem 2.34.
With notation as above, the following are equivalent.

1 T is weak-mixing.
2 For all f , g ∈ L2(µ), limN→∞ N−1 ∑N−1

n=0 |Cfg (n)− f̄ ḡ | = 0.

3 For all f ∈ L2(µ), limN→∞ N−1 ∑N−1
n=0 |Cf (n)− f̄ 2| = 0.

Theorem 2.35.
With notation as above, the following are equivalent.

1 T is mixing.
2 For all f , g ∈ L2(µ), limN→∞ Cfg (n) = f̄ ḡ .
3 For all f ∈ L2(µ), limN→∞ Cf (n) = f̄ 2.



Spectral characterization of mixing

Theorem 2.36.
Let T : Ω → Ω be a measure-preserving transformation of the probability
space (Ω,Σ, µ), and U : L2(µ) → L2(µ) the corresponding Koopman
operator. Then, T is weak-mixing iff the only eigenvalue of U is the
eigenvalue equal to 1.



Mixing and product flows

Theorem 2.37.
Let T : Ω → Ω be a measure-preserving transformation of the probability
space (Ω,Σ, µ). Then, the following are equivalent.

1 T is weak-mixing.
2 T × T is ergodic with respect to the product measure µ× µ.
3 T × T is weak-mixing with respect to the product measure µ× µ.



Further reading

[1] V. Baladi, Positive Transfer Operators and Decay of Correlations
(Advanced Series in Nonlinear Dynamics). Singapore: World
Scientific, 2000, vol. 16.

[2] N. Edeko, M. Gerlach, and V. Kühner, “Measure-preserving
semiflows and one-parameter Koopman semigrpoups,” Semigr.
Forum, vol. 98, pp. 48–63, 2019. DOI: 10.1007/s00233-018-9960-3.

[3] T. Eisner, B. Farkas, M. Haase, and R. Nagel, Operator Theoretic
Aspects of Ergodic Theory (Graduate Texts in Mathematics). Cham:
Springer, 2015, vol. 272.

[4] P. Walters, An Introduction to Ergodic Theory (Graduate Texts in
Mathematics). New York: Springer-Verlag, 1981, vol. 79.

https://doi.org/10.1007/s00233-018-9960-3


Section 3

Introduction to operator algebras



Algebras – basic definitions

Definition 3.1.
An algebra (over the complex numbers) is a C-vector space A, equipped
with a binary operation · : A×A → A such that for every a, b, c ∈ A
and λ ∈ C, we have:

• (ab)c = a(bc).
• a(b + c) = ab + ac .
• (a+ b)c = ac + bc.
• (λa)b = λ(ab) = a(λb).



Algebras – basic definitions

Definition 3.2.
An algebra A is said to be:

1 Abelian if ab = ba for all a, b ∈ A.
2 Unital if there is a (unique) nonzero element 1 ∈ A such that
1a = a1 = a for all a ∈ A.



∗-algebras

Definition 3.3.
A ∗-algebra (or involutive algebra) is an algebra A equipped with an
operation ∗ : A → A such that for all a, b ∈ A and λ ∈ C,

• (a∗)∗ = a.
• (a+ b)∗ = a∗ + b∗.
• (ab)∗ = b∗a∗.
• (λa)∗ = λ∗a∗.



Banach algebras; C ∗-algebras

Definition 3.4.
1 A normed algebra is an algebra A equipped with a norm ∥·∥ such

that
∥ab∥ ≤ ∥a∥∥b∥, ∀a, b ∈ A.

2 A Banach algebra is a normed algebra (A, ∥·∥) which is complete
with respect to ∥·∥.

3 A Banach ∗-algebra is a Banach algebra which is also a ∗-algebra.
4 A C∗-algebra A is a Banach ∗-algebra such that

∥a∗a∥ = ∥a∥2, ∀a ∈ A.

• For a unital normed algebra, we can choose the norm such that
∥1∥ = 1 without loss of generality.

• Henceforth, we will consider that all Banach ∗-algebras have
isometric involution, i.e., ∥a∗∥ = |a∥.



Banach algebras; C ∗-algebras

Definition 3.5.
1 Given an algebra A, then for a subset S ⊆ A we denote by alg(S)

the subalgebra of A generated by S , which consists of all linear
combinations of finite products of elements of S . Equivalently,
alg(S) is the smallest subalgebra of A containing S .

2 If A is a Banach algebra, the closure alg(S) is said to be the Banach
subalgebra of A generated by S .



Inverse

Definition 3.6.
An element a of a unital algebra A is said to be invertible if there exists a
(unique) element b ∈ A such that ab = ba = 1. We write b = a−1 and
call a−1 the inverse of a.

We denote the set of invertible elements of A as G (A). This set forms a
multiplicative subgroup of A.

Proposition 3.7.
For a unital Banach algebra A, G (A) is an open set and −1 : G (A) → A
is continuous.



Normal elements

Definition 3.8.
An element a of a ∗-algebra is said to be:

1 Normal if it commutes with a∗, i.e., aa∗ − a∗a = 0.
2 Self-adjoint if a∗ = a.
3 Skew-adjoint if a∗ = −a.

Given a unital Banach algebra A and an element a ∈ A we denote the
Banach algebra generated by {1, a} as B(a). If, in addition, A is a
∗-algebra, we let B∗(a) be the Banach ∗-algebra generated by {1, a, a∗}.

Lemma 3.9.
If a ∈ A is a normal element of a Banach ∗-algebra, then B∗(a) is abelian.



Spectrum

Definition 3.10.
For an element a ∈ A of a unital Banach algebra A we define:

1 The spectrum as the set of complex numbers

σ(a) = {λ ∈ C : a− λ /∈ G (A)}.

2 The spectral radius
r(a) = sup

λ∈σ(a)

|λ|.

Theorem 3.11.
With notation as above, the following hold:

1 σ(a) is a compact subset of C such that

sup
λ∈σ(a)

|λ| ≤ ∥a∥.

2 r(a) = limn→∞∥an∥1/n.
3 If a is a normal element of a C∗-algebra, then r(a) = ∥a∥.



Homomorphisms

Definition 3.12.
1 A homomorphism π : A → B between algebras is a linear map that

is compatible with algebraic multiplication, i.e.,

π(aa′) = π(a)π(a′), ∀a, a′ ∈ A.

2 A homomorphism π : A → B is said to be unital if A and B are
unital and π(1A) = 1B.

3 A homomorphism π : A → B between ∗-algebras is said to be a
∗-homomorphism if

π(a∗) = (πa)∗, ∀a ∈ A.



Representations

Definition 3.13.
1 For an algebra A, a representation is a homomorphism

π : A → L(V ), where L(V ) is the algebra of linear maps on a vector
space V .

2 If A is a Banach algebra, a representation is a homomorphism
π : A → B(E ), where B(E ) is the Banach algebra of bounded linear
maps on a Banach space E .

3 If A is a Banach ∗-algebra, a ∗-representation is a ∗-homomorphism
π : A → B(H), where B(H) is the C∗-algebra of bounded linear
maps on a Hilbert space H.

4 If ker π = {0}, π is said to be a faithful representation.



Representations

Definition 3.14.
For a Banach algebra A, the left regular representation (or left multiplier
representation) π : A → B(A) is defined as

(πa)b = ab, ∀a, b ∈ A.

Proposition 3.15.

1 The left regular representation π : A → L(A) of a unital algebra A
is faithful.

2 If A is a Banach algebra, then π is a contraction; that is, ∥π∥ ≤ 1.
3 If A is a C∗-algebra, then π is an isometry; that is, ∥π∥ = 1.



Representations of C ∗-algebras

Lemma 3.16.
Let H be a Hilbert space. Then, any norm-closed ∗-subalgebra A of B(H)
is a C∗-algebra. We refer to every such A as a concrete C∗-algebra.

Theorem 3.17 (Gelfand–Naimark–Segal).
Every C∗-algebra A admits admits a faithful representation
π : A → B(H) on some Hilbert space H.



Characters

Definition 3.18.
A character (or multiplicative linear functional) of a unital Banach
algebra A is a nonzero homomorphism χ : A → C.

Lemma 3.19.
Every character χ : A → C is:

1 Unital.
2 Surjective.
3 Contractive, i.e., ∥χ∥ ≤ 1.

Moreover, if A is a C∗-algebra, then:
4 χ is a ∗-homomorphism.
5 ∥χ∥ = 1.

Corollary 3.20.
Every character of a unital Banach algebra is continuous.



Characters

Proposition 3.21.
An abelian unital Banach algebra has at least one character.



Ideals

Definition 3.22.
A subalgebra I ⊆ A of an algebra is said to be a (two-sided) ideal if
aI ⊆ I and Ia ⊆ I for all a ∈ A.

Definition 3.23.
A maximal ideal is a proper ideal I ⊂ A that is not a subset of any other
proper ideals.

Proposition 3.24.
Every maximal ideal in a unital Banach algebra is closed.



Spectra of abelian Banach algebras

Definition 3.25.
Let A be a unital, abelian Banach algebra. The spectrum of A, denoted
as σ(A), is the set of its characters.

Theorem 3.26 (Gelfand–Mazur).
Let A be an abelian unital Banach algebra. There is a canonical bijection
between σ(A) and the set of maximal ideals of A. Specifically, for every
χ ∈ σ(A), kerχ is a maximal ideal, and every maximal ideal has this
form for a unique character χ ∈ σ(A).



Gelfand transform

Theorem 3.27.
The spectrum σ(A) of an abelian unital Banach algebra is a weak-∗

compact subset of A∗. Moreover, the map Γ : A → C (σ(A)) defined as
Γ(a) ≡ â with â(χ) = χ(a) is a Banach algebra homomorphism with
norm ∥Γ∥ ≤ 1.

Definition 3.28.
The map Γ : A → C (σ(A)) is called the Gelfand transform for A.

Proposition 3.29.
The Gelfand transform for A is injective iff the intersection of all the
maximal ideals of A is {0}. In that case, we say that A is semisimple.



Gelfand transform

Proposition 3.30.
For an element a of an abelian, unital, Banach algebra A we have

σ(a) = ran â.

Proposition 3.31.
Let A be an abelian Banach algebra generated by {1, a}. Then, the map
β : σ(A) → σ(a) defined as β(χ) = â(χ) is a homeomorphism between
the spectrum of A and the spectrum of a.



Spectra of C ∗-algebras

Theorem 3.32 (Gelfand).
Let A be a unital, abelian C∗-algebra. Then, the Gelfand transform
Γ : A → C (σ(A)) is an isometric ∗-isomorphism between A and the
C∗-algebra of continuous functions on σ(A).

Theorem 3.33 (Stone).
Let X be a compact Hausdorff space. For x ∈ X let δx ∈ C (X )∗ denote
the evaluation functional δx f = f (x). Then, the following hold.

1 σ(C (X )) = {δx : x ∈ X}.
2 X is homeomorphic to σ(C (X )) under the map x 7→ δx .

Corollary 3.34.
Let X and Y be compact Hausdorff spaces. Then, X and Y are
homeomorphic iff C (X ) and C (Y ) are algebraically isomorphic. In that
case, C (X ) and C (Y ) are isometrically ∗-isomorphic C∗-algebras.



Spectra of C ∗-algebras

Based on Theorems 3.32 and 3.33, we can identify unital abelian
C∗-algebras with spaces of continuous functions on compact Hausdorff
spaces. Generalizing this interpretation, we can interpret non-abelian C∗

algebras as spaces of continuous functions on “non-commutative spaces”.



Continuous functional calculus

Let a be a normal element of a unital C∗-algebra A. Given a continuous
function f : σ(a) → σ(a), we define f (a) ∈ A as

f (a) = Γ−1(f ◦ β),

where Γ : C∗(a) → C (σ(C∗(a))) is the Gelfand transform associated with
the abelian C∗-algebra generated by a, and β : σ(C∗(a)) → σ(a) is the
homeomorphism from Proposition 3.31.



Positive elements

Definition 3.35.
An element a of a ∗-algebra A is said to be positive if a = b∗b for some
b ∈ A.

Definition 3.36.
A ∗-algebra A is said to be:

1 Hermitian if every self-adjoint element has real spectrum, i.e., a ∈ A
and a∗ = a implies σ(a) ⊂ R.

2 Symmetric if every positive element has positive spectrum, i.e.,
a ∈ A and a ≥ 0 implies σ(a) ⊂ R+.

Theorem 3.37.
A Banach ∗-algebra A is Hermitian iff it is symmetric.



Positive elements of C ∗-algebras

Theorem 3.38.
Let A be a C∗-algebra. The following are equivalent:

1 a is positive (i.e., a = b∗b for some b ∈ A).
2 a is normal and σ(a) ⊂ [0,∞).
3 There exists a self-adjoint element b ∈ A such that a = b2.

Corollary 3.39.
Every positive element a ∈ A has a unique positive square root, i.e., a
positive element b ∈ A such that a = b2. We write b =

√
a.

Notation.
For a C∗-algebra A:
• Asa ⊂ A is the subspace of the self-adjoint adjoint elements.
• A+ ⊂ Asa is the subset of positive elements.



Positive elements of C ∗-algebras

Theorem 3.40.
The set of positive elements of a C∗ algebra is a convex cone, i.e.,

1 For all a ∈ A+ and λ ≥ 0, λa ∈ A+.
2 For all a, b ∈ A+ and λ ∈ [0, 1], λa+ (1 − λb) ∈ A+.

Moreover, A+ is closed in the norm topology of A.

By Theorem 3.40, positivity defines an order on Asa.

• If a ∈ Asa is positive, we write a ≥ 0.
• Given a, b ∈ Asa, we write a ≤ b if b − a ≥ 0.

Proposition 3.41.
Given two positive elements a, b ∈ A+ with a ≤ b the following hold:

1 ∥a∥ ≤ ∥b∥.
2

√
a ≤

√
b.

3 If A is unital and a, b are invertible, then b−1 ≤ a−1.



States

Definition 3.42.
A linear functional φ : A → C on a ∗-algebra A is said to be positive if
φa ≥ 0 whenever a is positive.

Definition 3.43.
A state φ : A → C on a unital ∗-algebra A is a positive, linear unital
functional, i.e.:

• φ(a∗a) ≥ 0 for all a ∈ A.
• φ1 = 1.

The state space of A is the set of its states, denoted as S(A).



States on C ∗-algebras

Proposition 3.44.
The following hold for every state φ ∈ S(A) of a unital C∗-algebra and
elements a, b ∈ A.

1 φ(a∗) = (φa)∗, for all a ∈ A.
2 |φ(a∗b)| ≤ φ(a∗a)φ(b∗b).
3 ∥φ∥ = 1.

Proposition 3.45.
The state space S(A) of a unital C∗-algebra A is a convex subset of the
unit ball of A∗ which is closed in the weak-∗ topology. In particular,
S(A) is a weak-∗ compact subset of A∗.



States on C ∗-algebras

Proposition 3.46.
For every positive element a of a unital C∗-algebra A, there exists a pure
state φ ∈ S(A) such that φa = ∥a∥.

Theorem 3.47.
The set of states of a unital C∗-algebra A separates the points of A.
That is, for every a, b ∈ A there exists φ ∈ S(A) such that φa ̸= φb.



Pure states

Definition 3.48.
A state φ of a unital C∗-algebra A is said to be pure if it is an extremal
point of S(A). Otherwise, φ is said to be mixed.

Definition 3.49.
Let H be a Hilbert space. A state φ of B(H) is said to be a vector state
if there exists a (unit) vector ξ ∈ H such that

φa = ⟨ξ, aξ⟩, ∀a ∈ A.

Proposition 3.50.
Every vector state of B(H) is pure.



Projections

Definition 3.51.
An element a of a ∗-algebra A is said to be a projection if a = a∗ = a2.

Proposition 3.52.
For a C∗-algebra A, the projections are the extremal points of the
positive cone A+.



Projection-valued measures

Definition 3.53.
Let (X ,Σ) be a measurable space and H a Hilbert space. A map
E : Σ → B(H) is said to be a projection-valued measure (PVM) if the
following hold:

1 For every S ∈ Σ, E (S) is a projection.
2 E (∅) = 0.
3 E (X ) = I .
4 For every countable collection {S0,S1, . . .} of pairwise-disjoint sets

Sj ∈ E and f ∈ H, we have E (
⋃∞

j=0 Sj)f =
∑∞

j=0 E (Sj)f .



Projection-valued measures

Proposition 3.54.
Let (X ,Σ) be a measurable space, H a Hilbert space, and E : Σ → B(H)
a projection-valued map such that E (X ) = I . Then, the following are
equivalent:

1 E is a PVM.
2 For every countable collection {S0,S1, . . .} of pairwise-disjoint sets

Sj ∈ E ,
∑J

j=0 Ej converges as J → ∞ in the weak operator topology.
3 For any two disjoint sets S and T , E (S)E (T ) = 0.



Projection-valued measures

Given a PVM E : Σ → B(H) and elements η, ξ ∈ H we have:

• Eη,ξ : Σ → C with Eη,ξ(S) = ⟨η,E (S)ξ⟩ is a finite complex measure.
• Eη : Σ → R with Eη(S) = Eη,η(S) = ⟨η,E (S)η⟩ is a probability

measure.



Spectral integrals

Theorem 3.55.
Given a PVM E : B(C) → B(H) and a bounded Borel-measurable
function f : C → C, there exists a unique operator a ∈ B(H) such that

⟨η, aξ⟩ =
∫
C
f (λ) dEη,ξ(λ).

Symbolically, we write

a = E (f ) =

∫
C
f (λ) dE (λ).



Spectral theorem

Theorem 3.56.
Let a ∈ B(H) be a normal operator. Then, there exists a unique PVM
E : B(C) → B(H), supported on the spectrum σ(a) ⊂ C such that

a =

∫
C
λ dE (λ).

Remark.
If f : C → C is continuous on σ(a), then E (f ) is identical to f (a) as
defined via the continuous functional calculus.



W ∗-algebras

Definition 3.57.
A W ∗-algebra (or abstract von Neumann algebra) A is a C∗-algebra that
has a predual as a Banach space, i.e., we have A = (A∗)

∗ for a Banach
space A∗.

In addition to the norm and weak topologies, a W ∗-algebra has the
weak-∗ topology induced from the predual.

Definition 3.58.
• A linear map T : A → B between W ∗-algebras A,B is said to be

normal if it is weak-∗ continuous.
• Correspondingly, a state φ : A → C of a W ∗-algebra is called

normal if there is ρ ∈ A∗ such that

φa = aρ, ∀a ∈ A.



Commutants

Definition 3.59.
Let A be an algebra. The commutant of a set X ⊆ A, denoted as X ′, is
the set elements of A that commute with every element of X , i.e.,

X ′ = {a ∈ A : ax = xa, ∀x ∈ X}.

The bicommutant of X , denoted as X ′′, is the commutant of X ′.

Proposition 3.60.
With notation as above, the following hold.

• X ′ is a subalgebra of A.
• If A is unital, then X ′ is unital.
• If A is a ∗-algebra, then X ′ is a ∗-algebra.
• X ⊆ X ′′.
• X ′′′ = X ′.



W ∗-algebras

Theorem 3.61.
The set of projections of a W ∗-algebra A spans a norm-dense subspace
of A.

Definition 3.62.
A W ∗-algebra is said to be separable if it admits a faithful, normal
representation on a separable Hilbert space H.

Proposition 3.63.
If a the predual A∗ of a W ∗-algebra A is separable in the norm topology,
then A is separable.

Proposition 3.64.
If a W ∗-algebra is infinite-dimensional, then it is non-separable in the
norm topology.



Von Neumann algebras

Definition 3.65.
Let H be a Hilbert space. A (concrete) von Neumann algebra is a
∗-subalgebra of B(H) which is closed in the weak operator topology.

Theorem 3.66 (von Neumann).
Let H be a Hilbert space and M a unital ∗-subalgebra of B(H). Then,
the following are equivalent:

1 M is a von Neumann algebra.
2 M is closed in the strong operator topology.
3 M = M ′′.



Von Neumann algebras

Theorem 3.67 (Sakai).
Every von Neumann algebra has a predual, and is thus a W ∗-algebra.
Moreover, the predual is unique up to isometric isomorphism.

Theorem 3.68.
Every abelian von Neumann algebra is isometrically isomorphic to L∞(µ)
for some measure space (X ,Σ, µ).

Analogously to our interpretation of the study of C∗-algebras as
“non-commutative topology”, we can interpret the study of von Neumann
algebras as “non-commutative measure theory”.



Further reading

[1] W. Arveson, An Invitation to C∗-Algebras (Graduate Texts in
Mathematics). New York: Springer-Verlag, 1976, vol. 39.

[2] G. J. Murphy, C∗-Algebras and Operator Theory. Boston: Academic
Press, 1990.

[3] M. Takesaki, Theory of Operator Algebras I (Encyclopaedia of
Mathematical Sciences). Berlin: Springer, 2001, vol. 124.



Section 4

Embedding dynamical systems in operator
algebras



Dirac–von Neumann axioms of quantum mechanics

1 States are density operators, i.e., positive, trace-class operators
ρ : H → H on a Hilbert space H, with tr ρ = 1.

2 Observables are self-adjoint operators, a : D(a) → H.
3 Measurement expectation and probability:

Eρa = tr(ρa), Pρ(Ω) = Eρ(E (Ω)), a =

∫
R
λ dE (λ).

4 Unitary dynamics between measurements:

ρt = U t∗ρ0U
t .

5 Projective measurement:

ρ|e =
√
eρ

√
e

tr(
√
eρ

√
e)

, 0 < e ≤ I .



Algebraic formulation: States and observables

1 Associated with a physical system is a unital C∗-algebra A.
2 The set of states of the system is the state space S(A) of A.
3 The set of observables of the system is the set of self-adjoint

elements Asa of A.
4 The set of values that can be obtained in a measurement of a ∈ Asa

corresponds to the spectrum σ(a) ⊂ R.
5 The expected value of a measurement of a ∈ Asa when the system is

in state φ ∈ S(A) is given by φ(a).



Algebraic formulation: Events and measurement probabilities

• The set of events (or effects) that can be observed is the set of
positive elements e ∈ A+ such that 0 ≤ e ≤ 1. If the system is in
state φ ∈ S(A), the probability to observe e is given by φ(e).

• Supposing, further, that A is a W ∗-algebra, the measurement
probability for a to take value in a set S ∈ B(R) is given by φ(E (S)),
where E : B(R) → A is the PVM satisfying a =

∫
R λ dE (λ).



Completely positive maps

Notation.
Given a C∗-algebra A, Mn(A) is the C∗-algebra of n × n matrices with
entries in A.

Definition 4.1.
Let T : A → B be a linear map between C∗-algebras A and B. Given
n ∈ N, we say that the map T (n) : Mn(A) → Mn(B) defined as
T (n)([aij ]) = [T (aij)] is a matrix amplification of T .

Definition 4.2.
A linear map T : A → B between C∗-algebras A and B is said to be:
• n-positive if T (n) is positive.
• Completely positive if it is n-positive for every n ∈ N.



Completely positive maps

Theorem 4.3 (Stinespring).
Let A be a C∗-algebra and H a Hilbert space. A linear map
T : A → B(H) is completely positive iff there is a Hilbert space K , a
representation π : A → B(K ) and a bounded linear map V : K → H
such that

Ta = V (πa)V ∗, ∀a ∈ A.

Proposition 4.4.
With notation as above, if A is abelian then T : A → B(H) is completely
positive iff it is positive.

Theorem 4.5 (Choi).
Let K and H be finite-dimensional Hilbert spaces of dimension m and n,
respectively. Then, any completely positive map T : B(K ) → B(H) take
s the form T (a) =

∑mn
i=1 ViaV

∗
i for some operators Vi : K → H.



Quantum operations, quantum channels

Definition 4.6.
A linear map T : B → A between unital C∗-algebras B and A is said to
be a quantum operation if:

1 T is completely positive.
2 T1B ≤ 1A.

If T1B = 1A, T is said to be a quantum channel.

Proposition 4.7.
If T : B → A is a quantum operation, then for every state ω ∈ S(A)
T ∗ω ∈ B∗ is a positive functional satisfying (T ∗ω)1B ≤ 1. Moreover, if
T is a quantum channel, (T ∗ω)1B = 1.

Corollary 4.8.
The adjoint T ∗ : A∗ → B∗ of a quantum channel T : B → A maps the
state space S(A) into S(B).



Quantum operations, quantum channels

Proposition 4.9.
A normal (weak-∗ continuous) quantum operation T : B → A between
W ∗-algebras B and A has a predual, i.e., T = (T∗)

∗ for a unique linear
map T∗ : A∗ → B∗.



Algebraic formulation of measure-preserving dynamics

State space dynamics

Φ : Ω → Ω

Φ∗ : M(Ω) → M(Ω), Φ∗α = α ◦ Φ−1

• Φ: Invertible measure-preserving map.
• M: Space of Borel measures on Ω.
• Φ∗: Pushforward map on measures.
• µ: Invariant probability measure, Φ∗µ = µ.



Algebraic formulation of measure-preserving dynamics

Abelian formulation

U : A → A, Uf = f ◦ Φ
P : S∗(A) → S∗(A), Pp = p ◦ Φ−1

• A = L∞(µ): Abelian von Neumann algebra.
• Asa = {f ∈ A : f is real-valued}: Classical observables.
• U : A → A: Koopman operator.
• A∗ = L1(µ): Predual.
• S∗(A) = {p ∈ A∗ : p ≥ 0,

∫
Ω
p dµ = 1}: Probability densities.

• Ep : A → C with p ∈ S∗(A): Normal states, Epf =
∫
Ω
fp dµ.

• P : S∗(A) → S∗(A): Transfer operator.



Algebraic formulation of measure-preserving dynamics

Non-abelian formulation

U : B → B, Ua = UaU∗

P : S∗(B) → S∗(B), Bρ = U∗ρU

• H = L2(µ): Hilbert space.
• U : H → H: Unitary Koopman operator, Uf = f ◦ Φ.
• B = B(H): Non-abelian von Neumann algebra.
• Bsa = {a ∈ B : a is self-adjoint}: Quantum observables.
• U : B → B: Induced Koopman operator.
• B∗ = B1(H): Predual.
• S∗(B) = {ρ ∈ B∗ : ρ ≥ 0, tr ρ = 1}: Density operators.
• Eρ : B → C with ρ ∈ S∗(B): Normal states, Eρa = tr(aρ).
• P : S∗(B) → S∗(B): Induced transfer operator.



Algebraic formulation of measure-preserving dynamics

Classical–quantum consistency

Proposition 4.10.
The maps U : A → A and U : B → B are quantum channels.
Moreover, the following diagrams commute for the injective maps
π : A → B and Γ : S∗(A) → S∗(B):

A A

B B

U

π π

U

S∗(A) S∗(A)

S∗(B) S∗(B)

P

Γ Γ

P

• π : A → B: Regular representation, πf = a with ag = fg for all
g ∈ H.

• Γ : S∗(A) → S∗(B): Mapping of probability densities into pure
quantum states, Γ(π) = ⟨√p, ·⟩√p.



Section 5

Spectral theory of one-parameter evolution
groups



Setting and objectives

General assumptions

• Φ : G × Ω → Ω: Continuous-time, continuous flow on compact,
metrizable space Ω.

• µ: Ergodic invariant Borel probability measure.
• X : Ω → X continuous observation map into metric space X .
• U t : F → F : Koopman operator on Banach space F of

complex-valued observables.

Given. Time-ordered samples

xn = X (ωn), ωn = Φtn(ω0), tn = (n − 1)∆t.

Goal. Using the data xn, identify a collection of observables ζj : Ω → Y
which have the property of evolving coherently under the dynamics in a
suitable sense.



Setting and objectives

We recall the following facts from Section 2 (see Proposition 2.7 and
Theorems 2.29, 2.30).

Theorem 5.1.
1 {U t : C (Ω) → C (Ω)}t∈R is a strongly continuous group of

isometries.
2 {U t : Lp(µ) → Lp(µ)}t∈R, p ∈ [0,∞) is a strongly continuous group

of isometries. Moreover, U t : L2(µ) → L2(µ) is unitary.
3 {U t : L∞(µ) → L∞(µ)}t∈R is a weak-∗ continuous group of

isometries.

Notation.
• F : Any of the C (Ω) or Lp(µ) spaces with 1 ≤ p ≤ ∞.
• F0: Any of the C (Ω) or Lp(µ) spaces with 1 ≤ p < ∞.
• C0 (semi)group ≡ strongly continuous (semi)group.
• C∗

0 (semi)group ≡ weak-∗ continuous (semi)group.



Generator of C0 semigroups

Definition 5.2.
Let {S t}t∈R be a C0 semigroup on a Banach space E . The generator
A : D(A) → E of the semigroup {S t}t≥0 is defined as

Af = lim
t→0

S t f − f

t
, f ∈ D(A),

where the limit is taken in the norm of E , and the domain D(A) ⊆ E
consists of all f ∈ E for which the limit exists.



Generator of C0 semigroups

Theorem 5.3.
With the notation of Definition 5.2, the following hold.

1 A is closed and densely defined.
2 For all f ∈ D(A) and t ≥ 0, the function t 7→ S t f is continuously

differentiable, and satisfies

d

dt
S t f = AS t f = S tAf .

3 A uniquely characterizes the semigroup {S t}, i.e., if {S̃ t} is another
C0 semigroup on E with the same generator A, then S t = S̃ t for all
t ≥ 0.



Generator of C ∗
0 semigroups

Definition 5.4.
Let {S t}t≥0 be a C∗

0 semigroup on a Banach space E with predual E∗.
The generator A : D(A) → E of the semigroup {S t}t≥0 is defined as the
weak-∗ limit

⟨g ,Af ⟩ = lim
t→0

⟨g ,S t f − f ⟩
t

, f ∈ D(A), ∀g ∈ E∗,

where the domain D(A) ⊆ E consists of all f ∈ E for which the limit
exists.



Theorem 5.5.
With the notation of Definition 5.4, the following hold.

1 A is weak-∗ closed and densely defined.
2 For all f ∈ D(A) and t ≥ 0, the function t 7→ S t f is weak-∗

continuously differentiable, and satisfies〈
g ,

d

dt
S t f

〉
= ⟨g ,AS t f ⟩ = ⟨g ,S tAf ⟩.

3 A uniquely characterizes the semigroup {S t}, i.e., if {S̃ t} is another
C∗

0 semigroup on E with the same generator A, then S t = S̃ t for all
t ≥ 0.



Generator of unitary C0 groups

Theorem 5.6 (Stone).
Let {S t}t≥0 be a unitary C0 group on a Hilbert space H. Then, the
generator A : D(A) → H is skew-adjoint, i.e.,

A∗ = −A.

Conversely, if A : D(A) → H is skew-adjoint, it is the generator of a
unitary evolution group.



Generator of Koopman evolution groups

Corollary 5.7.
Under our general assumptions the following hold:

1 The Koopman evolution groups U t : F0 → F0 are uniquely
characterized by their generator V : D(V ) → F0, where

Vf = lim
t→0

U t f − f

t
.

Moreover, for F0 = L2(µ), V is skew-adjoint.
2 The Koopman evolution group U t : L∞(µ) → L∞(µ) is uniquely

characterized by its generator V : D(V ) → F0, where

Vf = lim
t→0

U t f − f

t

in weak-∗ sense.



Generator of Koopman evolution groups

Theorem 5.8 (ter Elst & Lemańczyk).
Let (Ω,Σ) be a compact metrizable space equipped with its Borel
σ-algebra Σ. Let µ be a Borel probability measure on Ω and
U t : L2(µ) → L2(µ) a C0 unitary evolution group with generator
V : D(V ) → L2(µ). Then, the following are equivalent.

1 For every t ∈ R there exists a µ-a.e. invertible, measurable, and
measure-preserving flow Φt : Ω → Ω such that U t f = f ◦ Φt .

2 The space A(V ) = D(V ) ∩ L∞(µ) is an algebra with respect to
function multiplication, and V is a derivation on A:

V (fg) = (Vf )g + f (Vg), ∀f , g ∈ A(V ).



Point spectrum

Definition 5.9.
Let A : D(A) → E be an operator on a Banach space with domain
D(A) ⊆ E . The point spectrum of A, denoted as σp(A) ⊆ C is defined as
the set of its eigenvalues. That is, λ ∈ C is an element of σp(A) iff there
is a nonzero vector u ∈ E (an eigenvector) such that

Au = λu.

Notation.
• We use the notation σp(A;E ) when we wish to make explicit the

Banach space on which A acts.



Eigenvalues and eigenfunctions

Definition 5.10.
Let A : D(A) → E be the generator of a C0 semigroup {S t}t≥0 on a
Banach space E . We say that λ ∈ C is an eigenvalue of the semigroup if
λ is an eigenvalue of A, i.e., there exists a nonzero u ∈ D(A) such that

Au = λu.

Lemma 5.11.
With notation as above, λ is an eigenvalue of {S t} if and only if z is an
eigenvector of S t for all t ≥ 0, i.e., there exist Λt ∈ C such that

S tu = Λtu, ∀t ≥ 0.

In particular, we have Λt = eλt .



Point spectra for measure-preserving flows

Theorem 5.12.
Let Φt : Ω → Ω a be a measure-preserving flow of a probability space
(Ω,Σ, µ). Let U t : Lp(µ) → Lp(µ) be the associated Koopman operators
on Lp(µ), p ∈ [1,∞], and V : D(V ) → Lp(µ) the corresponding
generators. Then, the following hold for every p, q ∈ [1,∞] and t ∈ R,

1 σp(U
t , Lp(µ)) = σp(U

t , Lq(µ)).
2 σp(V , Lp(µ)) = σp(V , Lq(µ)).
3 σp(U

t) is a subgroup of S1.
4 σp(V ) is a subgroup of iR.

Corollary 5.13.
Every eigenfunction of V lies in L∞(µ), and thus in Lp(µ) for every
p ∈ [1,∞].

Given λ = iα ∈ σp(V ), we say that α is an eigenfrequency of V .



Generating frequencies

Definition 5.14.
Assume the notation of Theorem 5.12.

1 We say that {iα0, iα1, . . .} ⊆ σp(V ) is a generating set if for every
iα ∈ σp(V ) there exist j1, j2, . . . , jn ∈ Z and k1, k2, . . . , kn ∈ N such
that

α = j1αk1 + j2αk2 + . . .+ jnαkn .

2 We say that σp(V ) is finitely generated if it has a finite generating
set.

3 A generating set is said to be minimal if it does does not have any
proper subsets which are generating sets.

Lemma 5.15.
1 The elements of a minimal generating set are rationally independent.
2 If a minimal generating set has at least two elements, then σp(V ) is

a dense subset of the imaginary line.



Generating frequencies

Lemma 5.16.
Let g1, g2, . . . be eigenfunctions corresponding to the eigenvalues of the
generating set in Definition 5.14, i.e., Vgj = iαjgj . Then, for every
iα ∈ σp(V ) with α = j1αk1 + j2αk2 + . . .+ jnαkn ,

z = g j1
k1
g j2
k2
· · · g jn

kn

is an eigenfunction of V corresponding to the eigenfrequency α.



Invariant subspaces

Notation.
• Hp = span{u ∈ L2(µ): u is an eigenfunction of V }.
• Hc = H⊥

p .
• {z0, z1, . . .}: Orthonormal eigenbasis of Hp, Vzj = iαjzj .

Theorem 5.17.
Let Φt : Ω → Ω be a measure-preserving flow on a completely metrizable
space with an invariant probability measure µ.

1 Hp and Hc are U t-invariant subspaces.
2 Every f ∈ Hp satisfies

U t f =
∞∑
j=0

f̂je
iαj tzj , f̂j = ⟨zj , f ⟩L2(µ).

3 Every f ∈ Hc satisfies

lim
T→∞

1
T

∫ T

0
|⟨g ,U t f ⟩L2(µ)| = 0, ∀g ∈ L2(µ).



Pure point spectrum

Definition 5.18.
With the notation of Theorem 5.17, we say that a measure-preserving
flow Φt : Ω → Ω has pure point spectrum if Hp = L2(µ).

Remark 5.19.
For a system with pure point spectrum:

1 The spectrum of V is not necessarily discrete.
2 The continuous spectrum is not necessarily empty.



Point spectra for ergodic flows

Proposition 5.20.
With the notation of Theorem 5.12, assume that Φt : Ω → Ω is ergodic.

1 Every eigenvalue λ ∈ σp(V ) is simple.
2 Every corresponding eigenfunction z ∈ Lp(µ) normalized such that

∥z∥Lp(µ) = 1 for any p ∈ [1,∞] satisfies |z | = 1 µ-a.e.



Factor maps

Definition 5.21.
Let T1 : Ω1 → Ω1 and T2 : Ω2 → Ω2 be measure-preserving
transformations of the probability spaces (Ω1,Σ1, µ1) and (Ω2,Σ2, µ2).
We say that T2 is a factor of T1 if there exists a T1-invariant set S1 ∈ Σ1
with µ2(S+1) = 1, a T2-invariant set S2 ∈ Σ2 with µ2(S2) = 1, and a
measure-preserving, surjective map φ : S1 → S2 such that

T2 ◦ φ = φ ◦ T1.

Such a map φ is called a factor map and satisfies the following
commutative diagram:

M1 M1

M2 M2

T1

φ φ

T2

.



Metric isomorphisms

Definition 5.22.
With the notation of Definition 5.21, we say that T1 and T2 are
measure-theoretically isomorphic or metrically isomorphic if there is a
factor φ : S1 → S2 with a measurable inverse.

Theorem 5.23 (von Neumann).
Let Φt : Ω → Ω be a measure-preserving flow on a completely metrizable
probability space (Ω,Σ, µ) with pure point spectrum. Then, Φt is
metrically isomorphic to a translation on a compact abelian group G.
Explicitly, G can be chosen as the character group of the point spectrum
σp(V ).



Metric isomorphisms

Corollary 5.24.
If σp(V ) is finitely generated, then Φt is metrically isomorphism to an
ergodic rotation on the d-torus, where d is the number of generating
frequencies of σp(V ). Explicitly, supposing that {iα1, . . . , iαd} is a
minimal generating set of σp(V ) with corresponding unit-norm
eigenfunctions z1, . . . , zd we have

R t ◦ φ = φ ◦ Φt ,

where R t : Td → Td is the torus rotation with frequencies α1, . . . , αd ,
and

φ(ω) = (z1(ω), . . . , zd(ω)), µ-a.e.



Spectral isomorphisms

Definition 5.25.
With the notation of Definition 5.22, let U1 : L2(µ1) → L2(µ1) and
U2 : L2(µ2) → L2(µ2) be the Koopman operators associated with T1 and
T2, respectively. We say that T1 and T2 are spectrally isomorphic if there
exists a unitary map U : L2(µ1) → L2(µ2) such that

U2 ◦ U = U ◦ U1.

Theorem 5.26 (von Neumann).
Two measure-preserving flows with pure point spectra are metrically
isomorphic iff they are spectrally isomorphic.



Section 6

Representation of classical dynamics in quantum
circuits



Classical and quantum bits

• A (classical) bit is a pure state of the abelian algebra C2.
• A quantum bit, or qubit, is a pure state of the matrix algebra

B(C2) ≃ M2(C).
• Noisy classical bits and qubits are represented by mixed states of C2

and M2, respectively.



Quantum computers

A quantum computer is a finite-dimensional quantum mechanical system
associated with the tensor product Hilbert space Bn ≡ B⊗n with B = C2.

Notation.
• |0⟩ and |1⟩ are orthonormal basis vectors of B known as

computational basis vectors.
• |b1 · · · bn⟩ ≡ |b1⟩ ⊗ · · · ⊗ |bn⟩ are orthonormal basis vectors of Bn.



Quantum computers

IBM Q One AWS Borealis

Physical qubit implementations include superconducting charges, trapped
ions, and photons.



Quantum circuits

A quantum circuit consists of wires, representing individual qubits, and
gates representing operations (quantum channels) on qubits.

• The depth of a quantum circuit is the longest path in the circuit.

Goal. Given a C0 group of unitary Koopman operators U t : H → H
induced by a measure-preserving flow with skew-adjoint generator
V : D(V ) → H and a subspace HL ⊂ D(V ) ⊂ H of dimension 2n, find a
unitary W : HL → Bn such that etGL with GL = WΠLVΠLW

∗ is
representable by a circuit of low depth.
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