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Section 1

Introduction



Ergodic theory

Ergodic theory studies the statistical behavior of measurable actions of
groups or semigroups on spaces.

Definition 1.1.
A left action of a (semi)group G on a set ⌦ is a map G ⇥ ⌦ ! ⌦ with
the following properties:

1 �(e,!) = !, for the the identity element e 2 G and all ! 2 ⌦.
2 �(gh,!) = �(g ,�(h,!)), for all g , h 2 G and ! 2 ⌦.

The set ⌦ is called the state space.

In this course, G will be an abelian group or semigroup that represents
the time domain. Common choices include:

N, Z, R+, R.

We write �g ⌘ �(g , ·), n 2 N,Z, and t 2 R+,R.
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Ergodic theory

Ludwig Boltzmann James Clerk Maxwell

Ergodic theory has its origin in the mid 19th century with the work of
Boltzmann and Maxwell on statistical mechanics.

The term ergodic is an amalgamation of the Greek words ergo (Ërgo),
which means work, and odos (odÏc), which means street.
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Ergodic theory

George David Birkhoff
Bernard Osgood Koopman 

Bernard Osgood

Koopman

John von Neumann

The mathematical foundations of the subject were established by
Koopman, von Neumann, Birkhoff, and many others, in work dating to
the 1930s.

Modern ergodic theory is a highly diverse subject with connections to
functional analysis, harmonic analysis, probability theory, topology,
geometry, number theory, and other mathematical disciplines.



Observables and ergodic hypothesis

Rather than studying the flow � directly, ergodic theory focuses on its
induced action on linear spaces of observables, e.g.,

F = {f : ⌦ ! Y},

for a vector space Y (oftentimes, Y = R or C).

Drawing on intuition from mechanical systems, Boltzmann postulated
that time averages of observables should well-approximate expectation
values with respect to a reference distribution, µ.

This is encapsulated in the ergodic hypothesis,
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which is stipulated to hold for typical initial conditions ! 2 ⌦ and
observables f : ⌦ ! Y in a suitable class.
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Operator-theoretic perspective

Definition 1.2.
1 For every g 2 G , the composition operator, or Koopman operator is

the linear map Ug : F ! F defined as

Ug = f � �g .

2 The transfer operator Pg : F 0 ! F 0 is the transpose of Ug , defined
as

Pgµ = µ � Ug .

Koopman and transfer operators allow the study of nonlinear dynamics
using techniques from linear operator theory.

A central theme of this course is that operator-theoretic techniques also
provide a bridge between dynamical systems theory and data science.
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Connections with representation theory

Observe that the set �̃ = {�g | g 2 G} equipped with composition of
maps forms a group.

1 h : G ! �̃ with h(g) = �g is a group homomorphism.
2 % : �̃ ! End(F) with %(�) = Ug is a representation.

Using operator-theoretic techniques, we study the dynamics through the
induced representation ⇢ : G ! End(F), where ⇢ = % � h:

G �̃
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Examples
Circle rotation in continuous time

• G = R, ⌦ = S1.
• Frequency parameter ↵ 2 R.
• �t(✓) = ✓ + ↵t mod 2⇡.

Exampled G is any group
R is any

set
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Examples
Rational circle rotation in discrete time

• G = Z, ⌦ = S1.
• Rotation angle A 2 [0, 2⇡), A/(2⇡) 2 Q.
• �1(✓) ⌘ �(✓) = ✓ + A mod 2⇡.
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Examples
Irrational circle rotation in discrete time

• G = Z, ⌦ = S1.
• Rotation angle A 2 [0, 2⇡), A/(2⇡) /2 Q.
• �1(✓) ⌘ �(✓) = ✓ + A mod 2⇡.



Examples
Doubling map

• G = N, ⌦ = S1.
• �(✓) = 2✓ mod 2⇡.
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Examples
Rational torus flow

• G = R, ⌦ = T2.
• Frequency vector ↵ = (↵1,↵2) 2 R2, ↵1/↵2 2 Q.
• �t(✓) = ✓ + ↵t mod 2⇡.



Examples
Irrational torus flow

• G = R, ⌦ = T2.
• Frequency vector ↵ = (↵1,↵2) 2 R2, ↵1/↵2 /2 Q.
• �t(✓) = ✓ + ↵t mod 2⇡.



Examples
Arnold cat map

• G = Z, ⌦ = T2.

• �(✓) = A✓ mod 2⇡, A =

✓
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Examples
Lorenz 63 system

• G = R, ⌦ = R3.
• �t(x) is the solution map of the initial-value problem

ẋ(t) = v(x(t)), x(0) = x

with

v(y) = (v1, v2, v3)

v1 = �(x2 � x1), v2 = x1(⇢� x3), v3 = x1x2 � �x3,

⇢ = 28,� = 10, � = 8/3.



Dynamical systems and data science
⌦ Y

X

Yt

X
Zt

Given. Time-ordered samples (x0, y0), (x1, y1), . . . , (xN�1, yN�1) of
observables X : ⌦ ! X (covariate) and Y : ⌦ ! Y (response), where Y
is a vector space and

xn = X (!n), yn = Y (!n), !n = �tn(x0), tn = (n � 1)�t.

Problem 1 [forecasting]. Using the data (xn, yn), construct (“learn”) a
function Zt : X ! Y that predicts Y at a lead time t � 0. That is, Zt

should have the property that Zt �X is closest to Yt := Y ��t among all
functions in a suitable class.

Problem 2 [coherent pattern extraction]. Using the data xn, identify a
collection of observables 'j : ⌦ ! Y which have the property of evolving
coherently under the dynamics in a suitable sense.

Y



Dynamical systems and data science

In this course, we explore various approaches for pointwise approximation
(for Problem 1) and spectral analysis (for Problem 2) of
Koopman/transfer operators.

A major requirement is that the approximations are refinable, i.e., the
learned functions Zt and 'j should have well-controlled limits as N ! 1.

Challenges. Linear operators on infinite-dimensional function spaces can
exhibit qualitatively new features which are not present in
finite-dimensional linear algebra, including:

1 Discontinuous (unbounded) linear maps.
2 Elements of the spectrum which are not eigenvalues (e.g.,

continuous spectrum).
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