Section 4

Spectral theory

Setting and objectives

General assumptions

- $\Phi: G \times \Omega \to \overline{\Omega}$: Continuous-time, continuous flow on compact, metrisable space Ω .
- \bullet μ : Ergodic invariant Borel probability measure.
- $X : \Omega \to \mathcal{K}$ continuous observation map into metric space \mathcal{X} .
- $U^t: \mathcal{F} \to \mathcal{F}$: Koopman operator on Banach space \mathcal{F} of complex-valued observables.

Given. Time-ordered samples

$$x_n = X(\omega_n), \quad \omega_n = \Phi^{t_n}(\omega_0), \quad t_n = (n-1)\Delta t.$$

Feature extraction

Goal. Using the data x_n , identify a collection of observables $\zeta_j:\Omega\to\mathcal{Y}$ which have the property of evolving coherently under the dynamics in a suitable sense.

Setting and objectives

We recall the following facts from Section 2 (Theorems 2.29 and 2.30). Theorem 4.1. Under our general assumptions: Co groups (or remigroups)

- **1** The evolution group $\{U^t: C(\Omega) o C(\Omega)\}_{t \in \mathbb{R}}$ is strongly continuous
- 2 The evolution group $\{U^t: L^p(\mu) \to L^p(\mu)\}_{t \in \mathbb{R}}, p \in [0,\infty)$ is strongly continuous.
- 3 The evolution group $\{U^t:L^\infty(\mu) o L^\infty(\mu)\}_{t\in\mathbb{R}}$ is weakly

The evolution group
$$\{U^t: L^{\infty}(\mu) \to L^{\infty}(\mu)\}$$
 is a group under composition of operators:

$$-U^s \circ U^t = U^{4t}$$

$$-U^o = Id$$

$$-(U^t)^{-1} = U^{-t}$$

 $\lim_{t\to 0} U^t f = f$ in C(x) norm

For every fec(sc)

KOOPMAN ELGENFUNCTIONS IN C(2) $U^t z = \Lambda_t z$, $z \in C(\Omega) \setminus \{0\}$, Koopmon eigenfunting Λ_t ε α, Koopman eigenvalue Recall: U^{t} acts as a *-isomorphism of $C(\Omega)$, neved as a C^{*} -algebra

of functions, i.e., $\forall f, g \in C(\Omega)$, $U^{t}(fg) = (U^{t}f)(U^{t}g)$, $(U^{t}f)^{*} = U^{t}f^{*}$, $||U^{f}f||_{C(\Omega)} = ||f||_{C(\Omega)}$ Suppose 2,2' are Koopman eigenfunctions corresponding to eigenvalues 16,14. $U^{t}(zz') = (U^{t}z)(U^{t}z') = (\Lambda_{t}z)(\Lambda_{t}'z') = \Lambda_{t}\Lambda_{t}'(zz')$ =7 22' is also on eigenfunction, corresponding to $\Lambda_{t}\Lambda_{t}'$. $U^{t}(z^{*}) = (U^{t}z)^{*} = (\Lambda_{t}z)^{*} = \Lambda_{t}z^{*}$ $= 7 z^{*} \text{ is an eigenfunction corresponding to } \Lambda_{t}^{*}$

 $|U^t|z|^2 = |U^t(z^*z)| = |U^tz^*| |U^tz| = |\Lambda_t|^2 |z|^2$ And since $|U^t|$ is an isometry, $\|z\|_{\mathcal{C}(\mathfrak{N})} \| \mathcal{U}^{t} z \|_{\mathcal{C}(\mathfrak{N})} = \| \Lambda_{\xi} z \|_{\mathcal{C}(\mathfrak{N})} = |\Lambda_{\xi}| \|z\|_{\mathcal{C}(\mathfrak{N})} \Rightarrow |\Lambda_{\xi}| = 1$ => The eigenvalues of Ut lie on the unit circle in C.

Ming the previously extendished

properties we deduce that the set of eigenvalues of Ut forms a multiplicative subgroup SI - Λ_{t} , Λ_{t} $\in \sigma_{p}(U^{t}; c(x)) = \sigma_{p}(U^{t}; c(x))$ (closed under \circ) - le op (ut; c(-2)) (identity element)

- lt = lt normalized (inverse)

- lt = lt normalized (inverse)

Similarly, the eigenfunctions form a multiplicative group

By the group property of Ut, if Utz=Atz we have $U^{srt}z = U^{s} \circ U^{t}z = U^{s} \wedge_{t} 2 = \wedge_{t} U^{s}z$ => U'z is also an eigenfunction at eigenvalue At Claim: Suppose that $\phi^f: \Sigma \rightarrow \Sigma$ is measure preserving and egodic. Then if $z \in C(z)$ is a continuous eigenfunction of U^f there exists $\alpha \in \mathbb{R}$. Then if $z \in C(z)$ is a continuous eigenfunction of U^f there exists $\alpha \in \mathbb{R}$. Then if $z \in C(z)$ is a continuous eigenfunction of U^f there exists $\alpha \in \mathbb{R}$. Then if $z \in C(z)$ is a continuous eigenfunction of U^f there exists $\alpha \in \mathbb{R}$. Then if $z \in C(z)$ is a continuous eigenfunction of U^f there exists $\alpha \in \mathbb{R}$. \Rightarrow $U^{\dagger}z = e^{i\alpha t}z$ \Rightarrow z his a periodic evolution under U^{\dagger} with period $2\pi/\alpha$.

Let $R_t^{\alpha}: S^{\frac{1}{2}}$ be the circle station with frequency α . Then, the following diagram commutes: $S_t^{\alpha} \to S_t^{\alpha}$ to a circle rotation

Setting and objectives

We recall the following facts from Section 2 (see Proposition 2.7 and Theorems 2.29, 2.30).

Theorem 4.1.

- ① $\{U^t: C(\Omega) \to C(\Omega)\}_{t \in \mathbb{R}}$ is a strongly continuous group of isometries.
- 2 $\{U^t: L^p(\mu) \to L^p(\mu)\}_{t \in \mathbb{R}}$, $p \in [0, \infty)$ is a strongly continuous group of isometries. Moreover, $U^t: L^2(\mu) \to L^2(\mu)$ is unitary.
- 3 $\{U^t: L^{\infty}(\mu) \to L^{\infty}(\mu)\}_{t \in \mathbb{R}}$ is a weak-* continuous group of isometries.

Notation.

- \mathcal{F} : Any of the $C(\Omega)$ or $L^p(\mu)$ spaces with $1 \leq p \leq \infty$.
- \mathcal{F}_0 : Any of the $C(\Omega)$ or $L^p(\mu)$ spaces with $1 \leq p < \infty$.
- C_0 (semi)group \equiv strongly continuous (semi)group.
- C_0^* (semi)group \equiv weak-* continuous (semi)group.

Generator of C_0 semigroups

Definition 4.2.

Let $\{S^t\}_{t\geq 0}$ be a C_0 semigroup on a Banach space E. The generator $A:D(A)\to E$ of the semigroup $\{S^t\}_{t\geq 0}$ is defined as

$$Af = \lim_{t \to 0} \frac{S^t f - f}{t}, \quad f \in D(A),$$

where the limit is taken in the norm of E, and the domain $D(A) \subseteq E$

For every $f \in C'(\Omega)$, we S^{\dagger} , $\lim_{t \to \infty} \frac{U^{t}f(\omega) - f(\omega)}{t} = \lim_{t \to \infty} \frac{f(\psi^{t}(\omega)) - f(\omega)}{t} = \lim_{t \to \infty} \frac{f(\omega + \alpha t) - f(\omega)}{\alpha t} = f'(\omega) \propto \frac{f(\omega + \alpha t) - f(\omega)}{t} = f'(\omega) \propto \frac{f(\omega + \alpha t)}{t} = \lim_{t \to \infty} \frac{f(\omega + \alpha t) - f(\omega)}{t} = \lim_{t \to \infty} \frac{f(\omega + \alpha t) - f(\omega)}{t} = 0$ $\lim_{t \to \infty} \left\| \frac{U^{t}f - f}{t} - \alpha f' \right\|_{C(\Omega)} = \lim_{t \to \infty} \frac{f(\omega + \alpha t) - f(\omega)}{t} - \alpha f'(\omega) = 0$ $\lim_{t \to \infty} \frac{U^{t}f}{t} - \frac{1}{2} C'(\Omega)$. In Each, in this case $D(A) = C'(\Omega)$

Moreover the operator A is unbounded. First, we say that A:D(A) -> E is bounded if sup ||Af||_E < 0 A is said to be unbounded if no such bound exists For our example, A:D(R) -> C(R) is unbounded because we have a sequence $f_n(\omega) = e^{in\omega}$, $n \in \mathbb{N}$ such that $\frac{\|Af_n\|_{\mathcal{C}(\mathcal{R})}}{\|f_n\|_{\mathcal{C}(\mathcal{R})}} = \frac{\|\alpha f_n\|_{\mathcal{C}(\mathcal{R})}}{\|f_n\|_{\mathcal{C}(\mathcal{R})}} = \frac{\|\alpha inf_n\|_{\mathcal{C}(\mathcal{R})}}{\|f_n\|_{\mathcal{C}(\mathcal{R})}}$ That is, In is a sequence of unit nectors in C(R), for which $||Afn||_{C(R)}$ Example 2 With \$ as above, consider $U^t: L^2(\mu) \rightarrow L^2(\mu)$. Here, Af = lim $U^{t}f - f$ In this cose, C'(x) is a strict subspace of D(A).

In fact, $D(A) = H'(\mu)$ = Elevents of L2 that have L2 dervatives.

-D(A) is a dense rulspace of E Generator of C_0 semigroups E> VIEE and E>O there exists ge DGD s.t. ||f-g|| < E. es. c'(s') o a deve subspace of Cls'). Theorem 4.3. With the notation of Definition 4.2, the following hold.

 $\frac{d}{dt}S^tf = AS^tf = S^tAf.$

3 A uniquely characterizes the semigroup $\{S^t\}$, i.e., if $\{\tilde{S}^t\}$ is another C_0 semigroup on E with the same generator A, then $S^t = \tilde{S}^t$ for all

differentiable, and satisfies

for every In ED(A) that converges to fix E such that gn = Afn also converges, to git,

(ii) g=Af

 $\overline{t} > 0$.

then we have (i) ff D(A)

A is closed if

 A is closed and densely defined. 2 For all $f \in D(A)$ and $t \ge 0$, the function $t \mapsto S^t f$ is continuously

Generator of C_0^* semigroups

Definition 4.4.

eg. L'(f) Let $\{S^t\}_{t\geq 0}$ be a C_0^* semigroup on a Banach space E with predual E_* .

The generator $A:D(A)\to E$ of the semigroup $\{S^t\}_{t\geq 0}$ is defined as the weak-* limit

cs, L°(f)

$$\langle g, Af \rangle = \lim_{t \to 0} \frac{\langle g, S^t f - f \rangle}{t}, \quad f \in D(A), \quad \forall g \in E_*,$$
 where the domain $D(A) \subseteq E$ consists of all $f \in E$ for which the limit exists.
$$\text{e.g. for } g \in \mathcal{L}'(f), \quad \text{felt}^{\infty}(f)$$

$$\langle S, Af \rangle = \int_{\Omega} Af \ df$$

Theorem 4.5.

With the notation of Definition 4.4, the following hold.

- A is weak-* closed and densely defined.
- 2 For all $f \in D(A)$ and $t \ge 0$, the function $t \mapsto S^t f$ is weak-* continuously differentiable, and satisfies

$$\left\langle g, \frac{d}{dt}S^t f \right\rangle = \left\langle g, AS^t f \right\rangle = \left\langle g, S^t Af \right\rangle.$$

3 A uniquely characterizes the semigroup $\{S^t\}$, i.e., if $\{\tilde{S}^t\}$ is another C_0^* semigroup on E with the same generator A, then $S^t = \tilde{S}^t$ for all t > 0.

Generator of unitary C_0 groups $\int_{-\infty}^{\ell*} e^{-s^{-\ell}}$ Theorem 4.6 (Stone). Let $\{S^t\}_{t>0}^T$ be a unitary C_0 group on a Hilbert space H. Then, the generator $A: D(A) \rightarrow H$ is skew-adjoint, i.e.,

 $A^* = -A$. Conversely, if $A: D(A) \to H$ is skew-adjoint, it is the generator of a

unitary evolution group. If A is stew-adjoint, it is ontisy muchicia.

be eny fig & DCAD, <f, Ag } = - < A f, g }

Example: $\phi^{\dagger}: S^1 \rightarrow S^1$ circle of afting $U^{\dagger}: L^2(\xi) \rightarrow L^2(\chi)$. (an define $\tilde{A}: P(\tilde{A}) \rightarrow L^2(\gamma)$ as a densely defined operator with domain $D(\tilde{A}) = C'(s)$ as $\widetilde{A}f = \lim_{t \to 0} \frac{U^t t - f}{t}$. They it follows by integration parts that \widetilde{A} is any isymmetric.

However, it is not stearadioint. In contact, the remader A: D(A) -> L'(A) with D(A)=H'(q)

In infinite dimensions, not every antisymmetric operator is stew-adjoint.

In Ante-dimensional spaces, artis/mnetic = stear ofint

We can think of A as a stew-adjoint extension of \widetilde{A} i.e., $\widetilde{A}f = Af \quad \text{for} \quad f \in D(\widetilde{A}) = C'(R), \text{ but} \quad D(A) > D(\widetilde{A})$ $H'(\Gamma).$

Generator of Koopman evolution groups (c(x) or LP(f) for

Corollary 4.7.

Under our general assumptions the following hold:

1 The Koopman evolution groups $U^t: \mathcal{F}_0 \to \dot{\mathcal{F}}_0$ are uniquely characterized by their generator $V: D(V) \to \mathcal{F}_0$, where

$$Vf = \lim_{t \to 0} \frac{U^t f - f}{t}.$$

Moreover, for $\mathcal{F}_0 = L^2(\mu)$, V is skew-adjoint.

2 The Koopman evolution group $U^t: L^{\infty}(\mu) \to L^{\infty}(\mu)$ is uniquely characterized by its generator $V: D(V) \to \mathcal{F}_0$, where

$$Vf = \lim_{t \to 0} \frac{U^t f - f}{t}$$

in weak-* sense.

Generator of Koopman evolution groups

Theorem 4.8 (ter Elst & Lemańczyk).

Let (Ω, Σ) be a compact metrisable space equipped with its Borel σ -algebra Σ . Let μ be a Borel probability measure on Ω and $U^t: L^2(\mu) \to L^2(\mu)$ a C_0 unitary evolution group with generator $V: D(V) \to L^2(\mu)$. Then, the following are equivalent.

- ① For every $t \in \mathbb{R}$ there exists a μ -a.e. invertible, measurable, and measure-preserving flow $\Phi^t : \Omega \to \Omega$ such that $U^t f = f \circ \Phi^t$.
- 2 The space $\mathfrak{A}(V) = D(V) \cap L^{\infty}(\mu)$ is an algebra with respect to function multiplication, and V is a derivation on \mathfrak{A} :

Point spectrum

Definition 4.9.

Let $A:D(A)\to E$ be an operator on a Banach space with domain $D(A)\subseteq E$. The point spectrum of A, denoted as $\sigma_p(A)\subseteq \mathbb{C}$ is defined as the set of its eigenvalues. That is, $\lambda\in\mathbb{C}$ is an element of $\sigma_p(A)$ iff there is a nonzero vector $u\in E$ (an eigenvector) such that

$$Au = \lambda u$$
.

Notation.

• We use the notation $\sigma_p(A; E)$ when we wish to make explicit the Banach space on which A acts.

Eigenvalues and eigenfunctions

Definition 4.10.

Let $A: D(A) \to E$ be the generator of a C_0 semigroup $\{S^t\}_{t \geq 0}$ on a Banach space E. We say that $\lambda \in \mathbb{C}$ is an eigenvalue of the semigroup if λ is an eigenvalue of A, i.e., there exists a nonzero $u \in D(A)$ such that

$$Au = \lambda u$$
.

Lemma 4.11.

With notation as above, λ is an eigenvalue of $\{S^t\}$ if and only if z is an eigenvector of S^t for all $t \geq 0$, i.e., there exist $\Lambda^t \in \mathbb{C}$ such that

$$S^t u = \Lambda^t u, \quad \forall t \geq 0.$$

In particular, we have $\Lambda^t = e^{\lambda t}$.

Pf. Suppose Stu=1tu. We show that Au=In where 1 = e 26. Since st is a Co semigroup, the stu = At u is a continuous hunchon (i) $\Lambda^0 = 1$ (since $S^0 = I_A$) (ii) $\Lambda^{s+f} = \Lambda^s \Lambda^{\frac{1}{5}}$ (since $S^{s+f} = S^s S^{\frac{1}{5}}$).
The only function with these properties is the exponential function, $\Lambda^{\frac{1}{5}} = e^{26}$ for some 2 EC. be hove Au=lim $\int_{t\to0}^{t} \frac{1}{t} = \lim_{t\to0} \frac{\int_{t\to0}^{t} \frac{1}{t}}{t} = \lim_{t\to0} \frac{e^{2t}-1}{t} = \lim_{t$ Now suppose An = In. We show that $S^{t} = N^{t} n$ for $N^{t} = e^{2t}$.

Since $u \in D(A)$ we have that $S^{t}u$ is the unique solution of the equation $\frac{d}{dl} S^{t} u = AS^{t} u = S^{t} A u = AS^{t} u. \quad (*)$ If follows by substitution that $S^t = e^{2t} n$ satisfies (x). Since, as can be shown, solutions to (*) are anique, the claim follows

Refurn to the Koopman sperators Ut: LP(µ) -> L'(µ) Poeriously, we raw that because Ut acts on LP(h) by eigenralue 1 t of Ut Ges on the unit circle. isometries, every $U^{t}f = \Lambda^{t}f \implies \|U^{t}f\|_{U(A)} = \|\Lambda^{t}\|\|f\|_{L^{p}(A)} \implies \|\Lambda^{t}\| = 1$ As a result every eigenvalue A of the generalist is purely imaginary. i.e. if $\Lambda^{+}=e^{At}\in S^{+}$ then $A=i\kappa$ for some $\kappa\in\mathbb{R}$. Conclusion: Every eigenfunction κ of V^{+} is a periodic obsarble, i.e., Utu = Nu= etu= eixt u This motivates using Koopman eigenfunctions as coherent observables of the system.

Point spectra for measure-preserving flows

Theorem 4.12.

Let $\Phi^t:\Omega\to\Omega$ a be a measure-preserving flow of a probability space (Ω, Σ, μ) . Let $U^t: L^p(\mu) \to L^p(\mu)$ be the associated Koopman operators on $L^p(\mu)$, $p \in [1, \infty]$, and $V : D(V) \to L^p(\mu)$ the corresponding generators. Then, the following hold.

- **~** For every $p,q \in [1,\infty]$ and $t \in \mathbb{R}$, $\sigma_p(U^t,L^p(\mu)) = \sigma_p(U^t,L^q(\mu))$. Recall LP(f) C L1(f) when p>q $\sigma_p(V, L^p(\mu)) = \sigma_p(V, L^q(\mu)).$
 - 3 $\sigma_n(U^t)$ is a subgroup of S^1 .
- Φ $\sigma_p(V)$ is a subgroup of iR. I a lone subject of her U^{t-1} [P(+)]

Corollary 4.13.

Every eigenfunction of V lies in $L^{\infty}(\mu)$, and thus in $L^{p}(\mu)$ for every $p \in [1, \infty].$

Given $\lambda = i\alpha \in \sigma_p(V)$, we say that α is an eigenfrequency of V.

Moreover, $U^{\dagger}\bar{u}_{1} = (U^{\dagger}u_{1}) = \overline{\Lambda_{1}^{\dagger}}\bar{u}_{1} \Rightarrow \overline{\Lambda_{1}^{\dagger}} \in \sigma_{p}(U^{\dagger}) \Rightarrow \sigma_{p}(U^{\dagger}) \text{ closed under}$ Moreover, since $|\Lambda^t|^2 = \Lambda^t \Lambda_1 = 1 \Rightarrow \lambda_1^t = |\Lambda^t| \Rightarrow \sigma_p(u^t)$ has a multiplicative have we have $U^t 1 = 1 \Rightarrow \Lambda^t = 1 + \sigma_p(U^t)$ Also, we have $U^{\dagger} = 1 = 7$ $\Lambda^{\dagger} = 1 + \sigma_{p}(U^{\dagger})$ in inv. We conclude that $\sigma_{p}(U^{\dagger})$ is a countable subgroup of S^{2} . Now since $\Lambda^t = e^{2t}$ if hollows that $\sigma_P(V)$ is an (edditive) subgroup of iR i.e. if $\lambda_1, \lambda_2 \in \sigma_p(v)$ $\lambda_1 + \lambda_2$ is also on eigenvalue, etc.

Generating frequencies

Definition 4.14.

Assume the notation of Theorem 4.12.

1 We say that $\{ia_0, ia_1, \ldots\} \subseteq \sigma_p(V)$ is a generating set if for every $i\alpha \in \sigma_p(V)$ there exist $j_1, j_2, \ldots, j_n \in \mathbb{Z}$ and $k_1, k_2, \ldots, k_n \in \mathbb{N}$ such that

$$\alpha = j_1 \partial_{\mathbf{k_1}} + j_2 \partial_{\mathbf{k_2}} + \ldots + j_n \partial_{\mathbf{k_n}}.$$

- 2 We say that $\sigma_p(V)$ is finitely generated if it has a finite generating set.
- **3** A generating set is said to be minimal if it does does not have any proper subsets which are generating sets.

Lemma 4.15.

- 1 The elements of a minimal generating set are rationally independent.
- 2 If a minimal generating set has at least two elements, then $\sigma_p(V)$ is a dense subset of the imaginary line.

trample: Ergodic rotation on T2 di, def R, rationally indep Pt(W1,W2) = (Witalt, Wztazt) mod 277, for $f \in C'(T')$ $Vf[\omega,\omega] = \lim_{t \to 0} \frac{U^{t}f[\omega,\omega] - f(\omega,\omega)}{t} = \alpha_1 \frac{2f(\omega,\omega)}{2\omega_1} + \alpha_2 \frac{2f(\omega+\omega_2)}{2\omega_2}$ $= \sum_{t=0}^{\infty} \int_{t}^{\infty} \int_{$ trajectory does not close $V\phi_j = \alpha_1 \frac{\partial}{\partial \omega_1} \phi_j + \alpha_2 \frac{\partial}{\partial \omega_2} \phi_j = i (j_1 \alpha_1 + j_2 \alpha_2) \phi_j$ Shre [\$]; EZ form, on orthonormal tonis of L2(t), we have identified a normalized I complete let if linearly independent eigenfunctions, and we conclude $\sigma_{\overline{\gamma}}(V) = \{i_{X_j}\}_{j \in \mathbb{Z}^2}$ Link subset of iR. Link, ides is a uninimal generating pel.

Generating frequencies

Lemma 4.16.

Let g_1, g_2, \ldots be eigenfunctions corresponding to the eigenvalues of the generating set in Definition 4.14, i.e., $Vg_j = i\alpha_j g_j$. Then, for every $i\alpha \in \sigma_p(V)$ with $\alpha = j_1\alpha_{k_1} + j_2\alpha_{k_2} + \ldots + j_n\alpha_{k_n}$,

$$z = g_{k_1}^{j_1} g_{k_2}^{j_2} \cdots g_{k_n}^{j_n}$$

is an eigenfunction of V corresponding to the eigenfrequency $\alpha.$

Invariant subspaces

Notation.

- $H_p = \overline{\text{span}\{u \in L^2(\mu): u \text{ is an eigenfunction of } V\}}$.
- $H_c = H_p^{\perp}$. $\mathcal{L}_{configures}$ spectrum subspace
- $\{z_0, z_1, \ldots\}$: Orthonormal eigenbasis of H_p , $Vz_j = i\alpha_j z_j$.

Theorem 4.17.

Let $\Phi^t: \Omega \to \Omega$ be a measure-preserving flow on a completely metrizable space with an invariant probability measure μ .

- **1** H_p and H_c are U^t -invariant subspaces.
- 2 Every $f \in H_p$ satisfies

$$U^t f = \sum_{j=0}^{\infty} \hat{f_j} e^{i\alpha_j t} z_j, \quad \hat{f_j} = \langle z_j, f \rangle_{L^2(\mu)}.$$
Thenables in fle have "weak mixing" behavior.

3 Every $f \in H_c$ satisfies

$$\lim_{T\to\infty}\frac{1}{T}\int_0^T \left|\langle g,U^tf\rangle_{L^2(\mu)}\right|=0,\quad\forall g\in L^2(\mu).$$

Pure point spectrum

Definition 4.18.

With the notation of Theorem 4.17, we say that a measure-preserving flow $\Phi^t: \Omega \to \Omega$ has pure point spectrum if $H_p = L^2(\mu)$. > V is unitarily diagonalizable

Remark 4.19.

For a system with pure point spectrum:

- 1 The spectrum of V is not necessarily discrete.

 2 The continuous spectrum is not op (V) is a love subject of iR

Elements in $\overline{\sigma_p(v)} \setminus \sigma_p(v)$ lie in the continuous spectrum of V.

Point spectra for ergodic flows Tell(p), Uffer he all f

Proposition 4.20.

With the notation of Theorem 4.12, assume that $\Phi^t: \Omega \to \Omega$ is ergodic.

1 Every eigenvalue $\lambda \in \sigma_p(V)$ is simple. 2 Every corresponding eigenfunction $z \in L^p(\mu)$ normalized such that $\|z\|_{L^p(\mu)} = 1$ for any $p \in [1, \infty]$ satisfies |z| = 1 μ -a.e.

Suppose that $U^{\dagger}z = \Lambda^{\dagger}z$ for all $t \in \mathbb{R}$ with $\Lambda^{\dagger} = 2^{\dagger}$. Then, $U^{\dagger}|z|^{2} = U^{\dagger}(\bar{z}z) = (U^{\dagger}\bar{z})(U^{\dagger}z) = \bar{\Lambda}^{\dagger}\Lambda^{\dagger}|z|^{2} = |z|^{2}$ $U^{\dagger}|z|^{2} = U^{\dagger}(\bar{z}z) = (U^{\dagger}\bar{z})(U^{\dagger}z) = \bar{\Lambda}^{\dagger}\Lambda^{\dagger}|z|^{2} = |z|^{2}$

 $|U^{\xi}|_{2}|_{2}^{2} = U^{\xi}(\bar{z}z) = (U^{\xi}z)(U^{\xi}z) = \Lambda^{\xi}\Lambda^{\xi}|_{2}|_{2}^{2} = |z|^{2}$ By equality, $|z|^{2} = \text{const. } \mu - \text{a.e.}$ and can be hormulized such that $|z| = 1 \mu - \text{a.e.}$ Tuppose that w is quother eigenfunction conceptualing to Λ^{ξ} , i.e. $U^{\xi}w = \Lambda^{\xi}w$. We have, $U^{\xi}(\bar{w}z) = \Lambda^{\xi}\Lambda^{\xi}\bar{w}z = \bar{w}z \implies \bar{w}z$ is contact $\mu - \text{a.e.} \implies w$ is a multiple of z $\Rightarrow \lambda$ is simple.

Factor maps

Definition 4.21.

Let $T_1:\Omega_1\to\Omega_1$ and $T_2:\Omega_2\to\Omega_2$ be measure-preserving transformations of the probability spaces $(\Omega_1,\Sigma_1,\mu_1)$ and $(\Omega_2,\Sigma_2,\mu_2)$. We say that T_2 is a factor of T_1 if there exists a T_1 -invariant set $S_1\in\Sigma_1$ with $\mu_2(S_2)=1$, a T_2 -invariant set $S_2\in\Sigma_2$ with $\mu_2(S_2)=1$, and a measure-preserving, surjective map $\varphi:S_1\to S_2$ such that

$$T_2 \circ \varphi = \varphi \circ T_1.$$

Such a map φ is called a factor map and satisfies the following commutative diagram:

$$\begin{array}{ccc}
SM_1 & \xrightarrow{T_1} & M_1^S \\
\varphi \downarrow & & \downarrow \varphi \\
SM_2 & \xrightarrow{T_2} & SM_2
\end{array}$$

 $SM_2 \xrightarrow{'2} SM_2$ Prop. Let $\phi^{\xi}: \mathcal{R} \to \mathcal{R}$ be an exact measure-preserving flow of a standard prohability space $(\mathcal{R}, \mathcal{Z}, f)$. Let $ik \in \mathcal{P}(V)$, $R^{\xi}: S^{\xi} \to S^{\xi}$ $R^{\xi}[\theta] = \theta + \kappa f$ and $\mathcal{E}R$. Let Vz = ik2, normalized $s^{\xi}: |z| = 1$. Then $R^{\xi} \circ Z = Z \circ \phi^{\xi}$ is a factor map.

Example Variable-frequency notation. Let $\phi^{\xi}: S^{1} \longrightarrow S^{1}$ be the solution map of the ODE $\dot{\omega}(\xi) = \beta(\omega(\xi))$ for $\beta: S^{1} \rightarrow \mathbb{R}$ a strictly positive continuous hunction. In this case, the generator V, applied to a C^{1} hunction f, is given by Vz(w) = $\lambda z(\omega)$ \Leftrightarrow $\beta(\omega) \frac{dz}{d\omega} = \lambda z(\omega)$ (*) Consider the eigenvalue problem Charge of variables $d\theta = \frac{C}{3(\omega)} d\omega$ i.e. $\theta(\omega) = C \int \frac{1}{3(\omega')} d\omega'$ where C is such that $\theta(\omega) = E_{\pi}$.

Metric isomorphisms

Definition 4.22.

With the notation of Definition 4.21, we say that T_1 and T_2 are measure-theoretically isomorphic or metrically isomorphic if there is a factor $\varphi: S_1 \to S_2$ with a measurable inverse.

Theorem 4.23 (von Neumann).

Let $\Phi^t:\Omega\to\Omega$ be a measure-preserving flow on a completely metrizable probability space (Ω,Σ,μ) with pure point spectrum. Then, Φ^t is metrically isomorphic to a translation on a compact abelian group $\mathcal G$. Explicitly, $\mathcal G$ can be chosen as the character group of the point spectrum $\sigma_p(V)$.

Metric isomorphisms

Corollary 4.24.

If $\sigma_p(V)$ is finitely generated, then Φ^t is metrically isomorphism to an ergodic rotation on the d-torus, where d is the number of generating frequencies of $\sigma_p(V)$. Explicitly, supposing that $\{i\alpha_1,\ldots,i\alpha_d\}$ is a minimal generating set of $\sigma_p(V)$ with corresponding unit-norm eigenfunctions z_1,\ldots,z_d we have

$$R^t \circ \varphi = \varphi \circ \Phi^t,$$

where $R^t: \mathbb{T}^d \to \mathbb{T}^d$ is the torus rotation with frequencies $\alpha_1, \ldots, \alpha_d$, and $\alpha_1, \ldots, \alpha_d$

$$\varphi(\omega)=(z_1(\omega),\ldots,z_d(\omega)), \quad \mu\text{-a.e.}$$

Number of the large: of (V) is usually dust in iff (i.e., as long as 1.72)

Spectral isomorphisms

Definition 4.25.

With the notation of Definition 4.22, let $U_1:L^2(\mu_1)\to L^2(\mu_1)$ and $U_2:L^2(\mu_2)\to L^2(\mu_2)$ be the Koopman operators associated with T_1 and T_2 , respectively. We say that T_1 and T_2 are spectrally isomorphic if there exists a unitary map $\mathcal{U}:L^2(\mu_1)\to L^2(\mu_2)$ such that

Two measure-preserving flows with pure point spectra are metrically isomorphic iff they are spectrally isomorphic.

Dynamics-invariant kernels

$$k: \stackrel{\mathcal{S}}{M} \times \stackrel{\mathcal{S}}{M} \to \mathbb{R}, \quad G: L^2(\mu) \to L^2(\mu), \quad Gf = \int_{\stackrel{\mathcal{M}}{M}} k(\cdot, \omega) f(\omega) d\mu(\omega)$$

- k: Bounded, symmetric kernel.
- G is self-adjoint, compact.

Proposition 4.27.

If k is invariant under the product flow,

$$k(\Phi^t(\omega), \Phi^t(\omega')) = k(\omega, \omega'),$$

then G commutes with the Koopman operator,

$$[U^{t},G] = U^{t}G - GU^{t} = 0.$$

$$GU^{t}f(\omega) = \int_{\Omega} k(\omega,\omega')f(\phi^{t}(\omega'))d\mu(\omega') = \int_{\Omega} k(\phi^{t}(\omega),\phi^{t}(\omega'))f(\phi^{t}(\omega'))\mu(\omega')$$
where μ is ϕ^{t} -invarient $\rho = \int_{\Omega} k(\phi^{t}(\omega),\omega')f(\omega')d\mu(\omega) = U^{t}Gf(\omega)$

Dynamics-invariant kernels

$$k: \stackrel{\mathfrak{D}}{\not M} \times \stackrel{\mathfrak{D}}{\not M} \to \mathbb{R}, \quad G: L^2(\mu) \to L^2(\mu), \quad Gf = \int_{\stackrel{\mathfrak{M}}{\not M}} k(\cdot, \omega) f(\omega) \, d\mu(\omega)$$

Corollary 4.28.

Every eigenspace W of G with nonzero corresponding eigenvalue is a finite-dimensional, U^t -invariant subspace of H_p , and $V|_W$ is unitarily diagonalizable.

In more detail, improve that Ut, G community and the system is egodic. Let $U^{\dagger}z = e^{i\omega t}z$ be a Kuspman ciperfunction. Then, $U^{\dagger}Gz = GU^{\dagger}z = e^{i\omega t}Gz \Rightarrow Gz$ is also a Koopman ciperfunction with cipervalue $e^{i\omega t}$. Since $e^{i\omega t}$ is a simple $e^{i\omega t}$ godicity?, if follows that Gz = Jz for some eigenstance A of G.

=> Figurate W of Georgeoning to 240 is a minor of finitely may experient of Ut

Kernels from delay-coordinate maps

$$S_{Q}(\omega,\omega') = \frac{1}{Q} \sum_{q=0}^{Q-1} \left\| X(\Phi^{q \Delta t}(\omega)) - X(\Phi^{q \Delta t}(\omega')) \right\|^{2}.$$

$$= \frac{1}{Q} \left\| X_{Q}(\omega) - X_{Q}(\omega') \right\|^{2}$$
By the mean ergodic theorem,
$$S_{Q} \xrightarrow[Q \to \infty]{} \bar{S}, \quad \text{where } S(\omega,\omega') = \left\| X(\omega) - X(\omega') \right\|^{2}$$

in $L^2(\mu \times \mu)$, where \bar{S} is a $U^t \otimes U^t$ invariant function. And the product system Proposition 4.29.

Fix a continuous kernel shape function $h: \mathbb{R}_+ \to \mathbb{R}_+$. Then:

1 $\bar{k}(\omega, \omega') := h(\bar{S}(\omega, \omega'))$ satisfies the assumptions of

Proposition 4.27.

2
$$G_Q: L^2(\mu) \to L^2(\mu)$$
 with

 $L^2(\mu) \to L^2(\mu)$ with

 $L^2(\mu) \to L^2(\mu)$ with

$$G_Qf = \int_{MR} k_Q(\cdot,\omega) f \ d\mu(\omega)$$
 converges to G in $L^2(\mu)$ operator norm.

```
Delay-coordinate maps
          \phi^t: \Omega \rightarrow \Omega
           X: \Omega \to X (covariate/obs. function)
Gien QEN define Xa: D -> X s.t.
                                                                                     Theorem (Takens; Saver, Yorke, Casdojhi, Pobinsin.). With "high probability" there is Q* EN s.t. for Q7/Q* XQ is injective
Franke: $\phi_{\sigma} = 5' \phi_{\sigma} = \omega \tax + 
     S' S' \rightarrow \mathbb{R} \times (\omega) = \cos \omega

S' S' \rightarrow \mathbb{R} \times (\omega) = \cos \omega

S' S' \rightarrow \mathbb{R} \times (\omega) = \cos \omega
                        Then for Q=2,
```

Finite-difference approximation of the generator - sampling measure on trojustony Wo, U1, - , WN-1

$$V_{\Delta t,N}: L^{2}(\mu_{N}) \rightarrow L^{2}(\mu_{N}), \ V_{\Delta t,N} = \frac{\tilde{V}_{\Delta t,N} - \tilde{V}_{\Delta t,N}^{*}}{2}, \ \tilde{V}_{\Delta t,N} = \frac{\hat{U}_{N} - \operatorname{Id}}{\Delta t}$$

$$\text{Explicitly, we have} \qquad \qquad \text{Fig. } \frac{1}{2} \left(v^{\Delta t} - 1 \right) \mathcal{L}$$

$$\tilde{V}_{\Delta t,N}f(\omega_{n}) = \begin{cases} (f(\omega_{n+1}) - f(\omega_{n}))/\Delta t, & 0 \leq n \leq N-2, \end{cases}$$

 $ilde{V}_{\Delta t,N}f(\omega_n) = egin{cases} (f(\omega_{n+1}) - f(\omega_n))/\Delta t, \ -f(\omega_{N-1})/\Delta t, \end{cases}$ n = N - 1.

$$\tilde{V}_{\Delta t,N}f(\omega_n) = \begin{cases} (f(\omega_{n+1}) - f(\omega_n))/\Delta t, & 0 \leq n \leq N-2, \\ -f(\omega_{N-1})/\Delta t, & n = N-1. \end{cases}$$
 (an also define higher-order certal, formand, etc., schemes.

Finite-difference approximation of the generator

$$V_{\Delta t,N}:L^2(\mu_N) o L^2(\mu_N),\ V_{\Delta t,N}=rac{ ilde{V}_{\Delta t,N}- ilde{V}_{\Delta t,N}^*}{2},\ ilde{V}_{\Delta t,N}=rac{\hat{U}_N-\operatorname{Id}}{\Delta t}$$

Lemma 4.30.

For $f \in C^1(\Omega)$ and $g \in C(\Omega)$,

$$\lim_{\Delta t \to 0} \lim_{N \to \infty} \langle g, V_{\Delta t, N} f \rangle_{L^2(\mu_N)} = \langle g, V f \rangle_{L^2(\mu)}.$$

Corollary 4.31.

With the notation of Section 3, if k is C^1 , then for every $i, j \in \mathbb{N}$ such that $\lambda_i, \lambda_i \neq 0$,

$$\lim_{\Delta t \to 0} \lim_{N \to \infty} \langle \phi_{i,N} V_{N,\Delta t} \phi_{j,N} \rangle_{L^{2}(\mu_{N})} = \langle \phi_{i}, V \phi_{j} \rangle_{L^{2}(\mu)}.$$

$$\begin{cases} & & \\ &$$

R Goal: perturb V by adding a diffusion operator Δ such that the spectrum of - Warning: Singular poterbodion becomes discrete

Markov normalization

$$egin{aligned} p_
u(\omega,\omega') &= rac{ ilde{k}(\omega,\omega')}{
ho_
u(\omega)}, \quad ilde{k}_
u(\omega,\omega') &= rac{k(\omega,\omega')}{\sigma_
u(\omega')}, \
ho_
u(\omega) &= \int_M ilde{k}_
u(\omega,\omega') \, d
u(\omega'), \quad \sigma_
u(\omega') &= \int_M k(\omega',\omega'') \, d
u(\omega'') \end{aligned}$$

- Assume: $k \ge 0$, $k, k^{-1} \in L^{\infty}(\nu \times \nu)$.
- p is a Markov kernel with respect to ν , i.e.,

$$p \geq 0$$
, $\int_{M} p(\omega, \cdot) d\nu = 1$, ν -a.e. $\omega \in M$.

Markov normalization

$$p_{
u}(\omega,\omega') = rac{ ilde{k}(\omega,\omega')}{
ho_{
u}(\omega)}, \quad ilde{k}_{
u}(\omega,\omega') = rac{k(\omega,\omega')}{\sigma_{
u}(\omega')}, \
ho_{
u}(\omega) = \int_{M} ilde{k}_{
u}(\omega,\omega') \, d
u(\omega'), \quad \sigma_{
u}(\omega') = \int_{M} k(\omega',\omega'') \, d
u(\omega'')$$

Set: $k=k_Q$, $\nu=\mu_N$ or $\nu=\mu$. We get Markov operators $G_{Q,N}:L^2(\mu_N)\to L^2(\mu_N),\ G_Q:L^2(\mu)\to L^2(\mu)$ with continuous transition kernels:

$$G_{Q,N}f = \int_{\mathcal{M}} p_{Q,\mu_N}(\cdot,\omega) f(\omega) d\mu_N(\omega), \quad Gf = \int_{\mathcal{M}} p_{Q,\mu}(\cdot,\omega) f(\omega) d\mu_N(\omega),$$

Large-data limit: As $N \to \infty$, $G_{Q,N}$ converges spectrally to G_Q in the sense of Theorem 3.25.

Markov normalization

$$egin{aligned} p_
u(\omega,\omega') &= rac{ ilde{k}(\omega,\omega')}{
ho_
u(\omega)}, \quad ilde{k}_
u(\omega,\omega') &= rac{k(\omega,\omega')}{\sigma_
u(\omega')}, \
ho_
u(\omega) &= \int_M ilde{k}_
u(\omega,\omega') \, d
u(\omega'), \quad \sigma_
u(\omega') &= \int_M k(\omega',\omega'') \, d
u(\omega'') \end{aligned}$$

Set: $k = \bar{k}$, $\nu = \mu$. We get a self-adjoint Markov operator $G: L^2(\mu) \to L^2(\mu)$ that commutes with the Koopman operator:

$$\overline{\mathsf{G}} f = \int_{M} \bar{p}_{\mu}(\cdot,\omega) f(\omega) \, d\mu(\omega).$$

Infinite-delay limit: As $Q \to \infty$ G_Q converges in operator norm, and thus spectrally, to \overline{G} .

Remark.

By Corollary 4.28, every eigenfunction ϕ_j of G corresponding to nonzero eigenvalue lies in the domain of the generator V.

Diffusion regularization

$$\Delta:D(\Delta)\to \tilde{H}_p,\quad \Delta=(I-G)^{-1}$$

$$\Delta\phi_j=\eta_j\phi_j,\quad \eta_j=1-\frac{1}{\lambda_j}\quad \text{think of G as a heat-operator}$$

$$G\approx e^{-\tau\Delta}$$

$$\tilde{H}_p=\overline{\operatorname{ran} G}\subseteq H_p.$$

$$D(\Delta)\equiv \tilde{H}_p^2=\{f\in \tilde{H}_p:\sum_j\eta_j|\langle\phi_j,f\rangle_{L^2(\mu)}|^2<\infty\}.\quad \overline{\mathcal{I}_{-G}}=\frac{1}{2-e^{-\tau\Delta}}$$

≈ರ∆

Proposition 4.32.

1 For every $\epsilon > 0$,

$$\mathcal{L}_{\epsilon} = V - \epsilon \Delta$$
,

is a well-defined dissipative operator on \tilde{H}_p^2 , i.e., $\operatorname{Re}\langle f, \mathcal{L}_{\epsilon} f \rangle \leq 0$.

2 Let z be an eigenfunction of V lying in H_p^2 with corresponding eigenvalue $i\omega$. Then, we have

$$\Delta z=\eta z, \quad \Delta_e z=\gamma z, \quad \gamma=-\epsilon\eta+i\omega.$$
 Legarather of $\Delta_{\mathcal{E}}$ are equal to eigenfrequency is shifted by $-\epsilon\eta$

Petrov-Galerkin method

Infinite-dimensional variational problem

Find $z_j \in ilde{H}^2_p$ and $\gamma_j \in \mathbb{C}$, such that for all $f \in ilde{H}_p$,

$$\langle f, Vz_j \rangle_{L^2(\mu)} - \epsilon \langle f, \Delta z \rangle_{L^2(\mu)} = \gamma_j \langle f, z \rangle_{L^2(\mu)}.$$

- The above is a well-defined variational eigenvalue problem, i.e., it satisfies the appropriate boundedness and coercivity conditions.
- We order the solutions z_j in order of increasing Dirichlet energy,

$$E_j = \langle z_j, \Delta z_j \rangle_{L^2(\mu)} = \operatorname{Re} \gamma_j / \epsilon.$$

Petrov-Galerkin method

Data-driven approximation

Find $z_j\in ilde{H}^2_{p,L,Q,N}$ and $\gamma_i\in\mathbb{C}$, such that for all $f\in ilde{H}_{p,L,Q,N}$,

$$_{\mathcal{L}}\langle f, Vz_{j}\rangle_{\mathsf{L}^{2}(\mu_{N})} - \epsilon\langle f, \Delta z_{j}\rangle_{\mathsf{L}^{2}(\mu_{N})} = \gamma_{j}\langle f, z_{j}\rangle_{\mathsf{L}^{2}(\mu_{N})}.$$

- Mudix generalized eigenvalue publish $ilde{H}_{p,L,Q,N}=\mathrm{span}\{\phi_{0,Q,N},\ldots,\phi_{L-1,Q,N}\}\subseteq L^2(\mu_N)$, where $\phi_{j,Q,N}$ are eigenfunctions of $G_{Q,N}$.
- $H_{p,l,Q,N}^2$ defined analogously to \tilde{H}_p^2 .
- The data-driven scheme converges in the iterated limit

$$\frac{1}{7} = \sum_{i=1}^{lim} \frac{\lim_{l \to \infty} \lim_{N \to \infty} \lim_{N \to \infty} .}{\sum_{i=1}^{lim} \frac{\lim_{l \to \infty} \lim_{N \to \infty} \lim_{N \to \infty} .}{\sum_{i=1}^{lim} \frac{\lim_{l \to \infty} \lim_{N \to \infty} \lim_{N \to \infty} .}{\sum_{i=1}^{lim} \frac{\lim_{l \to \infty} \lim_{N \to \infty} \lim_{N \to \infty} .}{\sum_{i=1}^{lim} \frac{\lim_{l \to \infty} \lim_{N \to \infty} \lim_{N \to \infty} .}{\sum_{i=1}^{lim} \frac{\lim_{l \to \infty} \lim_{N \to \infty} \lim_{N \to \infty} .}{\sum_{i=1}^{lim} \frac{\lim_{N \to \infty} .}{\sum_{i=1}^{lim}$$

Variable-speed rotation on \mathbb{T}^2

$$egin{aligned} \dot{\omega}(t) &= ec{V}(\omega(t)) \ ec{V}(\omega) &= (V_1, V_2), \quad \omega = (heta_1, heta_2) \ V_1 &= 1 + eta \cos heta_1 \ V_2 &= lpha (1 - eta \sin heta_2) \end{aligned}$$

$$\alpha = \sqrt{30}$$
, $\beta = \sqrt{1/2}$

Koopman eigenfunctions

Koopman eigenfunctions from noisy data

Koopman eigenfunctions for the variable-speed flow on \mathbb{T}^2 recovered from data from data corrupted with i.i.d. Gaussian noise in \mathbb{R}^3 with SNR $\simeq 1$.

Approximate Koopman eigenfunctions

Definition 4.33.

An observable $z \in L^2(\mu)$ is said to be an ϵ -approximate Koopman eigenfunction if there exists $\nu_t \in \mathbb{C}$ such that

$$||U^t z - \nu_t z||_{L^2(\mu)} < \epsilon ||z||_{L^2(\mu)}.$$
 (**)

- A Koopman eigenfunction is an ϵ -approximate eigenfunction for every $\epsilon>0$.
- We seek $z \in L^2(\mu)$ which is an ϵ -approximate eigenfunction for "small" ϵ , and t lying in a "large" time interval.

It can be shown that
$$\|[V^t, G_{\mathcal{R}}]\| \le \frac{C}{\mathcal{R}}$$

=> $G_{\mathcal{R}}$ has approximately Koophan-invarious eigengaces.
Look for elements of these eigenspaces as candidates of observables 2 ratisfying (4)

Approximate eigenfunctions from delay-coordinate maps

Theorem 4.34.

Let ϕ and ψ be mutually-orthogonal, unit-norm, real eigenfunctions of G_Q corresponding to nonzero eigenvalues κ and λ , respectively, with $\kappa \geq \lambda$. Assume that κ, λ are simple if distinct and twofold-degenerate if equal. Define

$$z = \frac{1}{\sqrt{2}}(\phi + i\psi), \quad \alpha_t = \langle z, U^t z \rangle, \quad \nu = \langle \psi, V \phi \rangle,$$

where ω is real, and set $T=(Q-1)\,\Delta t$, $\delta_T=(\kappa-\lambda)/\sqrt{2}$, $\tilde{\delta}_T=\delta_T/\kappa$,

$$\gamma_T = \min_{u \in \sigma(\mathsf{G}_Q) \backslash \{\kappa, \lambda\}} \left\{ \min\{|\kappa - u|, |\lambda - u|\} \right\}.$$

Then, the following hold for every $t \ge 0$:

Approximate eigenfunctions from delay-coordinate maps

Theorem 4.34.

1 α_t lies in the $\tilde{\epsilon}_t$ -approximate point spectrum of U^t , and z is a corresponding $\tilde{\epsilon}_t$ -approximate eigenfunction for the bound

$$\tilde{\epsilon}_t = s_t + \sqrt{S_t},$$

where

$$s_t = \frac{1}{\gamma_T} \left(\frac{C_1 t}{T} + 3 \delta_T \right), \quad S_t = \frac{C_2 (1 + \tilde{\delta}_T)}{\lambda} \int_0^t s_u \, du.$$
 Ly length of delay consending window = QAt Here, C_1 and C_2 are constants that depend only on the observation

map F and generator V.

2 The modulus $|\nu|$ is independent of the choice of the real orthonormal basis $\{\phi, \psi\}$ for the eigenspace(s) corresponding to κ and λ . Moreover, the phase factor $e^{i\nu t}$ is related to the autocorrelation function α_t according to the bound

$$|\alpha_t - e^{i\nu t}| \le 2\sqrt{S_t}.$$

Spectrum

Definition 4.35.

Let $A: D(A) \to F$ be a densely-define operator on a Banach space F over $\mathbb C$ with domain $D(A) \subseteq F$.

- **1** The spectrum of A, denoted as $\sigma(A)$ is the set of complex numbers λ such that $A \lambda I$ has no bounded inverse.
- 2 The resolvent set of A, denoted as $\rho(A)$, is the complement of $\sigma(A)$ in \mathbb{C} .
- 3 For every $\lambda \in \rho(A)$ the resolvent $R_A(\lambda)$ is the bounded operator given by $\rho(A) = (A \lambda I)^{-1}$.
- 4 The spectral radius of A is defined as $r_{\sigma}(A) = \sup_{\lambda \in \sigma(A)} \mathbb{A}$.

Spectrum

Theorem 4.36.

With the notation of Definition 4.35, the following hold.

- **1** $\sigma(A)$ is a closed subset of \mathbb{C} .
- **2** If A is not closed, then $\sigma(A) = \mathbb{C}$.
- 3 If D(A) = F and A is bounded, then $\underline{r}_{\sigma}(A) \leq ||A||$. and thus A is closed

The spendrum is "interesting" only for closed operators

Frangle:
$$F = C^2$$
 $\sigma(A) = \sigma_{\overline{p}}(A) = \{0\}$

$$A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

$$\|A\| = 1$$

Assume A is closed DECOMPOSITION OF THE SPECTRUM 760(A) (=> {A-II has no od. inverse } (=> A is not bijective

A-21 is not injective Exter A-217/09 €> 2 € op (A) (2 is an eigenvalue)

A-21 is injective but not surjective

ron A-22 is a dense mbgale Teope(A) (purly continuous)

A-17 is not bounded below 3 a squere

f, f2, ... with ||fn||=1 s.1.||(A-22)fn||->0

for self-adjoint and stew-aljornt ops $\sigma_{r}(A) = \emptyset$

ran(A-12) is not

2 (or (A) (residual)

Projection-valued measures (geodal wasqued)

Definition 4.37.

Let $(H, \langle \cdot, \cdot \rangle_H)$ be a Hilbert space over \mathbb{C} . A map $E : \mathfrak{B}(\mathbb{C}) \to B(H)$ is called a projection-valued measure (PVM) if:

- For every $S \in \mathfrak{B}(\mathbb{C})$, E(S) is an orthogonal projection. $(S)^* = E(S)^*$
- \mathfrak{D} $E(\mathbb{C})=I.$
- **3** For every $f, g \in H$, the map $\varepsilon_{fg} : \mathfrak{B}(\mathbb{C}) \to \mathbb{C}$ with

$$\varepsilon_{fg}(S) = \langle f, E(S)g \rangle_H$$

with multidicites

is a complex measure.

Example
$$H = C$$
, A: self-adjoint non matrix.

We know that $\sigma(A) = [1, ..., ln: ly \in \mathbb{R} \text{ is } cn \text{ e-alue of } A]$

where the exists an orthonormal loss is $\{u_1, ..., u_n\}$ of C^n set. Aug: digital and there exists an orthonormal loss is $\{u_1, ..., u_n\}$ of C^n set. Aug: digital projection). Then, Deline $T_i \in \mathcal{B}(C) \longrightarrow \mathcal{B}(H)$ set. $E(S) = \sum_{j: l_i \in S} T_j$ is a PVM.

 $E: \mathcal{B}(C) \longrightarrow \mathcal{B}(H)$ set. $E(S) = \sum_{j: l_i \in S} T_j$ is a PVM.

Projection-valued measures

Functional calculus

Theorem 4.38.

With the notation of Definition 4.37, let $f:\mathbb{C}\to\mathbb{C}$ be a Borel-measurable function. Then, there exists a unique operator $E_f:D(E_f)\to H$ with domain

$$D(E_f) = \left\{ h \in H : \int_{\mathbb{C}} |f|^2 d\varepsilon_{hh} < \infty
ight\},$$

such that

$$\langle g, E_f h \rangle_H = \int_{\mathbb{R}} f \, d\varepsilon_{gh}, \quad \forall g \in H, \quad \forall h \in D(E_f).$$

Notation.

Notation.

•
$$\int_{\mathbb{C}} f \, dE \equiv E_f$$
.

• If $A = \int_{\mathbb{C}} \operatorname{Id} \, dE$, then $f(A) \equiv E_f$.

• However, $A = \sum_{j} A_{j} \iint_{j} = \int_{\mathbb{C}} \lambda \, dE(\lambda)$

for the self-adjoint metric in the grains, example, given a harding
$$f: C \rightarrow C$$
 be can define $f(A) = \sum_{j} f(J_{j}) T_{j}$

Spectral theorem for skew-adjoint operators

Theorem 4.39.

Let $A: D(A) \rightarrow H$ be skew-adjoint.

- \bullet $\sigma(A)$ is a subset of the imaginary line.
 - 2 There exists a unique PVM $E_A: \mathfrak{B}(\mathbb{C}) \to \mathbb{C}$ such that

$$A = \int_{\mathbb{R}} i\alpha \, dE(\alpha).$$

- 3 $i \operatorname{supp} E_A = \sigma(A)$.
- $\mbox{\bf 4} \mbox{ If } \{U^t: H \to H\}_{t \in \mathbb{R}} \mbox{ is the C_0 unitary group generated by A, then$

$$U^t = e^{tA} \equiv \int_{\mathbb{D}} e^{i\alpha t} dE(\alpha).$$

Unitary Koopman evolution group

$$U^t:L^2(\mu) o L^2(\mu),\quad U^tf=f\circ\Phi^t,\quad U^{t*}=U^{-t}$$

Generator: $V:D(V) o L^2(\mu)$,

$$D(V)\subset L^2(\mu), \quad V^*=-V, \quad Vf=\lim_{t o 0}rac{U^tf-f}{t}.$$

Spectral measure: $E:\mathfrak{B}(\mathbb{R}) o B(L^2(\mu))$,

$$V = \int_{\mathbb{R}} i\omega \ \mathsf{d} \mathsf{E}(lpha), \quad U^t = \int_{\mathbb{R}} \mathsf{e}^{ilpha t} \ \mathsf{d} \mathsf{E}(\omega).$$

Unitary Koopman evolution group

$$U^t:L^2(\mu)\to L^2(\mu),\quad U^tf=f\circ\Phi^t,\quad U^{t*}=U^{-t}$$

Theorem 4.40.

There is a U^t -invariant orthogonal splitting $L^2(\mu) = H_p \oplus H_c$ such that:

1 H_p has an orthonormal basis $\{z_i\}$ consisting of eigenfunctions of the generator,

$$Vz_j = i\alpha_j z_j, \quad \alpha_j \in \mathbb{R}.$$
 For any lyge Le(f), the

② For every $f \in H_c$ and $g \in L^2(\mu)$,

$$Vz_{j}=ilpha_{j}z_{j}, \quad lpha_{j}\in\mathbb{R}.$$
 For any $f\in\mathcal{C}(J)$, and $g\in L^{2}(\mu)$,
$$\lim_{T\to\infty}\frac{1}{T}\int_{0}^{T}|\langle g,U^{t}f\rangle_{L^{2}(\mu)}|\,dt=0.$$

 $E = E_p + E_c, where:$

Given:

Positive-definite, C^1 kernel $k: \Omega \times \Omega \to \mathbb{R}$.

Integral operators $K: L^2(\mu) \to \mathcal{K}, G = K^*K$.

Pre-smoothing:

$$A: L^2(\mu) \to L^2(\mu), \quad A = VG.$$

- ran $G \subseteq \operatorname{ran} K^* \subset D(V)$.
- A = VG is a Hilbert-Schmidt integral operator on $L^2(\mu)$ with kernel $k' \in C(X \times X)$, $k'(\cdot, \omega) = Vk(\cdot, \omega)$, i.e.,

$$Af = \int_{\Omega} k'(\cdot, \omega) f(\omega) d\mu(\omega).$$

Given:

Positive-definite, C^1 kernel $k: \Omega \times \Omega \to \mathbb{R}$.

Integral operators $K:L^2(\mu) o\mathcal{K},\ \mathcal{G}=K^*K.$

Post-smoothing:

$$B: L^2(\mu) \to L^2(\mu), \quad B = \overline{GV}.$$

- $GV \subset (GV)^{**} = B = -A^*$.
- B is a Hilbert-Schmidt integral operator with

$$Bf = -\int_{\Omega} k'(\cdot, \omega) f(\omega) d\mu(\omega).$$

Given:

Positive-definite, C^1 kernel $k: \Omega \times \Omega \to \mathbb{R}$.

Integral operators $K: L^2(\mu) \to \mathcal{K}, G = K^*K$.

Skew-adjoint compactification on the RKHS:

$$W: \mathcal{K} \to \mathcal{K}, \quad W = KVK^*.$$

$$W^* = W$$

ullet W is a skew-adjoint, Hilbert-Schmidt operator on ${\mathcal K}$ satisfying

$$Wf = -\int_{\Omega} k'(\omega, \cdot) f(\omega) d\mu(\omega).$$

Given:

Positive-definite, C^1 kernel $k: \Omega \times \Omega \to \mathbb{R}$.

Integral operators $K: L^2(\mu) \to \mathcal{K}, G = K^*K$.

Skew-adjoint compactification on $L^2(\mu)$:

$$ilde{V}: L^2(\mu) o L^2(\mu), \quad ilde{V} = G^{1/2} V G^{1/2}.$$

- $K = \mathcal{U}G^{1/2}$ (polar decomposition).
- $ilde{V}$ is a skew-adjoint, Hilbert-Schmidt operator on $L^2(\mu)$ related to W by

$$\tilde{V} = \mathcal{U}^* W \mathcal{U}$$
.

Eigenvalues and eigenfunctions

Proposition 4.41.

Let $k: \Omega \times \Omega \to \mathbb{R}$ be a C^1 , L^2 -universal, μ -Markov ergodic kernel.

1 There exists an orthonormal basis $\tilde{z}_0, \tilde{z}_1, \ldots,$ of $L^2(\mu)$ consisting of eigenfunctions of \tilde{V} ,

$$\tilde{V}\tilde{z}_j = i\alpha_j\tilde{z}_j, \quad \alpha_j \in \mathbb{R}.$$

- 2 In the above, $i\alpha_0 = 0$ is a simple eigenvalue corresponding to the constant eigenfunction $\tilde{z}_0 = 1$.
- 3 \tilde{V} has an associated purely atomic PVM $\tilde{E}:\mathfrak{B}(\mathbb{R})\to B(L^2(\mu))$ such that

$$\tilde{E}(S) = \sum_{j:\alpha_j \in S} \langle \tilde{z}_j, \cdot \rangle_{L^2(\mu)} \tilde{z}_j, \quad \tilde{V} = \int_{\mathbb{R}} i\alpha \, d\tilde{E}(\alpha).$$

$$= \sum_{j:\alpha_j \in S} i\alpha_j \, \widehat{\mathbb{I}}_j$$

Strong resolvent convergence

Definition 4.42.

- **1** A one-parameter family of operators $A_{\tau}: D(A_{\tau}) \to H$, $\tau > 0$, on a Hilbert space H is said to converge to a skew-adjoint operator $A: D(A) \to H$ in strong resolvent sense if for every $\rho \in \mathbb{C} \setminus \{i\mathbb{R}\}$ in the resolvent set of A the resolvents $(A_{\tau} \rho)^{-1}$ converge to $(A \rho)^{-1}$ strongly.
- 2 The family A_{τ} is said to be p2-continuous if it is uniformly bounded and $\tau \mapsto ||p(A_{\tau})||$ is continuous for every degree-2 polynomial p.
- 3 If A_{τ} is skew-adjoint, A_{τ} is said to converge to A in strong dynamical sense if for every $t \in \mathbb{R}$, $e^{tA_{\tau}}$ converges to e^{tA} strongly.

Strong resolvent convergence

Theorem 4.43.

With the notation of Definition 4.42, suppose that A_{τ} is skew-adjoint. Then:

- Strong resolvent convergence is equivalent to strong dynamical convergence.
- 2 A sufficient condition for strong resolvent convergence $A_{\tau} \to A$ is that A_{τ} converges to A strongly in a core, i.e., a subspace $C \subseteq D(A)$ such that $\overline{A|_C} = A$.
- 3 The domain $D(A^2)$ is a core for A.

Strong resolvent convergence

Theorem 4.44.

Let $A_{\tau}: D(A_{\tau}) \to H$ be a one-parameter family of skew-adjoint operators that converges to a skew-adjoint operator $A: D(A) \to H$ in strong resolvent sense. Let $E_{\tau}: \mathfrak{B}(R) \to B(H)$ and $E: \mathfrak{B}(R) \to B(H)$ be the PVMs associated with A_{τ} and A, respectively.

- **1** For every bounded, Borel-measurable set $\Omega \subset R$ such that $E(\partial\Omega) = 0$, $E_{\tau}(\Omega)$ converges strongly to $E(\Omega)$.
- **2** For every bounded, continuous function $Z: i\mathbb{R} \to \mathbb{C}$, $Z(A_{\tau})$ converges strongly to Z(A).
- 3 If the operators A_{τ} are compact, then for every element $i\alpha \in i\mathbb{R}$ of the spectrum of A there exists a one-parameter family $i\alpha_{\tau}$ of eigenvalues of A_{τ} such that $\lim_{\tau \to 0} \alpha_{\tau} = \alpha$. Moreover, if A_{τ} is p2-continuous, the curve $\tau \mapsto \alpha_{\tau}$ is continuous.

Spectral convergence of the compactified generators

Theorem 4.45.

Let $\{G_{\tau}\}_{\tau\geq 0}$ be a strongly continuous, ergodic semigroup of Markov operators on $L^2(\mu)$ such that for every $\tau>0$,

$$G_{\tau}f = \int_{\Omega} k_{\tau}(\cdot,\omega)f(\omega) d\mu(\omega),$$

where $k_{\tau}: \Omega \times \Omega \to \mathbb{R}$ is a C^1 , L^2 -universal, positive-definite kernel. Then, Theorem 4.44 holds for the compactified generators

$$\widetilde{V}_{ au}=G_{ au}^{1/2}VG_{ au}^{1/2}.$$

Construction of the semigroup G_{τ}

- **1** Start from an L^2 -universal, C^1 kernel $\kappa: \Omega \times \Omega \to \mathbb{R}$.
- 2 Normalize κ to an L^2 -universal, C^1 , bistochastic Markov kernel $p: \Omega \times \Omega \to \mathbb{R}$ (Coifman & Hirn '13). Let $P: L^2(\mu) \to L^2(\mu)$ be the associated integral operator.
- 3 Define the Laplace-like operator $\Delta = (I P)^{-1}$.

Dirichlet energy

$$egin{aligned} P\phi_j &= \lambda_j \phi_j, \quad \lambda_j > 0, \quad \langle \phi_i, \phi_j
angle_{L^2(\mu)} = \delta_{ij} \ G_{ au} \phi_j &= \lambda_{j, au} \phi_j, \quad \lambda_{j, au} = e^{- au \eta_j}, \quad \eta_j = 1 - rac{1}{\lambda_j}. \end{aligned}$$

- H: RKHS associated with p.
- $f \in L^2(\mu)$ has a representative in $\mathcal H$ iff

$$\tilde{\mathcal{D}}(f) := \sum_{j=0}^{\infty} \frac{|\langle \phi_j, f \rangle_{L^2(\mu)}|^2}{\lambda_j} < \infty.$$

For every such (nonzero) f, we define the Dirichlet energy

$$\mathcal{D}(f) = \frac{\mathcal{D}(f)}{\|f\|_{L^{2}(u)}^{2}} - 1.$$

Coherent observables

$$\begin{aligned} W_{\tau} &= K_{\tau} V K_{\tau}^* \\ W_{\tau} \zeta_{j,\tau} &= i \omega_{j,\tau} \zeta_{j,\tau}, \quad z_{j,\tau} &= \frac{K_{\tau}^* \zeta_{j,\tau}}{\|K_{\tau}^* \zeta_{j,\tau}\|_{L^2(\mu)}}. \end{aligned}$$

Proposition 4.46.

There exists a continuous function $R(\epsilon,\tau)$ that diverges as $\tau\to 0$ for every $\epsilon>0$ such that

$$\|U^t z_{j,\tau} - e^{i\omega_{j,\tau}} z_{j,\tau}\|_{L^2(\mu)} < \epsilon, \quad |t| \leq T(\epsilon,\tau) := \frac{R(\epsilon,\tau)}{\sqrt{\mathcal{D}(z_{j,\tau}) + 1}}.$$

Moreover:

- 1) If $\lim_{\tau \to 0} \omega_{j,\tau} =: \omega_j$ exists and $T(\epsilon, \tau)$ diverges as $\tau \to 0$ for every $\epsilon > 0$, then $i\omega$ is an element of the spectrum of \tilde{V} .
- 2 If $\lim_{\tau \to \omega}$ exists and $\mathcal{D}(z_{j,\tau})$ is bounded as $\tau \to 0$, then $i\omega$ is an eigenvalue of V. Moreover, $z_{j,\tau}$ converges to the eigenspace of V corresponding to $i\omega$.

Numerical examples

Torus rotation—eigenfunctions of $W_ au$

Torus rotation

Due to the density of the spectrum in the imaginary line, regularization is important, even for a system with pure point spectrum.

L63 system—eigenfunctions of $W_{ au}$

Rössler system—eigenfunctions of $W_{ au}$

Further reading

- [1] F. Chatelin, Spectral Approximation of Linear Operators, ser. Classics in Applied Mathematics. Philadelphia: Society for Industrial and Applied Mathematics, 2011.
- [2] S. Das and D. Giannakis, "Delay-coordinate maps and the spectra of Koopman operators," J. Stat. Phys., vol. 175, no. 6, pp. 1107–1145, 2019. DOI: 10.1007/s10955-019-02272-w.
- [3] S. Das, D. Giannakis, and J. Slawinska, "Reproducing kernel Hilbert space quantification of unitary evolution groups," *Appl. Comput. Harmon. Anal.*, vol. 54, pp. 75–136, 2021. DOI: 10.1016/j.acha.2021.02.004.
- [4] D. Giannakis, "Delay-coordinate maps, coherence, and approximate spectra of evolution operators," *Res. Math. Sci.*, vol. 8, p. 8, 2021. DOI: 10.1007/s40687-020-00239-y.
- [5] C. R. de Oliveira, *Intermediate Spectral Theory and Quantum Dynamics*, ser. Progress in Mathematical Physics. Basel: Birkhäuser, 2009, vol. 54.

Further reading

[6] M. Rédei and C. Werndl, "On the history of the isomorphism problem of dynamical systems with special regard to von Neumann's contribution," *Arch. Hist. Exact Sci.*, vol. 66, pp. 71–93, 2012. DOI: 10.1007/s00407-011-0089-y.