
Section 4

Spectral theory



Setting and objectives

General assumptions

• � : G ⇥ ⌦ ! ⌦: Continuous-time, continuous flow on compact,
metrisable space ⌦.

• µ: Ergodic invariant Borel probability measure.
• X : ⌦ ! X continuous observation map into metric space X .
• U

t : F ! F : Koopman operator on Banach space F of
complex-valued observables.

Given. Time-ordered samples

xn = X (!n), !n = �tn(!0), tn = (n � 1)�t.

Goal. Using the data xn, identify a collection of observables ⇣j : ⌦ ! Y

which have the property of evolving coherently under the dynamics in a
suitable sense.

✗
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Setting and objectives

We recall the following facts from Section 2 (Theorems 2.29 and2.30).

Theorem 4.1.
1 The evolution group {U

t : C (⌦) ! C (⌦)}t2R is strongly continuous.
2 The evolution group {U

t : Lp(µ) ! L
p(µ)}t2R, p 2 [0,1) is

strongly continuous.
3 The evolution group {U

t : L1(µ) ! L
1(µ)}t2R is weakly

continuous.

[
Co groups for semigroupsUnder our general assumptions :

c-
⇒
_*

For Troy f- c- Ccr)
{ Ut } ip under composition of operators:|f-youtf = f in Ccr) norm- Usout = Ustt

For every f- c-Yelp 119
- V0 = Id and get (f) , +→ Utf is continuous at 0
- (Ut)

"

= U-t.gg#gutfdy--fgfdy ① + group property
ti→ Utf is continuous

at every
te R .



KOOPMAN EIGENFUNCTIONS IN Ccr)

Utz = At 2
,

z c-Ccr)\{ 0} , Koopman eigenfuncti,
At C- G

, Koopman eigenvalue

Recall : Ut acts as a
*
- isomorphism of Clr) , viewed as a

C*-dlgebra

of functions
,

i
-

e

, V-f.ge COD,
Utf g) =@ f) U( g) , f)

*
= Utf *

,
Huff Hogg =/If /lace,f)

Suppose 2,2
"

are Koopman eigenfunctions corresponding
to eigenvalues Ag Ats .

Then
, using G) ,

Ut 122 ' ) = (Utz ) (Uta) =@ + 2)@ iz ') = A- At
'

Ez
')

⇒ 22
' is also an eigenfunction , corresponding

to At AÉ .

Moreover ,

Utz * ) = Lutz)* = @+ 2)
*

= A¥z*

⇒ z* is an eigenfunction corresponding
to AE .



Moreover
,

Ut /212 = 0+(2*2) = U(z*) 2) = dÉz* At 2 =
1^+12 1212
I
=L

And since
Ut is an isometry,

1141%1=11 Utz Haitham = Mtl 1k11gr,
⇒ 1^+1=1

⇒ The eigenvalues of
Ut

lie on the unit circle in
6

.

•

Using the previously established°

.

•

properties
we deduce

that theset° | •

•

↳⇐ '
of eigenvalues of

Ut formsa.mu/tiplissn.cafiuesubgroup

↳int spectrum
= op

cut ; Ccm )

- At
,
At

'

c- Op ( Ut; clap ⇒ at at , c- op (ut;
CCN ) (closed under

• )

( identity element )
-
I c- op lot; Clm) semigroup

- AI
'

= AE g
normalized ( inverse )

similarly, the eigenfunctions form a multiplicative
✓
group



By the group property of Ut, if Utz =dtz
we have

✓
"t

z = Usout z = Us At 2 = At V52

⇒ Usz is also an eigenfunction at eigenvalue At

Claim : Suppose
that lot :r→r is measure -preserving and ergodic

.

If zeccr)
is a continuous eigenfunction of Ut

,

there exists ✗ c- B

g. f. At =
eitt

.

Moreover, z
can be normalized s . t . 121=1 .

⇒
Utz = eittz ⇒ z

has a periodic
evolution under

Ut

with period 21%
.

Let RI :S be the circle
rotation with frequency ✗ .

Then
,
the

following diagram commutes : r
r

z !
I set>¥

topological semi - conjugacy
to a circle rotation



Setting and objectives

We recall the following facts from Section 2 (see Proposition 2.7 and
Theorems 2.29, 2.30).

Theorem 4.1.
1 {U

t : C (⌦) ! C (⌦)}t2R is a strongly continuous group of
isometries.

2 {U
t : Lp(µ) ! L

p(µ)}t2R, p 2 [0,1) is a strongly continuous group
of isometries. Moreover, U t : L2(µ) ! L

2(µ) is unitary.
3 {U

t : L1(µ) ! L
1(µ)}t2R is a weak-⇤ continuous group of

isometries.

Notation.
• F : Any of the C (⌦) or Lp(µ) spaces with 1  p  1.
• F0: Any of the C (⌦) or Lp(µ) spaces with 1  p < 1.
• C0 (semi)group ⌘ strongly continuous (semi)group.
• C

⇤

0 (semi)group ⌘ weak-⇤ continuous (semi)group.



Generator of C0 semigroups

Definition 4.2.
Let {S t

}t�0 be a C0 semigroup on a Banach space E . The generator
A : D(A) ! E of the semigroup {S

t
}t�0 is defined as

Af = lim
t!0

S
t
f � f

t
, f 2 D(A),

where the limit is taken in the norm of E , and the domain D(A) ✓ E

consists of all f 2 E for which the limit exists.

txample-c.irdenotation)
lot :S

'
→ s ? 01%7-_ wtxt mud 2x .

Consider Ut :c (r)→ cfr) .

For every fe C'(a) , we
5h
,

fin, otflw.tl#-=figofl&%f1-fH-=fi.%aflwt;tf-fH-=f
'

lo) ✗

Moreover the convergence
to the limit is uniform wrt west , i. e. ,

= ¥1, 1% , / %t✗H;
- ✗ flu / = 0

4.1.11 "f÷ -
at 'll
,

⇒ DCA) ? C' (r) . In fact
,
in this case D(A) = C' (r)



Moreover the operator A is unbounded .

First
,
we say that A :D(A)→E is bounded if sup

f- c-£143 "A%¥__= < •

A- is said to be inbound if no such bound exists
,

for our example , A :D (r
) → Ccr) is unbounded because we

have

a sequence
fnfw) = einw ,

near such that

"I¥÷%="÷¥÷="÷÷Y÷=*
.

That is
,

fn is a sequence
• f unit rectors in Ccr) , for

which I /Afnlkcr)

increases without bound .

Exampee2_ With
lot as alone, consider

Ut :[ (y)
→ [ (g) .

Here
,

Af = Am Utfjf_ .

In this case
,

C'G) is a strict subspace d- PIA
?

I 1-→ 0
In fact

,
DCA) = H' (4)

in thorn ¥ Sobolev space of order
1

= Elements ofu that have U derivatives .



Generator of C0 semigroups

Theorem 4.3.
With the notation of Definition 4.2, the following hold.

1 A is closed and densely defined.
2 For all f 2 D(A) and t � 0, the function t 7! S

t
f is continuously

differentiable, and satisfies

d

dt
S
t
f = AS

t
f = S

t
Af .

3 A uniquely characterizes the semigroup {S
t
}, i.e., if {S̃ t

} is another
C0 semigroup on E with the same generator A, then S

t = S̃
t for all

t � 0.

D (A) is a dense subspace of E

Jt
FffE and E>0 thereexists gf DCA)

s.tn Hf -g 11€ < E .

e-g. C' ( s
' ) is a dense subspace of CCS ' ).

F
A- is closed if

for every fu C- DCA) that converges to ft E

such that gu
= Afn also converges, to gfE,

then we have Ii) ft DCA)
Iii) g=Af



Generator of C ⇤

0 semigroups

Definition 4.4.
Let {S t

}t�0 be a C
⇤

0 semigroup on a Banach space E with predual E⇤.
The generator A : D(A) ! E of the semigroup {S

t
}t�0 is defined as the

weak-⇤ limit

hg ,Af i = lim
t!0

hg , S t
f � f i

t
, f 2 D(A), 8g 2 E⇤,

where the domain D(A) ✓ E consists of all f 2 E for which the limit
exists.

e.g., icy) g.
L'4)

i
e.g. forged (p),

felt41

Ls, Af>=/ g At dy
r



Theorem 4.5.
With the notation of Definition 4.4, the following hold.

1 A is weak-⇤ closed and densely defined.
2 For all f 2 D(A) and t � 0, the function t 7! S

t
f is weak-⇤

continuously differentiable, and satisfies
⌧
g ,

d

dt
S
t
f

�
= hg ,AS t

f i = hg , S t
Af i.

3 A uniquely characterizes the semigroup {S
t
}, i.e., if {S̃ t

} is another
C

⇤

0 semigroup on E with the same generator A, then S
t = S̃

t for all
t � 0.



Generator of unitary C0 groups

Theorem 4.6 (Stone).
Let {S t

}t�0 be a unitary C0 group on a Hilbert space H. Then, the
generator A : D(A) ! H is skew-adjoint, i.e.,

A
⇤ = �A.

Conversely, if A : D(A) ! H is skew-adjoint, it is the generator of a
unitary evolution group.

-
St* = s- t

c-
✓
If A is stew - adjoint , it is antisymmetric i. c.,
for every fig c- DCA)

,
{f
,
A-g)
µ

= -{ A fig >µ

In finite - dimensional spares, antisymmetric = stew-adjoint

In infinite dimensions , not every antisymmetric operator is stew-adjoint .

Example : lot : S1 → St circle rotation,
Ut :[ (g) → L'(f) .

Can define Ñ :P CÑ ) → [ (g) as a densely defined operator with
domain Daito

'

as Ñf = ¥1, U'¥f .

Then
,
it follows by integration parts that Ñ is antisymmetric .

However
,
it -

is not stew-adjoint . In
contest, the generator A :D(A)→ lily) with DIA)=H

'(g)
is, skew-adjoint.



we can think of A as a

stow-adjinte-densin-d-gy.gg?
'

A- f- = Af for f- c- Dft ) = C' (r), but DCA) > DCA )



Generator of Koopman evolution groups

Corollary 4.7.
Under our general assumptions the following hold:

1 The Koopman evolution groups U
t : F0 ! F0 are uniquely

characterized by their generator V : D(V ) ! F0, where

Vf = lim
t!0

U
t
f � f

t
.

Moreover, for F0 = L
2(µ), V is skew-adjoint.

2 The Koopman evolution group U
t : L1(µ) ! L

1(µ) is uniquely
characterized by its generator V : D(V ) ! F0, where

Vf = lim
t!0

U
t
f � f

t

in weak-⇤ sense.

Fo stands for either

µ
) or LP (g) for
Ifp < • .



Generator of Koopman evolution groups

Theorem 4.8 (ter Elst & Lemańczyk).
Let (⌦,⌃) be a compact metrisable space equipped with its Borel
�-algebra ⌃. Let µ be a Borel probability measure on ⌦ and
U

t : L2(µ) ! L
2(µ) a C0 unitary evolution group with generator

V : D(V ) ! L
2(µ). Then, the following are equivalent.

1 For every t 2 R there exists a µ-a.e. invertible, measurable, and
measure-preserving flow �t : ⌦ ! ⌦ such that U t

f = f � �t .
2 The space A(V ) = D(V ) \ L

1(µ) is an algebra with respect to
function multiplication, and V is a derivation on A:

V (fg) = (Vf )g + f (Vg), 8f , g 2 A(V ).

§ Aol; = did ;
for f- = % G- §;Leibniz rule

( self-adjoint) off = eitnf
Counterexample A : Laplacian on a

Reimanman manifold,
=

,
? g. eidito.

Ut = e.
it D

is a Co unitary group
on
L
'

but it is not realized by a flow oft since
☐ does not gratify the Leibniz rule



Point spectrum

Definition 4.9.
Let A : D(A) ! E be an operator on a Banach space with domain
D(A) ✓ E . The point spectrum of A, denoted as �p(A) ✓ C is defined as
the set of its eigenvalues. That is, � 2 C is an element of �p(A) iff there
is a nonzero vector u 2 E (an eigenvector) such that

Au = �u.

Notation.
• We use the notation �p(A;E ) when we wish to make explicit the

Banach space on which A acts.



Eigenvalues and eigenfunctions

Definition 4.10.
Let A : D(A) ! E be the generator of a C0 semigroup {S

t
}t�0 on a

Banach space E . We say that � 2 C is an eigenvalue of the semigroup if
� is an eigenvalue of A, i.e., there exists a nonzero u 2 D(A) such that

Au = �u.

Lemma 4.11.
With notation as above, � is an eigenvalue of {S t

} if and only if z is an
eigenvector of S t for all t � 0, i.e., there exist ⇤t

2 C such that

S
t
u = ⇤t

u, 8t � 0.

In particular, we have ⇤t = e
�t .



Suppose Stu = At u .

We show that An = In where At = eat .

Since St is a Co semigroup ,
ti→ Stu =Atu is a continuous function

satisfying
G) No = 1 (since S°= Id )

Iii ) As
"
= Asat ( since sstt = § ' St ) .

The only function with these properties
is the exponential function,

At = e
't for

some IE
6. be here

Autin stu-u_ =
ein At÷=?⃝%e")u =

edt ) u = la
,

f- 0

1- → o f
C-→ o

Now suppose
An -- Ju .

We show that Stu = at u for at ⇒
If

.

Since we DCA) we
have that Stu is the unique solution

of the equation

1*-1

¥
Stu = A-Stu =

Stan = 1 Stu .

If follow, by substitution that St = e
't
n satisfies 1*7

.

Since
,
as can be shewn

,

solutions to 1*1 are unique,
the clan follows

.

✓
*



Return to the Koopman operators Ut : LP (g)→ Lily )

Previously, we saw that because Ut acts on LPG) by isometrics
, every

eAttArunit
circle

.

Utf = Atf ⇒ Hutt 11µg, =/ At 1111-11 (g)
⇒ Int 1=1 .

As a result every eigenvalue 1 of
the generator is purely imaginary .

i. e. if at-e.lt c- St then D= is for some ✗ C- R .

Conclusion: Every eigenfunction u of Ut is ap obtainable , i.e,

Uta =
Atu , edta = eixtu

with period 21-42 .

This motivates using
Koopman eigenfunction as coherent observables of

the system .



Point spectra for measure-preserving flows

Theorem 4.12.
Let �t : ⌦ ! ⌦ a be a measure-preserving flow of a probability space
(⌦,⌃, µ). Let U t : Lp(µ) ! L

p(µ) be the associated Koopman operators
on L

p(µ), p 2 [1,1], and V : D(V ) ! L
p(µ) the corresponding

generators. Then, the following hold.
1 For every p, q 2 [1,1] and t 2 R, �p(U t , Lp(µ)) = �p(U t , Lq(µ)).
2 �p(V , Lp(µ)) = �p(V , Lq(µ)).
3 �p(U t) is a subgroup of S1.
4 �p(V ) is a subgroup of iR.

Corollary 4.13.
Every eigenfunction of V lies in L

1(µ), and thus in L
p(µ) for every

p 2 [1,1].

Given � = i↵ 2 �p(V ), we say that ↵ is an eigenfrequency of V .

Recall V44 cliff) when p> q

(
> Idea of proof : for any 1 c- G Ker Ut- ftp.ya, is a dense suhspae of her Ut-11µg, -



Groupstrncturofoeplu.tl#k7

Suppose Mike LTM are eigenfunctions of Ut at eigenvalues
At

,

dat
-

Then

Ut (Niue) = @ tu ,) (Utm ) = Ataturk
⇒ Aint c- op (Ut )

⇒ oplvtis closed under multiplication

Moreover, Ut Ñ, =µÑ =ÑÑ ⇒ AT c- op (ut) ⇒ op cut) closed
under

complex conj .

Moreover, since
Intl "=ÑM=1-→Ñ = Yat ⇒ op (ut) has a multiplicative

inverse

Also
,
we have 0+1=1 ⇒ A- = 1 c- oplut )

we conclude that Op (
Ut ) is a countable subgroup of

St
.

Now since at = eat it follows thatoplv7isan@dditiesubqroeupotiRi.e
.

if 1,1 , c- Op (v1 11th is also an eigenvalue, etc .



Generating frequencies

Definition 4.14.
Assume the notation of Theorem 4.12.

1 We say that {ia0, ia1, . . .} ✓ �p(V ) is a generating set if for every
i↵ 2 �p(V ) there exist j1, j2, . . . , jn 2 Z and k1, k2, . . . , kn 2 N such
that

↵ = j1↵k1
+ j2↵k2

+ . . .+ jn↵kn
.

2 We say that �p(V ) is finitely generated if it has a finite generating
set.

3 A generating set is said to be minimal if it does does not have any
proper subsets which are generating sets.

Lemma 4.15.
1 The elements of a minimal generating set are rationally independent.
2 If a minimal generating set has at least two elements, then �p(V ) is

a dense subset of the imaginary line.

a a a



Examples : Ergodic rotation on 11-2 .

tfwywz) = (wit ✗ it , with f)
mod 21T .

,
hi
,
Keef R, rationally indep .

for f- c- C' (11-2)
,

✓ ftp.gffi-nyootf#Wd-flWHd-=xi%f4wdtxzgfw-Caraway

,
,

for i.⇐idea
.

Consider the Fourier functions §; /wya)=
eiiswitiioe

↳
ope = %

, V4; = 4%10 ; t ✗ di = ii.a tick) &;
trajectory does not dote -

Eiger frequency
✗j

g
, we

hae identified a
since { §; } jez, form, an orthonormal basis of LYN

normalized
Lebesgue

complete not of linearly independent eigenfunctions
,

and we conclude

og (v)
= titi }

,
-

c- 212

i
dense subset of IR .

Lia
,
in} is a minimal generating set .



Generating frequencies

Lemma 4.16.
Let g1, g2, . . . be eigenfunctions corresponding to the eigenvalues of the
generating set in Definition 4.14, i.e., Vgj = i↵jgj . Then, for every
i↵ 2 �p(V ) with ↵ = j1↵k1

+ j2↵k2
+ . . .+ jn↵kn

,

z = g
j1

k1
g
j2

k2
· · · g

jn

kn

is an eigenfunction of V corresponding to the eigenfrequency ↵.



Invariant subspaces
Notation.
• Hp = span{u 2 L

2(µ): u is an eigenfunction of V }.
• Hc = H

?

p
.

• {z0, z1, . . .}: Orthonormal eigenbasis of Hp, Vzj = i↵jzj .

Theorem 4.17.
Let �t : ⌦ ! ⌦ be a measure-preserving flow on a completely metrizable
space with an invariant probability measure µ.

1 Hp and Hc are U
t -invariant subspaces.

2 Every f 2 Hp satisfies

U
t
f =

1X

j=0

f̂je
i↵j tzj , f̂j = hzj , f iL2(µ).

3 Every f 2 Hc satisfies

lim
T!1

1
T

Z
T

0
|hg ,U t

f iL2(µ)| = 0, 8g 2 L
2(µ).

2
"
continuous spectrum subspace

"

-Observables in Hc hare "weak mixing
" behavior .

pdt



Pure point spectrum

Definition 4.18.
With the notation of Theorem 4.17, we say that a measure-preserving
flow �t : ⌦ ! ⌦ has pure point spectrum if Hp = L

2(µ).

Remark 4.19.
For a system with pure point spectrum:

1 The spectrum of V is not necessarily discrete.
2 The continuous spectrum is not necessarily empty.

⇒ ✓ is unitarily diagonalizeble

r
as long as there are 72

generating frequencies
opcv ) is a dense
subset of iR

(The spectrum of V contains opt
Elements in optvhof.lv) lie in the

continuous spectrum of V.



Point spectra for ergodic flows

Proposition 4.20.
With the notation of Theorem 4.12, assume that �t : ⌦ ! ⌦ is ergodic.

1 Every eigenvalue � 2 �p(V ) is simple.
2 Every corresponding eigenfunction z 2 L

p(µ) normalized such that
kzkLp(µ) = 1 for any p 2 [1,1] satisfies |z | = 1 µ-a.e.

>f-c- LP(y) , Utf
= f- for all C-

st
. e.

-

[ Emulator

Suppose that Utz =
Atz for all tea with Ñ=e? Then

,

Ut 1212 = Ut (Iz ) = futz ) ( Utz) = At At 1212 = 1212µg,.g, , µ . . an, , ya. . . a, , g. www..ae ,,
µ. µ , ,µ.a. . .

→ Suppose that w is another eigenfunction corresponding to At, i-e . Utw = Atw .

We have,

Ut@ 2) = AtAt Ñz = Ñ 2 ⇒ Ñz is constant y -
a. e. ⇒ w is a multiple of 2

⇒ 1 is simple .



Factor maps

Definition 4.21.
Let T1 : ⌦1 ! ⌦1 and T2 : ⌦2 ! ⌦2 be measure-preserving
transformations of the probability spaces (⌦1,⌃1, µ1) and (⌦2,⌃2, µ2).
We say that T2 is a factor of T1 if there exists a T1-invariant set S1 2 ⌃1
with µ2(S+1) = 1, a T2-invariant set S2 2 ⌃2 with µ2(S2) = 1, and a
measure-preserving, surjective map ' : S1 ! S2 such that

T2 � ' = ' � T1.

Such a map ' is called a factor map and satisfies the following
commutative diagram:

M1 M1

M2 M2

T1

' '

T2

.

I

sr es

si si

Props let lot :r→r be an ergodic measure- preserving flow of a standard probability

space Cd,
-2
, f) . Let it c- Op (V ) , Rt :S'→ St Rt (Of = otxfm.dk .

Let

V2 =iL2
,

normalized it . 121=1 . Then Rtoz = zo lot is a factor map .



Examples Variable - frequency rotation .

Let lot :S
"
→ St be the solution map of the ODE

ailf) =p (wit )

for p :S
'
→ ☒ a strictly positive continuous function

.

In this case
,

the generator V
, applied to a Ct function f- , is given by

✓ f- = pf
'

consider the eigenvalue problem peiodfg,
V2 /w) = 1260 <⇒ plw) =

Az /w ) 1*1
,,

w

charge of variables do = p%,
du ie

. 014=4
,
p¥, du

'
c. here C is inch

that oho)=2t

Then 1×-1 becomes dzldl.co#=1z1zfoloi ) ⇒
1-Iii for it

21

and 210 /w )) =
eiiolw ?

¢"modified Fourier function
"

on the basis of the proposition th following diagram

should commute : St# St
2

§ ,_g ,
where Rt is circle rotation with frequency

'K .



Metric isomorphisms

Definition 4.22.
With the notation of Definition 4.21, we say that T1 and T2 are
measure-theoretically isomorphic or metrically isomorphic if there is a
factor ' : S1 ! S2 with a measurable inverse.

Theorem 4.23 (von Neumann).
Let �t : ⌦ ! ⌦ be a measure-preserving flow on a completely metrizable
probability space (⌦,⌃, µ) with pure point spectrum. Then, �t is
metrically isomorphic to a translation on a compact abelian group G.
Explicitly, G can be chosen as the character group of the point spectrum
�p(V ).



Metric isomorphisms

Corollary 4.24.
If �p(V ) is finitely generated, then �t is metrically isomorphism to an
ergodic rotation on the d-torus, where d is the number of generating
frequencies of �p(V ). Explicitly, supposing that {i↵1, . . . , i↵d} is a
minimal generating set of �p(V ) with corresponding unit-norm
eigenfunctions z1, . . . , zd we have

R
t
� ' = ' � �t ,

where R
t : Td

! Td is the torus rotation with frequencies ↵1, . . . ,↵d ,
and

'(!) = (z1(!), . . . , zd(!)), µ-a.e.

=

1¥:
"

Numerical challenge : Opal is usually dense in IR

(i. e.
,
as long as dz2)

I
""



Spectral isomorphisms

Definition 4.25.
With the notation of Definition 4.22, let U1 : L2(µ1) ! L

2(µ1) and
U2 : L2(µ2) ! L

2(µ2) be the Koopman operators associated with T1 and
T2, respectively. We say that T1 and T2 are spectrally isomorphic if there
exists a unitary map U : L2(µ1) ! L

2(µ2) such that

U2 � U = U � U1.

Theorem 4.26 (von Neumann).
Two measure-preserving flows with pure point spectra are metrically
isomorphic iff they are spectrally isomorphic.

Every metric isomorphism induces a spectral isomorphism , but the Corrente is not true

(if the system is mixing or
is • f- mixed-spectrum type?



Dynamics-invariant kernels

k : M ⇥M ! R, G : L2(µ) ! L
2(µ), Gf =

Z

M

k(·,!)f (!) dµ(!)

• k : Bounded, symmetric kernel.
• G is self-adjoint, compact.

Proposition 4.27.
If k is invariant under the product flow,

k(�t(!),�t(!0)) = k(!,!0),

then G commutes with the Koopman operator,

[U t ,G ] = U
t
G � GU

t = 0.

TY
or

Holt : rxr →rxr
( ftp.tfw.ci) = 101%1,01%7

*

Gutflu) =/klwiilf 101%7141%1=1,1101%1,01%111-10140114 tail
r by#

since it is oft-invariant→
= Ink 101%7, v7 flail dylw

' / = UTG flu)



Dynamics-invariant kernels

k : M ⇥M ! R, G : L2(µ) ! L
2(µ), Gf =

Z

M

k(·,!)f (!) dµ(!)

Corollary 4.28.
Every eigenspace W of G with nonzero corresponding eigenvalue is a
finite-dimensional, U t -invariant subspace of Hp, and V |W is unitarily
diagonalizable.

it
rr

In more detail
, suppose that

Ut, G commute and the system is ergodic .

Let

Utz = eiwtz be a Koopman eigenfunction .

Then
,

Ut Gz = Gotz = eiuf Gz ⇒ Gz is also a Koopman eigenfunction with

eigenvalue eiwf.sn/eeiwf
is a simple

eigenvalue (by eyodi city ?, it follows
that

Gz = Iz for some eigenvalue
A of G.

⇒ tigerpace W of G- corresponding
to 140 is a union of finitely may

eijuspaus of Ut



Kernels from delay-coordinate maps

SQ(!,!
0) =

1
Q

Q�1X

q=0

��X (�q�t(!))� X (�q�t(!0))
��2

.

By the mean ergodic theorem,

SQ ����!
Q!1

S̄ ,

in L
2(µ⇥ µ), where S̄ is a U

t
⌦ U

t invariant function.
Proposition 4.29.
Fix a continuous kernel shape function h : R+ ! R+. Then:

1 k̄(!,!0) := h(S̄(!,!0)) satisfies the assumptions of
Proposition 4.27.

2 GQ : L2(µ) ! L
2(µ) with

GQ f =

Z

M

kQ(·,!)f dµ(!)

converges to G in L
2(µ) operator norm.

I
= -6,11 Xalw) -Xalw" H

"

assume X=Rd
←This is an ergodic average
of the function S : rare→ Rl
where slw.ae) = 11 ✗ lad -Xlw'll/

2

under the product system
on rxr : stomach

,salwii)
9--0

gqDtfw,))
(
e.g. h(a) = exp C-%-) for RBF

kernel

- - integral op.at?ociateduithk



Delay - coordinate maps
lot :D → r
✗ : r → ✗ Goran

.at/obs.fmdiou)GienQc-NdetineXa:d-XQs.t.Xqlw1--1×14×110%1,1 . . . , ✗COQ
- "Atlas ) )

s say
" video "

"

snapshots
"

Theorem ( Talons ; Sauer , Yorke , Casidajli ; Robinson . . . ) .
With

" high probability
"

there

is Q* c-NS.t . for QZQ* Xo
,

is injective

tape : lot :S
'

→ s
' 014W)= wtxtm.dk .

✗ :S
'

→ R ✗(w) = cosw

• &""
suppose

that At is such that 10%4 mats an angle of 1-42 with w

s
'

w

Then for 01=2 ,

1.*
✗alu ) = to>w, cos Iw) )) =/ cosw , cos lwttclzl )

-
- ( love, since )

vi. an
- ' '

we recover the circles
'



Finite-difference approximation of the generator

V�t,N : L2(µN) ! L
2(µN), V�t,N =

Ṽ�t,N � Ṽ
⇤

�t,N

2
, Ṽ�t,N =

ÛN � Id

�t

Explicitly, we have

Ṽ�t,N f (!n) =

(
(f (!n+1)� f (!n))/�t, 0  n  N � 2,
�f (!N�1)/�t, n = N � 1.

Shift operator • n

( 14%7
sampling measure on trajectory Wo

,
Ul
,
.
. .

,
WN- I

-

I
Recall Vf=¥%H-¥fantisymmetric

operator
✗ ¥@

•f- 1)f-

Can abo define higher-order central
,
forward

,
etc.

,
schemes

.



Finite-difference approximation of the generator

V�t,N : L2(µN) ! L
2(µN), V�t,N =

Ṽ�t,N � Ṽ
⇤

�t,N

2
, Ṽ�t,N =

ÛN � Id

�t

Lemma 4.30.
For f 2 C

1(⌦) and g 2 C (⌦),

lim
�t!0

lim
N!1

hg ,V�t,N f iL2(µN ) = hg ,Vf iL2(µ).

Corollary 4.31.
With the notation of Section 3, if k is C

1, then for every i , j 2 N such
that �i ,�j 6= 0,

lim
�t!0

lim
N!1

h�i,NVN,�t�j,NiL2(µN ) = h�i ,V�jiL2(µ).

I 1
Gqnd.in?7i,N&iN G§i=Ii$i



7;
it

- opcv )

←i.

☒

perturb V by adding
'

Ii
a diffusion operator A
such that the spectrum of

V - KID
becomes disarm Warning : Singular

perturbation



Markov normalization

p⌫(!,!
0) =

k̃(!,!0)

⇢⌫(!)
, k̃⌫(!,!

0) =
k(!,!0)

�⌫(!0)
,

⇢⌫(!) =

Z

M

k̃⌫(!,!
0) d⌫(!0), �⌫(!

0) =

Z

M

k(!0,!00) d⌫(!00)

• Assume: k � 0, k , k�1
2 L

1(⌫ ⇥ ⌫).
• p is a Markov kernel with respect to ⌫, i.e.,

p � 0,
Z

M

p(!, ·) d⌫ = 1, ⌫-a.e. ! 2 M.
In



Markov normalization

p⌫(!,!
0) =

k̃(!,!0)

⇢⌫(!)
, k̃⌫(!,!

0) =
k(!,!0)

�⌫(!0)
,

⇢⌫(!) =

Z

M

k̃⌫(!,!
0) d⌫(!0), �⌫(!

0) =

Z

M

k(!0,!00) d⌫(!00)

Set: k = kQ , ⌫ = µN or ⌫ = µ. We get Markov operators
GQ,N : L2(µN) ! L

2(µN), GQ : L2(µ) ! L
2(µ) with continuous transition

kernels:

GQ,N f =

Z

M

pQ,µN
(·,!)f (!) dµN(!), Gf =

Z

M

pQ,µ(·,!)f (!) dµN(!),

Large-data limit: As N ! 1, GQ,N converges spectrally to GQ in the
sense of Theorem 3.25.

In h



Markov normalization

p⌫(!,!
0) =

k̃(!,!0)

⇢⌫(!)
, k̃⌫(!,!

0) =
k(!,!0)

�⌫(!0)
,

⇢⌫(!) =

Z

M

k̃⌫(!,!
0) d⌫(!0), �⌫(!

0) =

Z

M

k(!0,!00) d⌫(!00)

Set: k = k̄ , ⌫ = µ. We get a self-adjoint Markov operator
G : L2(µ) ! L

2(µ) that commutes with the Koopman operator:

Gf =

Z

M

p̄µ(·,!)f (!) dµ(!).

Infinite-delay limit: As Q ! 1 GQ converges in operator norm, and thus
spectrally, to G .

Remark.
By Corollary 4.28, every eigenfunction �j of G corresponding to nonzero
eigenvalue lies in the domain of the generator V .

-

-



Diffusion regularization
� : D(�) ! H̃p, � = (I � G )�1

��j = ⌘j�j , ⌘j = 1 �
1
�j

• H̃p = ranG ✓ Hp.
• D(�) ⌘ H̃

2
p
= {f 2 H̃p :

P
j
⌘j |h�j , f iL2(µ)|

2 < 1}.

Proposition 4.32.

1 For every ✏ > 0,
L✏ = V � ✏�,

is a well-defined dissipative operator on H̃
2
p
, i.e., Rehf ,L✏f i  0.

2 Let z be an eigenfunction of V lying in H
2
p

with corresponding
eigenvalue i!. Then, we have

�z = ⌘z , L✏z = �z , � = �✏⌘ + i!.

\
think of Gas
a heat operator

Ga e-
' A

Taylor expert

¥ ' a

a. e. A

L

↳ eigenvalues of L, are equal to eigerfrequencies
iw shifted by - EY



Petrov-Galerkin method

Infinite-dimensional variational problem

Find zj 2 H̃
2
p

and �j 2 C, such that for all f 2 H̃p,

hf ,VzjiL2(µ) � ✏hf ,�ziL2(µ) = �jhf , ziL2(µ).

• The above is a well-defined variational eigenvalue problem, i.e., it
satisfies the appropriate boundedness and coercivity conditions.

• We order the solutions zj in order of increasing Dirichlet energy,

Ej = hzj ,�zjiL2(µ) = Re �j/✏.



Petrov-Galerkin method

Data-driven approximation

Find zj 2 H̃
2
p,L,Q,N and � 2 C, such that for all f 2 H̃p,L,Q,N ,

hf ,VzjiL2(µN ) � ✏hf ,�zjiL2(µN ) = �jhf , zjiL2(µN ).

• H̃p,L,Q,N = span{�0,Q,N , . . . ,�L�1,Q,N} ✓ L
2(µN), where �j,Q,N are

eigenfunctions of GQ,N .
• H

2
p,L,Q,N defined analogously to H̃

2
p
.

• The data-driven scheme converges in the iterated limit

lim
L!1

lim
Q!1

lim
�t!0

lim
N!1

.

j

(
↳"" """d "Mah """

→ 2j=¥
,

Cio;

f- = É dig.
↳ Get matrix eigenvalue problem

A- e-
>

=p
BE

in



Variable-speed rotation on T2

!̇(t) = ~V (!(t))

~V (!) = (V1,V2), ! = (✓1, ✓2)

V1 = 1 + � cos ✓1

V2 = ↵(1 � � sin ✓2)

↵ =
p

30, � =
p

1/2



Koopman eigenfunctions



Koopman eigenfunctions from noisy data

Koopman eigenfunctions for the variable-speed flow on T2 recovered from
data from data corrupted with i.i.d. Gaussian noise in R3 with SNR ' 1.



Approximate Koopman eigenfunctions

Definition 4.33.
An observable z 2 L

2(µ) is said to be an ✏-approximate Koopman
eigenfunction if there exists ⌫t 2 C such that

kU
t
z � ⌫tzkL2(µ) < ✏kzkL2(µ).

• A Koopman eigenfunction is an ✏-approximate eigenfunction for
every ✏ > 0.

• We seek z 2 L
2(µ) which is an ✏-approximate eigenfunction for

“small” ✏, and t lying in a “large” time interval.

c*l

It can be shown that // ( Ut, Ga ) / / f§
⇒ Ga has approximately Koopman - invariant eiersyaces.

look for elements of these eigen spaces as candidates

of observables 2 satisfying 1*7



Approximate eigenfunctions from delay-coordinate maps

Theorem 4.34.
Let � and  be mutually-orthogonal, unit-norm, real eigenfunctions of
GQ corresponding to nonzero eigenvalues  and �, respectively, with
 � �. Assume that ,� are simple if distinct and twofold-degenerate if
equal. Define

z =
1
p

2
(�+ i ), ↵t = hz ,U t

zi, ⌫ = h ,V�i,

where ! is real, and set T = (Q � 1)�t, �T = (� �)/
p

2, �̃T = �T/,

�T = min
u2�(GQ )\{,�}

{min{|� u|, |�� u|}} .

Then, the following hold for every t � 0:



Approximate eigenfunctions from delay-coordinate maps
Theorem 4.34.

1 ↵t lies in the ✏̃t -approximate point spectrum of U t , and z is a
corresponding ✏̃t -approximate eigenfunction for the bound

✏̃t = st +
p
St ,

where

st =
1
�T

✓
C1t

T
+ 3�T

◆
, St =

C2(1 + �̃T )

�

Z
t

0
su du.

Here, C1 and C2 are constants that depend only on the observation
map F and generator V .

2 The modulus |⌫| is independent of the choice of the real
orthonormal basis {�, } for the eigenspace(s) corresponding to 
and �. Moreover, the phase factor e i⌫t is related to the
autocorrelation function ↵t according to the bound

|↵t � e
i⌫t

|  2
p
St .

-

↳ length of delay embedding window = QAt



Application to L63 system



Application to L63 system



Application to L63 system



Application to L63 system



Spectrum

Definition 4.35.

Let A : D(A) ! F be a densely-define operator on a Banach space F

over C with domain D(A) ✓ F .
1 The spectrum of A, denoted as �(A) is the set of complex numbers

� such that A� �I has no bounded inverse.
2 The resolvent set of A, denoted as ⇢(A), is the complement of �(A)

in C.
3 For every � 2 ⇢(A) the resolvent RA(�) is the bounded operator

given by ⇢(A) = (A� �I )�1.
4 The spectral radius of A is defined as r�(A) = sup�2�(A)|�|.

d

l /RAG)
a 111

> There is no bounded operator B
: F → fs.t.BA = I on DCA)

ABf = f- for f- c- fat . Ife DCA)
""

G



Spectrum

Theorem 4.36.

With the notation of Definition 4.35, the following hold.
1 �(A) is a closed subset of C.
2 If A is not closed, then �(A) = C.
3 If D(A) = F and A is bounded, then r�(A)  kAk.

( TÉAÑ
The spectrum is

"

interesting
" only for closed operators

Eamp F= ¢2

A- = ( : ;)
"A) = OF (A) =/ o }

#M
HAH =\ 0cal



DECOMPOSITION OF THE SPECTRUM Assume A- is closed

7- c- ofA)⇒ { A- II.has no bd. inverse }f→AisnutbijeetiÉ
4

A- II is not injective fiber A-11=110} A-His injective buy ?ot surjective
⇒ IEOPCA ) (dis an eigenvalue )

>
ran A-11 Fa dénseonbspak ran@-127 is rot

of F- dense

Ic.o-p.CA) (purely continuous) Ifor (A) (residual)

A-1Ii¥t bounded below §
1- a square

for self-adjoint
and star-adjoint ops .

fyfy . . .

with 111-44=1
or (A)=¢ .s.t-HA-127fn.lt → 0



Projection-valued measures

Definition 4.37.

Let (H, h·, ·iH) be a Hilbert space over C. A map E : B(C) ! B(H) is
called a projection-valued measure (PVM) if:

1 For every S 2 B(C), E (S) is an orthogonal projection.
2 E (C) = I .
3 For every f , g 2 H, the map "fg : B(C) ! C with

"fg (S) = hf ,E (S)giH

is a complex measure.

( spectral measured)

(
EG7= Ecs)

-
F-G)
*
= Ecs)

(
with multiplicities

Examples H= 6? A : self-adjoint nxn
matrix .

We know that OCA) = { 1 ; . . . . ,dn : 1jfR is an e-value
of A }

and there exists an orthonormal basis
{ u , . - , un } of fist . Ani- Timi

Deline Tj c- BCH) it . Tljv
= Lui

,
v >gnu; (orthogonal projection) .

Then,

E :B (G)→ 1311-17 sit . F-G) =I 1T; is a PVM .

j : Ffs



Projection-valued measures

Theorem 4.38.

With the notation of Definition 4.37, let f : C ! C be a
Borel-measurable function. Then, there exists a unique operator
Ef : D(Ef ) ! H with domain

D(Ef ) =

⇢
h 2 H :

Z

C
|f |

2
d"hh < 1

�
,

such that

hg ,Ef hiH =

Z

C
f d"gh, 8g 2 H, 8h 2 D(Ef ).

Notation.

•
R
C f dE ⌘ Ef .

• If A =
R
C Id dE , then f (A) ⌘ Ef .

functional calculus

£

example , given a function f- : ① → 6

we can define f-(A) as

,µµ⇐µ a. g. qq.gygp.gg,¥É"""HE
f-(A) = ? f-Gili

a



Spectral theorem for skew-adjoint operators

Theorem 4.39.

Let A : D(A) ! H be skew-adjoint.
1 �(A) is a subset of the imaginary line.
2 There exists a unique PVM EA : B(C) ! C such that

A =

Z

R
i↵ dE (↵).

3 i suppEA = �(A).
4 If {U t : H ! H}t2R is the C0 unitary group generated by A, then

U
t = e

tA
⌘

Z

R
e
i↵t

dE (↵).

A

A



Unitary Koopman evolution group

U
t : L2(µ) ! L

2(µ), U
t
f = f � �t , U

t⇤ = U
�t

Generator: V : D(V ) ! L
2(µ),

D(V ) ⇢ L
2(µ), V

⇤ = �V , Vf = lim
t!0

U
t
f � f

t
.

Spectral measure: E : B(R) ! B(L2(µ)),

V =

Z

R
i! dE (↵), U

t =

Z

R
e
i↵t

dE (!).



Unitary Koopman evolution group

U
t : L2(µ) ! L

2(µ), U
t
f = f � �t , U

t⇤ = U
�t

Theorem 4.40.

There is a U
t -invariant orthogonal splitting L

2(µ) = Hp � Hc such that:
1 Hp has an orthonormal basis {zj} consisting of eigenfunctions of the

generator,
Vzj = i↵jzj , ↵j 2 R.

2 For every f 2 Hc and g 2 L
2(µ),

lim
T!1

1
T

Z
T

0
|hg ,U t

f iL2(µ)| dt = 0.

3 E = Ep + Ec , where:
• Ep is a purely atomic measure taking values in B(Hp).
• Ec is a continuous measure taking values in B(Hc).

> Ec ({137 = 0

For any f.gf LTP,
the

function
a.→{f.Efforts><%)

time
> The atoms of Ep , i.e., the

Ford sets S sat . Ep (5) = 0 for ay
S
'

CS
,

are singleton sets consisting of
the eigenvalues - F V and Ep ( { i ✗ j } )

=Fj

where Tlj f-= Gj, f)yapZj is the orthogonal projection onto the corresponding
e)aspace -



Compactification schemes for the Koopman generator

Given:

Positive-definite, C 1 kernel k : ⌦⇥ ⌦ ! R.

Integral operators K : L2(µ) ! K, G = K
⇤
K .

Pre-smoothing:

A : L2(µ) ! L
2(µ), A = VG .

• ranG ✓ ranK⇤
⇢ D(V ).

• A = VG is a Hilbert-Schmidt integral operator on L
2(µ) with kernel

k
0
2 C (X ⇥ X ), k 0(·,!) = Vk(·,!), i.e.,

Af =

Z

⌦
k
0(·,!)f (!) dµ(!).

LRKHS



Compactification schemes for the Koopman generator

Given:

Positive-definite, C 1 kernel k : ⌦⇥ ⌦ ! R.

Integral operators K : L2(µ) ! K, G = K
⇤
K .

Post-smoothing:

B : L2(µ) ! L
2(µ), B = GV .

• GV ⇢ (GV )⇤⇤ = B = �A
⇤.

• B is a Hilbert-Schmidt integral operator with

Bf = �

Z

⌦
k
0(·,!)f (!) dµ(!).



Compactification schemes for the Koopman generator

Given:

Positive-definite, C 1 kernel k : ⌦⇥ ⌦ ! R.

Integral operators K : L2(µ) ! K, G = K
⇤
K .

Skew-adjoint compactification on the RKHS:

W : K ! K, W = KVK
⇤.

• W is a skew-adjoint, Hilbert-Schmidt operator on K satisfying

Wf = �

Z

⌦
k
0(!, ·)f (!) dµ(!).

WE-W



Compactification schemes for the Koopman generator

Given:

Positive-definite, C 1 kernel k : ⌦⇥ ⌦ ! R.

Integral operators K : L2(µ) ! K, G = K
⇤
K .

Skew-adjoint compactification on L
2(µ):

Ṽ : L2(µ) ! L
2(µ), Ṽ = G

1/2
VG

1/2.

• K = UG
1/2 (polar decomposition).

• Ṽ is a skew-adjoint, Hilbert-Schmidt operator on L
2(µ) related to

W by
Ṽ = U

⇤
WU .



Eigenvalues and eigenfunctions

Proposition 4.41.

Let k : ⌦⇥ ⌦ ! R be a C
1, L2-universal, µ-Markov ergodic kernel.

1 There exists an orthonormal basis z̃0, z̃1, . . . , of L2(µ) consisting of
eigenfunctions of Ṽ ,

Ṽ zj = i↵j z̃j , ↵j 2 R.

2 In the above, i↵0 = 0 is a simple eigenvalue corresponding to the
constant eigenfunction z̃0 = 1.

3 Ṽ has an associated purely atomic PVM Ẽ : B(R) ! B(L2(µ))
such that

Ẽ (S) =
X

j :↵j2S

hz̃j , ·iL2(µ)z̃j , Ṽ =

Z

R
i↵ dẼ (↵).

~

TF
= Tgixj IT;



Strong resolvent convergence

Definition 4.42.

1 A one-parameter family of operators A⌧ : D(A⌧ ) ! H, ⌧ > 0, on a
Hilbert space H is said to converge to a skew-adjoint operator
A : D(A) ! H in strong resolvent sense if for every ⇢ 2 C \ {iR} in
the resolvent set of A the resolvents (A⌧ � ⇢)�1 converge to
(A� ⇢)�1 strongly.

2 The family A⌧ is said to be p2-continuous if it is uniformly bounded
and ⌧ 7! kp(A⌧ )k is continuous for every degree-2 polynomial p.

3 If A⌧ is skew-adjoint, A⌧ is said to converge to A in strong
dynamical sense if for every t 2 R, etA⌧ converges to e

tA strongly.



Strong resolvent convergence

Theorem 4.43.

With the notation of Definition 4.42, suppose that A⌧ is skew-adjoint.
Then:

1 Strong resolvent convergence is equivalent to strong dynamical
convergence.

2 A sufficient condition for strong resolvent convergence A⌧ ! A is
that A⌧ converges to A strongly in a core, i.e., a subspace
C ✓ D(A) such that A|C = A.

3 The domain D(A2) is a core for A.



Strong resolvent convergence

Theorem 4.44.

Let A⌧ : D(A⌧ ) ! H be a one-parameter family of skew-adjoint
operators that converges to a skew-adjoint operator A : D(A) ! H in
strong resolvent sense. Let E⌧ : B(R) ! B(H) and E : B(R) ! B(H)
be the PVMs associated with A⌧ and A, respectively.

1 For every bounded, Borel-measurable set ⌦ ⇢ R such that
E (@⌦) = 0, E⌧ (⌦) converges strongly to E (⌦).

2 For every bounded, continuous function Z : iR ! C, Z (A⌧ )
converges strongly to Z (A).

3 If the operators A⌧ are compact, then for every element i↵ 2 iR of
the spectrum of A there exists a one-parameter family i↵⌧ of
eigenvalues of A⌧ such that lim⌧!0 ↵⌧ = ↵. Moreover, if A⌧ is
p2-continuous, the curve ⌧ 7! ↵⌧ is continuous.



Spectral convergence of the compactified generators

Theorem 4.45.

Let {G⌧}⌧�0 be a strongly continuous, ergodic semigroup of Markov
operators on L

2(µ) such that for every ⌧ > 0,

G⌧ f =

Z

⌦
k⌧ (·,!)f (!) dµ(!),

where k⌧ : ⌦⇥ ⌦ ! R is a C
1, L2-universal, positive-definite kernel.

Then, Theorem 4.44 holds for the compactified generators

Ṽ⌧ = G
1/2
⌧ VG

1/2
⌧ .



Construction of the semigroup G⌧

1 Start from an L
2-universal, C 1 kernel  : ⌦⇥ ⌦ ! R.

2 Normalize  to an L
2-universal, C 1, bistochastic Markov kernel

p : ⌦⇥ ⌦ ! R (Coifman & Hirn ’13). Let P : L2(µ) ! L
2(µ) be

the associated integral operator.
3 Define the Laplace-like operator � = (I � P)�1.
4 Define G⌧ = e

�⌧�.



Dirichlet energy

P�j = �j�j , �j > 0, h�i ,�jiL2(µ) = �ij

G⌧�j = �j,⌧�j , �j,⌧ = e
�⌧⌘j , ⌘j = 1 �

1
�j

.

• H: RKHS associated with p.
• f 2 L

2(µ) has a representative in H iff

D̃(f ) :=
1X

j=0

|h�j , f iL2(µ)|
2

�j

< 1.

• For every such (nonzero) f , we define the Dirichlet energy

D(f ) =
D̃(f )

kf k2
L2(µ)

� 1.



Coherent observables

W⌧ = K⌧VK
⇤

⌧

W⌧ ⇣j,⌧ = i!j,⌧ ⇣j,⌧ , zj,⌧ =
K

⇤

⌧ ⇣j,⌧
kK⇤

⌧ ⇣j,⌧kL2(µ)
.

Proposition 4.46.

There exists a continuous function R(✏, ⌧) that diverges as ⌧ ! 0 for
every ✏ > 0 such that

kU
t
zj,⌧ � e

i!j,⌧ zj,⌧kL2(µ) < ✏, |t|  T (✏, ⌧) :=
R(✏, ⌧)p
D(zj,⌧ ) + 1

.

Moreover:
1 If lim⌧!0 !j,⌧ =: !j exists and T (✏, ⌧) diverges as ⌧ ! 0 for every

✏ > 0, then i! is an element of the spectrum of Ṽ .
2 If lim⌧!! exists and D(zj,⌧ ) is bounded as ⌧ ! 0, then i! is an

eigenvalue of V . Moreover, zj,⌧ converges to the eigenspace of V
corresponding to i!.



Numerical examples



Torus rotation—eigenfunctions of W⌧



Torus rotation
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Fig. 5. Real and imaginary parts of numerical Koopman eigenfunctions for the torus flow obtained from data-driven approximations 
of the generator without regularization (a–d) and the RKHS regularization W� (e–h), for di�erent dataset sizes N and values of 
the regularization and spectral resolution parameters � and L. The eigenfunctions depicted here are those whose corresponding 
eigenfrequency in the data-driven spectrum is closest to the theoretical eigenfrequency �1 = 1. For an exact approximation of a 
normalized Koopman eigenfunction, the numerical eigenfunctions should take values in the unit circle in the complex plane.

Fig. 6. Data-driven prediction of the components F1 and F3 of the embedding F of the 2-torus into R3 (left and center columns), 
and the non-polynomial observable exp(F1 + F3) (right column) for the linear torus flow, using the operator etW� with � = 10�5. 
Top row: Comparison of the true and predicted signals as a function of lead time t for a fixed initial condition in the verification 
dataset. Bottom row: Normalized RMSE �(t) as a function of lead time.

Due to the density of the spectrum in the imaginary line, regularization is
important, even for a system with pure point spectrum.



L63 system—eigenfunctions of W⌧



Rössler system—eigenfunctions of W⌧
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