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Section 1

Introduction



Ergodic theory

Ergodic theory studies the statistical behavior of measurable actions of
groups or semigroups on spaces.

Definition 1.1.
A left action, or flow, of a (semi)group G on a set Ω is a map
G × Ω→ Ω with the following properties:

1 Φ(e, ω) = ω, for the the identity element e ∈ G and all ω ∈ Ω.
2 Φ(gh, ω) = Φ(g ,Φ(h, ω)), for all g , h ∈ G and ω ∈ Ω.

The set Ω is called the state space.

In this course, G will be an abelian group or semigroup that represents
the time domain. Common choices include:

N, Z, R+, R.

We write Φg ≡ Φ(g , ·), n ∈ N,Z, and t ∈ R+,R.



Ergodic theory

Ludwig Boltzmann James Clerk Maxwell

Ergodic theory has its origin in the mid 19th century with the work of
Boltzmann and Maxwell on statistical mechanics.

The term ergodic is an amalgamation of the Greek words ergo (έργο),
which means work, and odos (οδός), which means street.



Ergodic theory

George David Birkhoff
Bernard Osgood Koopman 

Bernard Osgood
Koopman

John von Neumann

The mathematical foundations of the subject were established by
Koopman, von Neumann, Birkhoff, and many others, in work dating to
the 1930s.

Modern ergodic theory is a highly diverse subject with connections to
functional analysis, harmonic analysis, probability theory, topology,
geometry, number theory, and other mathematical disciplines.



Observables and ergodic hypothesis

Rather than studying the flow Φ directly, ergodic theory focuses on its
induced action on linear spaces of observables, e.g.,

F = {f : Ω→ Y},

for a vector space Y (oftentimes, Y = R or C).

Drawing on intuition from mechanical systems, Boltzmann postulated
that time averages of observables should well-approximate expectation
values with respect to a reference distribution, µ.

This is encapsulated in the ergodic hypothesis,

lim
N→∞

1
N

N−1∑
n=0

f (Φn(ω))︸ ︷︷ ︸
time average

=

∫
Ω

f dµ︸ ︷︷ ︸
space average

,

which is stipulated to hold for typical initial conditions ω ∈ Ω and
observables f : Ω→ Y in a suitable class.



Operator-theoretic perspective

Definition 1.2.
1 For every g ∈ G , the composition operator, or Koopman operator is

the linear map Ug : F → F defined as

Ug = f ◦ Φg .

2 The transfer operator Pg : F ′ → F ′ is the transpose of Ug , defined
as

Pgµ = µ ◦ Ug .

Koopman and transfer operators allow the study of nonlinear dynamics
using techniques from linear operator theory.

A central theme of this course is that operator-theoretic techniques also
provide a bridge between dynamical systems theory and data science.



Connections with representation theory

Observe that the set Φ̃ = {Φg | g ∈ G} equipped with composition of
maps forms a group.

1 h : G → Φ̃ with h(g) = Φg is a group homomorphism.
2 % : Φ̃→ End(F) with %(Φ) = Ug is a representation.

Using operator-theoretic techniques, we study the dynamics through the
induced representation ρ : G → End(F), where ρ = % ◦ h:

G Φ̃

End(F)

h

ρ
%



Examples
Circle rotation in continuous time

• G = R, Ω = S1.
• Frequency parameter α ∈ R.
• Φt(θ) = θ + αt mod 2π.



Examples
Rational circle rotation in discrete time

• G = Z, Ω = S1.
• Rotation angle A ∈ [0, 2π), A/(2π) ∈ Q.
• Φ1(θ) ≡ Φ(θ) = θ + A mod 2π.



Examples
Irrational circle rotation in discrete time

• G = Z, Ω = S1.
• Rotation angle A ∈ [0, 2π), A/(2π) /∈ Q.
• Φ1(θ) ≡ Φ(θ) = θ + A mod 2π.



Examples
Doubling map

• G = N, Ω = S1.
• Φ(θ) = 2θ mod 2π.



Examples
Rational torus flow

• G = R, Ω = T2.
• Frequency vector α = (α1, α2) ∈ R2, α1/α2 ∈ Q.
• Φt(θ) = θ + αt mod 2π.



Examples
Irrational torus flow

• G = R, Ω = T2.
• Frequency vector α = (α1, α2) ∈ R2, α1/α2 /∈ Q.
• Φt(θ) = θ + αt mod 2π.



Examples
Arnold cat map

• G = Z, Ω = T2.

• Φ(θ) = Aθ mod 2π, A =

(
2 1
1 1

)
.



Examples
Lorenz 63 system

• G = R, Ω = R3.
• Φt(x) is the solution map of the initial-value problem

ẋ(t) = v(x(t)), x(0) = x

with

v(y) = (v1, v2, v3)

v1 = σ(x2 − x1), v2 = x1(ρ− x3), v3 = x1x2 − βx3,

ρ = 28, σ = 10, β = 8/3.



Dynamical systems and data science

Ω Y

X

Yt

X
Zt

Given. Time-ordered samples (x0, y0), (x1, y1), . . . , (xN−1, yN−1) of
observables X : Ω→ X (covariate) and Y : Ω→ Y (response), where Y
is a vector space and

xn = X (ωn), yn = Y (ωn), ωn = Φtn (ω0), tn = (n − 1) ∆t.

Problem 1 [forecasting]. Using the data (xn, yn), construct (“learn”) a
function Zt : X → Y that predicts Y at a lead time t ≥ 0. That is, Zt

should have the property that Zt ◦X is closest to Yt := Y ◦Φt among all
functions in a suitable class.

Problem 2 [coherent pattern extraction]. Using the data xn, identify a
collection of observables ζj : Ω→ Y which have the property of evolving
coherently under the dynamics in a suitable sense.



Dynamical systems and data science

In this course, we explore various approaches for pointwise approximation
(for Problem 1) and spectral analysis (for Problem 2) of
Koopman/transfer operators.

A major requirement is that the approximations are refinable, i.e., the
learned functions Zt and ϕj should have well-controlled limits as N →∞.

Challenges. Linear operators on infinite-dimensional function spaces can
exhibit qualitatively new features which are not present in
finite-dimensional linear algebra, including:

1 Discontinuous (unbounded) linear maps.
2 Elements of the spectrum which are not eigenvalues (e.g.,

continuous spectrum).
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Section 2

Measure-preserving transformations;
Ergodic theorems



Measure-preserving dynamical systems

Definition 2.1.
Let (Ω,Σ, µ) be a measure space.

1 A measurable map T : Ω→ Ω is said to be measure-preserving if
T∗µ = µ, i.e.,

µ(T−1(S)) = µ(S), ∀S ∈ Σ.

Conversely, we say that µ is an invariant measure for T .
2 A measure-preserving map T : Ω→ Ω is said to be invertible

measure-preserving if T is bijective and T−1 is also
measure-preserving.

3 A measurable action Φ : G × Ω→ Ω is µ-preserving if Φg : Ω→ Ω
is µ-preserving for every g ∈ G .



Recurrence

Theorem 2.2 (Poincaré).
Let T : Ω→ Ω be a measure-preserving transformation of the probability
space (Ω,Σ, µ). Let S ∈ Σ be a measurable set with µ(S) > 0. Then,
under iteration by T , almost every point of S returns to S infinitely often.
That is, for µ-a.e. ω ∈ S , there exists a sequence n1 < n2 < n3 < · · · of
natural numbers, increasing to infinity, such that T nj (ω) ∈ S for all j .



Ergodicity

Definition 2.3.
Let (Ω,Σ, µ) be a probability space.

1 A measurable map T : Ω→ Ω is said to be ergodic if for every
T -invariant set, i.e., every S ∈ Σ such that T−1(S) = S we have
either µ(S) = 0 or µ(S) = 1.

2 A measurable action Φ : G × Ω→ Ω is ergodic if for every S ∈ Σ
such that Φ−g (S) = S for all g ∈ G we have either µ(S) = 0 or
µ(S) = 1.



Measure-theoretic characterization of ergodicity

Theorem 2.4.
Let T : Ω→ Ω be a measure-preserving transformation of the probability
space (Ω,Σ, µ). Then, the following are equivalent.

1 T is ergodic.
2 The only measurable sets S ∈ Σ such that µ(T−1(S)4S) = 0 have

either µ(S) = 0 or µ(S) = 1.
3 For every S ∈ Σ with µ(S) > 0, we have µ(

⋃∞
n=1 T

−1(S)) = 1.
4 For every R,S ∈ Σ with µ(R) > 0 and µ(S) > 0, there exists n > 0

with µ(T−n(R) ∩ S) > 0.



Measure-theoretic characterization of ergodicity

Theorem 2.5.
Let (Ω,Σ, µ) be a probability space.

1 A measure-preserving action Φ : N× Ω→ Ω is ergodic iff

lim
N→∞

1
N

N−1∑
n=0

µ(Φ−n(R) ∩ S) = µ(R)µ(S), ∀R,S ∈ Σ.

2 A measure-preserving action Φ : R+ × Ω→ Ω is ergodic iff

lim
T→∞

1
T

∫ T

0
µ(Φ−t(R) ∩ S) dt = µ(R)µ(S), ∀R,S ∈ Σ.



Koopman operators on Lp spaces

Definition 2.6.
A measurable map T : Ω→ Ω on a measure space (Ω,Σ, µ) is said to be
nonsingular if it preserves null sets, i.e., if whenever µ(S) = 0 we have
T∗µ(S) = µ(T−1(S)) = 0.

Notation.
• L(Σ) = {f : Ω→ R : f is Σ-measurable}.
• L(µ) = {[f ]µ : f ∈ L(Σ)}.
• Lp(µ) = {[f ]µ ∈ L(µ) :

∫
Ω
|f |p dµ <∞} .

• L∞(µ) = {[f ]µ ∈ L(µ) : esssupµ|f | <∞}.



Koopman operators on Lp spaces

Proposition 2.7.
With notation as above, the following hold.

1 If T is measurable, then the composition map U : f 7→ f ◦ T maps
L(Σ) into itself.

2 If T is nonsingular, then U : L(µ)→ L(µ) with U [f ]µ = [Uf ]µ is a
well-defined linear map.

3 If T is nonsingular, then L∞(µ) is invariant under U , i.e.,

UL∞(µ) ⊆ L∞(µ).

4 If T is measure-preserving, then U is an isometry of Lp(µ),
1 ≤ p ≤ ∞, i.e.,

‖U [f ]µ‖Lp(µ) = ‖[f ]µ‖Lp(µ).

5 If T is invertible measure-preserving, then U is an isomorphism of
Lp(µ), 1 ≤ p ≤ ∞, i.e., U and U−1 are both isometries.

Henceforth, we abbreviate [f ]µ ≡ f , U ≡ U .



Koopman operators on L2

Notation.
• 〈f1, f2〉L2(µ) =

∫
Ω
f1f2 dµ.

The Koopman operator induced by a µ-preserving map T : Ω→ Ω
preservers Hilbert space inner products,

〈Uf1,Uf2〉L2(µ) = 〈f1, f2〉L2(µ).

If, in addition, T is invertible measure-preserving, then U is a unitary
operator,

U∗ = U−1.



Duality of Lp spaces

Notation.
For a probability space (Ω,Σ, µ), we let:

• Mq(Ω, µ) =
{
measures ν � µ with density dν

dµ ∈ Lq(µ)
}
.

• Duality pairing: 〈·, ·〉µ : Lp(µ)∗ × Lp(µ)→ R, 〈α, f 〉µ = αf .

For 1 ≤ p <∞, we can identify functionals in Lp(µ)∗ with measures in
Mq(Ω, µ), 1

p + 1
q = 1, through the map ιq : Mq(Ω, µ)→ Lp(µ)∗,

(ιqν)f =

∫
Ω

f ρ dµ, ρ =
dν

dµ
.

Equipping Mq(Ω, µ) with the norm

‖ν‖Mq(Ω,ν) =

∥∥∥∥dνdµ
∥∥∥∥

Lq(µ)

,

ιq becomes an isomorphism of Banach spaces. Thus, we have

Lp(µ)∗ ' Mq(Ω, µ) ' Lq(µ), 1 ≤ p <∞, 1
p

+
1
q

= 1.



Transfer operators on Lp

Definition 2.8.
With the notation of Proposition 2.7, the transfer operator
P : L1(µ)→ L1(µ) is is the unique operator satisfying∫

S

Pf dµ =

∫
T−1(S)

f dµ, ∀f ∈ L1(µ).

We define P : Lp(µ)→ Lp(µ), 1 < p ≤ ∞ by restriction of
P : L1(µ)→ L1(µ).

Proposition 2.9.
Under the identification L1(µ)∗ ' L∞(µ), the transpose
P ′ : L1(µ)∗ → L1(µ)∗ of the transfer operator P : L1(µ)→ L1(µ) is
identified with the Koopman operator U : L∞(µ)→ L∞(µ); that is,∫

Ω

f (Pg) dµ =

∫
Ω

(Uf )g dµ, ∀f ∈ L∞(µ), ∀g ∈ L1(µ).



Duality between Koopman and transfer operators

Proposition 2.10.
Let 1 ≤ p <∞. Then, under the identification Lp(µ)∗ ' Lq(µ),
1
p + 1

q = 1, the following hold:

1 The transpose U ′ : Lp(µ)∗ → Lp(µ)∗ of the Koopman operator
U : Lp(µ)→ Lp(µ) is identified with the transfer operator
P : Lq(µ)→ Lq(µ); that is,

〈f ,Ug〉µ = 〈Pf , g〉µ, ∀f ∈ Lq(µ), ∀g ∈ Lp(µ).

2 The transpose P ′ : Lp(µ)∗ → Lp(µ)∗ of the transfer operator
P : Lp(µ)→ Lp(µ) is identified with the Koopman operator
U : Lq(µ)→ Lq(µ); that is,

〈f ,Pg〉µ = 〈Uf , g〉µ, ∀f ∈ Lq(µ), ∀g ∈ Lp(µ).



Duality between Koopman and transfer operators

Corollary 2.11.

1 For 1 < p <∞, U : Lp(µ)→ Lp(µ) and P : Lp(µ)→ Lp(µ) satisfy

U = U ′′, P = P ′′.

2 In the Hilbert space case, p = 2, we have P = U∗.
3 For 1 ≤ p ≤ ∞, P has unit operator norm, ‖P‖Lp(µ) = 1.

Lemma 2.12.
With the notation of Proposition 2.8, if T : Ω→ Ω is invertible
measure-preserving then P : Lp(µ)→ Lp(µ) is the inverse of
U : Lp(µ)→ Lp(µ), P = U−1.



Spectral characterization of ergodicity

Observe that the Koopman operator U : F → F on any function space
F has an eigenvalue equal to 1 with a constant corresponding
eigenfunction, 1 : Ω→ R,

U1 = 1, 1(ω) = 1.

Theorem 2.13.
Let T : Ω→ Ω be a measure-preserving transformation of a probability
space (Ω,Σ, µ). Then, µ is ergodic iff the eigenvalue equal to 1 of the
associated Koopman operator U on L(µ) (and thus on any of the Lp(µ)
spaces with 1 ≤ p ≤ ∞) is simple, i.e.,

Uf = f =⇒ f = const. µ-a.e.



Spectral characterization of ergodicity

Theorem 2.14.
1 Let Φ : N× Ω→ Ω be a measure-preserving action and Un, n ∈ N,

the associated Koopman operators on any of L(µ) or Lp(µ),
1 ≤ p ≤ ∞. Then Φ is ergodic iff Unf = f for all n ∈ N implies that
f is constant µ-a.e.

2 Let Φ : R+ × Ω→ Ω be a measure-preserving action and U t ,
t ∈ R+, the associated Koopman operators on any of L(µ) or Lp(µ),
1 ≤ p ≤ ∞. Then, Φ is ergodic iff U t f = f for all t ∈ R+ implies
that f is constant µ-a.e.



Pointwise ergodic theorem

Theorem 2.15 (Birkhoff).
Let T : Ω→ Ω be a measure-preserving transformation of a probability
space (Ω,Σ, µ) with associated Koopman operator U : L1(µ)→ L1(µ).
Then, for every f ∈ L1(µ) and µ-a.e. ω ∈ Ω,

fN (ω) :=
1
N

N−1∑
n=0

f (T n(ω))

converges to a function f̄ ∈ L1(µ) that satisfies

Uf̄ = f̄ ,

∫
Ω

f dµ =

∫
Ω

f̄ dµ.

In particular, if T is ergodic, then for µ-a.e. ω ∈ Ω,

f̄ (ω) =

∫
Ω

f dµ.



Mean ergodic theorem

Theorem 2.16 (von Neumann).
Let T : Ω→ Ω be a measure-preserving transformation of a probability
space (Ω,Σ, µ) with associated Koopman operator U : L2(µ)→ L2(µ).
Let Π : L2(µ)→ L2(µ) be the orthogonal projection onto the eigenspace
of U corresponding to eigenvalue 1. Then, the sequence of operators
UN = N−1∑N−1

n=0 Un converges strongly to Π, i.e.,

lim
N→∞

UN f = Πf , ∀f ∈ L2(µ).

In particular, if T is ergodic, Π is the projection onto the 1-dimensional
subspace of L2(µ) containing µ-a.e. constant functions, i.e.,

Πf = 〈1, f 〉L2(µ)1 =

(∫
Ω

f dµ

)
1.



Topological dynamics

Of particular interest is the case where (G , τG ) and (Ω, τΩ) are
topological spaces and Φ : G × Ω→ Ω is a continuous, and thus
Borel-measurable, action. We let B(Ω) denote the Borel σ-algebra of Ω.

Definition 2.17.
The support of a measure µ : B(Ω)→ [0,∞] is the set

suppµ := {ω ∈ Ω : µ(Nω) > 0, ∀Nω ∈ τΩ}.

Lemma 2.18.
With notation as above, the following hold.

1 suppµ is a closed (and thus Borel-measurable) subset of Ω.
2 If Ω is Hausdorff, and µ is a Radon measure, every Borel-measurable

set S ⊂ Ω \ suppµ has µ(S) = 0.
3 If µ is invariant under a continuous map T : Ω→ Ω, then suppµ is

also invariant,
T−1(suppµ) ⊆ suppµ.



Existence of invariant measures

Theorem 2.19 (Krylov-Bogoliubov).
Let (Ω, τΩ) be a compact metrizable space and T : Ω→ Ω a continuous
map. Then, there exists an invariant Borel probability measure under T .



Existence of dense orbits

Theorem 2.20.
Let (Ω, τΩ) be a compact metrizable space, T : Ω→ Ω a continuous
map, and µ an ergodic, invariant Borel probability measure with
suppµ = Ω. Then, µ-a.e. ω ∈ Ω has a dense orbit {T n(ω)}∞n=0.



Geometry of invariant measures

Theorem 2.21.
Let T : Ω→ Ω be a continuous map on a compact metrizable space. Let
M(Ω;T ) denote the set of T -invariant Borel probability measures on Ω.
Then, the following hold:

1 M(Ω;T ) is a weak-∗ compact, convex space.
2 µ is an extreme point ofM(Ω;T ) iff it is ergodic.
3 If µ and ν are distinct, ergodic measures inM(Ω;T ), then they are

mutually singular.



Equidistributed sequences

Definition 2.22.
Let T : Ω→ Ω be a continuous map on a compact metrizable space
(Ω, τΩ) and µ a Borel probability measure. A sequence ω0, ω1, . . . with
ωn = T n(ω0) is said to be µ-equidistributed if

lim
N→∞

1
N

N−1∑
n=0

f (ωn) =

∫
Ω

f dµ, ∀f ∈ C (Ω).

Remark.
µ-equidistribution of ω0, ω1, . . . is equivalent to weak-∗ convergence of
the sampling measures µN = N−1∑N−1

n=0 δωn to the measure µ.



Basin of a measure

Definition 2.23.
With the notation of Definition 2.22 the basin of µ is the set

B(µ) = {ω0 ∈ Ω : ω0, ω1, . . . is µ-equidistributed}.

By the pointwise ergodic theorem (Theorem 2.15), if Ω is a metrizable
space and µ is an ergodic invariant measure with compact support, then
µ-a.e. ω ∈ Ω lies in B(µ).



Observable measures

Definition 2.24.
With the notation of Definition 2.23, let ν be a reference Borel probability
measure on Ω. The measure µ is said to be ν-observable if there exists a
Borel set S ∈ B(Ω) with ν(S) > 0 such that ν-a.e. ω ∈ S lies in B(µ).

Intuitively, we think of ν as the measure from which we draw initial
conditions. ν-observability of µ then means that the statistics of
observables with respect to µ can be approximated from experimentally
accessible initial conditions.



Koopman operators on spaces of continuous functions

Proposition 2.25.
Let T : Ω→ Ω be a continuous map on a locally compact Hausdorff
space. Then, the Koopman operator U : f 7→ f ◦ T is well-defined as a
linear map from C (Ω) into itself. Moreover:

1 U is a contraction, i.e.,

‖Uf ‖C(Ω) ≤ ‖f ‖C(Ω), ∀f ∈ C (Ω),

with equality if T is invertible.
2 U has operator norm ‖U‖ = 1.
3 U has the properties

U(fg) = (Uf )(Ug), U(f ∗) = (Uf )∗, ∀f , g ∈ C (Ω),

i.e., it is a ∗-homomorphism of the C∗-algebra C (Ω).



Transfer operators on Borel measures

Notation.
• M(Ω): Space of signed Borel measures on topological space (Ω, τΩ).

Definition 2.26.
Let T : Ω→ Ω be a continuous map on a compact metrizable space.
The transfer operator P : C (Ω)∗ → C (Ω)∗ is the transpose (dual)
operator to the Koopman operator U : C (Ω)→ C (Ω),

Pα = α ◦ U.



Unique ergodicity

Definition 2.27.
Let T : Ω→ Ω be a continuous map on a compact metrizable space
(Ω, τΩ). T is said to be uniquely ergodic if there is only one T -invariant
Borel probability measure.

Theorem 2.28.
With notation as above, the following are equivalent.

1 T is uniquely ergodic.
2 For every f ∈ C (Ω), N−1∑N−1

n=0 f (T n(ω)) converges to a constant,
uniformly with respect to ω ∈ Ω.

3 For every f ∈ C (Ω), N−1∑N−1
n=0 f (T n(ω)) converges pointwise to a

constant.
4 There exists an invariant Borel probability measure µ such that

lim
N→∞

1
N

N−1∑
n=0

f (T n(ω)) =

∫
Ω

f dµ, ∀ω ∈ Ω.



Strong and weak continuity of continuous-time (semi)flows

Theorem 2.29.
Let Φt : Ω→ Ω, t ≥ 0, be a continuous-time, continuous, semiflow on a
compact metrizable space Ω with associated Koopman operators
U t : C (Ω)→ C (Ω). Then, as t → 0, U t converges strongly to the
identity,

lim
t→0
‖U t f − f ‖C(Ω) = 0, ∀f ∈ C (Ω).

Theorem 2.30.
Let Φt : Ω→ Ω, t ≥ 0, be a continuous-time, measurable semiflow with
invariant probability measure µ and associated Koopman operators
U t : Lp(µ)→ Lp(µ). Then, the following hold as t → 0:

1 For 1 ≤ p <∞, U t converges strongly to the identity,

lim
t→0
‖U t f − f ‖Lp(µ) = 0, ∀f ∈ Lp(µ).

2 For p =∞, U t converges in weak-∗ sense to the identity,

lim
t→0

∫
Ω

g(U t f ) dµ =

∫
Ω

gf dµ, ∀f ∈ L∞(µ), ∀g ∈ L1(µ).



Mixing

Recall from Theorem 2.4 that a measure-preserving transformation is
ergodic iff

lim
N→∞

1
N

N−1∑
n=0

µ(T−n(R) ∩ S) = µ(R)µ(S), ∀R,S ∈ Σ.

Definition 2.31.
Let T : Ω→ Ω be a measure-preserving transformation of the probability
space (Ω,Σ, µ).

1 T is said to be weak-mixing if

lim
N→∞

1
N

N−1∑
n=0

|µ(T−n(R) ∩ S)− µ(R)µ(S)| = 0, ∀R,S ∈ Σ.

2 T is said to be strong-mixing, or mixing, if

lim
n→∞

µ(T−n(R) ∩ S) = µ(R)µ(S), ∀R,S ∈ Σ.



Mixing

Theorem 2.32.
Let T : Ω→ Ω be a measure-preserving transformation of the probability
space (Ω,Σ, µ). Then, the following are equivalent.

1 T is weak-mixing.
2 There is a subset N ⊂ N of zero density such that

lim
n→∞
n/∈N

µ(T−n(R) ∩ S) = µ(R)µ(S), ∀R,S ∈ Σ.



Observable-centric characterization of ergodicity and mixing

Let T : Ω→ Ω be a measure-preserving transformation of the probability
space (Ω,Σ, µ). Let U : L2(µ)→ L2(µ) be the associated Koopman
operator on L2.

For f , g ∈ L2(µ), define the cross-correlation function Cfg : N→ R, where

Cfg (n) = 〈f ,Ung〉L2(µ),

and the autocorrelation function Cf = Cff .

Consider also the expectation values f̄ =
∫

Ω
f dµ and ḡ =

∫
Ω
g dµ.

Theorem 2.33.
With notation as above, the following are equivalent.

1 T is ergodic.
2 For all f , g ∈ L2(µ), limn→∞ N−1∑N−1

n=0 Cfg (n) = f̄ ḡ .

3 For all f ∈ L2(µ), limn→∞ N−1∑N−1
n=0 Cf (n) = f̄ 2.



Observable-centric characterization of ergodicity and mixing

Theorem 2.34.
With notation as above, the following are equivalent.

1 T is weak-mixing.
2 For all f , g ∈ L2(µ), limN→∞ N−1∑N−1

n=0 |Cfg (n)− f̄ ḡ | = 0.

3 For all f ∈ L2(µ), limN→∞ N−1∑N−1
n=0 |Cf (n)− f̄ 2| = 0.

Theorem 2.35.
With notation as above, the following are equivalent.

1 T is mixing.
2 For all f , g ∈ L2(µ), limN→∞ Cfg (n) = f̄ ḡ .
3 For all f ∈ L2(µ), limN→∞ Cf (n) = f̄ 2.



Spectral characterization of mixing

Theorem 2.36.
Let T : Ω→ Ω be a measure-preserving transformation of the probability
space (Ω,Σ, µ), and U : L2(µ)→ L2(µ) the corresponding Koopman
operator. Then, T is weak-mixing iff the only eigenvalue of U is the
eigenvalue equal to 1.



Mixing and product flows

Theorem 2.37.
Let T : Ω→ Ω be a measure-preserving transformation of the probability
space (Ω,Σ, µ). Then, the following are equivalent.

1 T is weak-mixing.
2 T × T is ergodic with respect to the product measure µ× µ.
3 T × T is weak-mixing with respect to the product measure µ× µ.
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Section 3

Forecasting



Setting

Recall the forecasting problem from Section 1:

Ω Y

X

Yt

X
Zt

Given. Time-ordered samples (x0, y0), (x1, y1), . . . , (xN−1, yN−1) of
observables X : Ω→ X (covariate) and Y : Ω→ Y (response), where Y
is a vector space and

xn = X (ωn), yn = Y (ωn), ωn = Φtn (ω0), tn = (n − 1) ∆t.

Goal. Using the data (xn, yn), construct (“learn”) a function Zt : X → Y
that predicts Y at a lead time t ≥ 0. That is, Zt should have the
property that Zt ◦ X is closest to Yt := Y ◦ Φt among all functions in a
suitable class.



General assumptions and notation

Throughout this section we assume:

1 Φt : Ω→ Ω, t ≥ 0, is a continuous, measure-preserving, ergodic
semiflow on a compact metrizable space Ω, with a Borel invariant
probability measure µ.

2 X : Ω→ X is a continuous map into a metrizable space X .
3 Y : Ω→ Y is a continuous map into a Banach space Y (typically,
Y = R).

4 The discrete-time Φ∆t : Ω→ Ω is ergodic.

Notation.
• Mp(Ω;µ) =

{
measures ν � µ with density dν

dµ ∈ Lp(µ)
}
.

• MC (Ω;µ) =
{
measures ν � µ with density dν

dµ ∈ C (Ω)
}
.

• XΩ = X (Ω): Image of state space in covariate space.
• µX = X∗µ: Pushforward of invariant measure into covariate space.



Probabilistic initial conditions

We first consider the case where we assign to each initial condition
x ∈ X with x = X (ω) a probability measure px ∈ M2(Ω;µ) with
continuous density.

We let ρx = dpx

dµ ∈ C (Ω) be the density of px relative to µ.

Algorithm 3.1 (construction of the density ρx).

1 Pick a continuous, strictly positive kernel function κ : X ×X → R+,
e.g.,

κ(x , x ′) = exp

(
−d2
X (x , x ′)

ε2

)
, ε > 0.

2 Normalize κ to a continuous Markov kernel ρ : X × X → R+,

ρ(x , x ′) =
κ(x , x ′)

v(x)
, v(x) =

∫
X
κ(x , ·) dµX .

3 Set ρx (ω) = ρ(x ,X (ω)).



Target function

Assuming Y ∈ L2(µ), define the target function Zt ∈ C (XΩ) where

Zt(x) = Epx (U tY ) = 〈ρx ,U
tY 〉L2(µ) ≡ 〈P tρx ,Y 〉L2(µ).

Notation.
• φ0, φ1, . . .: Orthonormal basis functions of L2(µ).
• ΠL : L2(µ)→ L2(µ): Orthogonal projection onto

span{φ0, . . . , φL−1}.
• U

(t)
L = ΠLU

tΠL: Finite-rank approximation of the Koopman
operator.

Proposition 3.2.
With notation as above, as L→∞ U

(t)
L converges to U t weakly. As a

result, Zt,L = Epx (U
(t)
L Y ) satisfies

lim
L→∞

Zt,L(x) = Zt(x),

where the convergence is uniform with respect to x ∈ XΩ and t in
compact sets.



Target function

Algorithm 3.3 (evaluation of the target function).

1 Represent U(t)
L by the L× L matrix U(t) = [U

(t)
ij ] with

U
(t)
ij = 〈φi ,U

tφj〉L2(µ), i , j = 0, . . . , L− 1.

2 Represent ρx by the column vector ρ̂x = (ρ̂x,0, . . . , ρ̂x,L−1)> ∈ RL

with
ρ̂x,i = 〈φi , ρx〉L2(µ).

3 Represent Y by the column vector ŷ = (ŷ0, . . . , ŷL−1)> ∈ RL with

ŷi = 〈φi ,Y 〉L2(µ).

4 Compute Zt,L(x) as the matrix–vector product

Zt,L(x) = ρ̂>x U(t)ŷ .



Shift operator

Notation.
• B(µ) : Basin of the invariant measure.
• µN = N−1∑N−1

n=0 δωn : Sampling measure.

• µX ,N := X∗µN = N−1∑N−1
n=0 δxn : Sampling measure in data space.

• {e0,N , . . . , eN−1,N}, ej,N (ωn) = N1/2δjn: Orthonormal basis of
L2(µN ).

• ι : C (Ω)→ L2(µ), ιf = [f ]µ : Inclusion map.
• ιN : C (Ω)→ L2(µN ), ιf = [f ]µN

: Restriction map.



Shift operator

Definition 3.4.
For q ∈ N we define the shift operator Ûq

N : L2(µN )→ L2(µN ) as

(Ûq
N f )(ωn) =

{
f (ωn+1), 0 ≤ n ≤ N − 1− q,

0, N − q ≤ n ≤ N − 1.

Remark 3.5.
Intuitively, Ûq

N should be related to Uq ∆t . However, it is not a
composition operator. In fact, it is a nilpotent operator, ÛN−q+1

N = 0.

Lemma 3.6.
The following hold:

1 U t ◦ ι = ι ◦ U t .
2 For every q ∈ N and f ∈ C (Ω),

(Ûq
N ◦ ιN )f = (ιN ◦ Uq ∆t)f + rN ,

where rN is a remainder satisfying limN→∞‖rN‖L2(µN ) = 0.



Koopman operator approximation in a continuous basis

Theorem 3.7.
Let {φ0,N , . . . , φN−1,N} be an orthonormal basis of L2(µN ) such that

φj,N = ιNϕj,N , ϕj,N
C(Ω)−−−−→

N→∞
ϕj ,

where φj = ιϕj are orthonormal basis vectors of L2(µ). Let
ΠL,N : L2(µN )→ L2(µN ) be the orthogonal projection onto
span{φ0,N , . . . , φL−1,N}. Assume that the initial state ω0 lies in the basin
B(µ), and set q, L ∈ N. Then, the L× L matrix representations
Û(q)

N = [Û
(q)
ij,N ] and U(q ∆t) = [U

(q ∆t)
ij ] of Û(q)

L,N and Uq ∆t
L , respectively,

with

Û
(q)
ij,N = 〈φi,N , Û

q
Nφj,N〉L2(µN ), U

(q ∆t)
ij = 〈φi ,U

∆tφj〉L2(µ)

satisfy limN→∞ Û(q)
N = U(q ∆t), in any matrix norm.



Discrete density

We assign to each initial condition x ∈ X with x = X (ω) a probability
measure px,N ∈ M2(Ω;µN ) with continuous density.

We let ρx,N =
dpx,N

dµN
∈ C (Ω) be the density of px,N relative to µN .

Algorithm 3.8 (construction of the discrete density ρx,N).

1 Pick a continuous, strictly positive kernel function κ : X × X → R+

as in Algorithm 3.1, e.g.,

κ(x , x ′) = exp

(
−d2
X (x , x ′)

ε2

)
, ε > 0.

2 Normalize κ to a continuous Markov kernel ρN : X × X → R+ with
respect to µX ,N ,

ρN (x , x ′) =
κ(x , x ′)

vN (x)
, vN (x) =

∫
X
κ(x , ·) dµX ,N .

3 Set ρx,N (ω) = ρN (x ,X (ω)).



Discrete density

Proposition 3.9.
With the notation of Algorithm 3.8, the following hold as N →∞ for
every initial state ω0 ∈ B(µ):

1 ρx,N converges to ρx in the C (Ω) norm, uniformly with respect to
x ∈ XΩ.

2 px,N converges to px in the weak-∗ topology of M(Ω).



Target function based on samples

We consider a forecast lead time t = q ∆t, q ∈ N.

Algorithm 3.10 (evaluation of the sample-based target function).

1 Represent Û(q)
L,N by the L× L matrix Û(q)

N = [Û
(q)
ij,N ] with

Û
(q)
ij,N = 〈φi,N , Û

q
Nφj,N〉L2(µN ), i , j = 0, . . . , L− 1.

2 Represent ρx,N by the column vector
ρ̂x,N = (ρ̂x,N,0, . . . , ρ̂x,N,L−1)> ∈ RL with

ρ̂x,N,i = 〈φi,N , ρx,N〉L2(µN ).

3 Represent Y by the column vector ŷN = (ŷN,0, . . . , ŷN,L−1)> ∈ RL

with
ŷN,i = 〈φi,N ,Y 〉L2(µN ).

4 Compute Zt,L,N (x) as the matrix–vector product

Zt,L,N (x) = ρ̂>x,NÛN ŷN .



Approximation in a continuous basis

Corollary 3.11.
With the notation of Algorithm 3.10, the target function Zt,L,N : X → R,

Zt,L,N (x) = ρ̂>x,NÛ(q)
N ŷN ,

satisfies
lim

N→∞
Zt,L,N (x) = Zt,L(x),

uniformly with respect to x ∈ XΩ and t in compact sets.



Measures of forecast skill

Definition 3.12.
For forecast lead time t ≥ 0 and a target function Zt : X → R such that
Ỹt := Zt ◦ X lies in L2(µ), we define:

1 Mean: Ȳ = EµY , ¯̃Yt = EµỸt .

2 Anomaly relative to mean: Y ′ = Y − Ȳ , Ỹ ′t = Yt − ¯̃Yt .
3 Standard deviation: stdY = ‖Y ′‖L2(µ), std Ỹt = ‖Ỹ ′t ‖L2(µ).

4 Root mean square error (RMSE): RMSEt = ‖Ỹt − Yt‖L2(µ).
5 Normalized RMSE: NRMSEt = RMSEt / stdY .
6 Anomaly correlation: ACt = 〈Ỹ ′t ,Yt〉L2(µ)/(std Ỹt stdY ).

Remark 3.13.
In practice, we estimate the skill scores in Definition 3.12 by
approximating integrals with respect to µ by integrals (time averages)
with respect to a sampling measure µ̂N̂ associated with a trajectory that
is independent of the training trajectory ω0, ω1, . . ..



Mixing and loss of predictability

Proposition 3.14.
With notation as above, suppose that the system is mixing. Then, for
any x ∈ X and L ∈ N, the long-time limit of the target function Zt,L(x)

is a constant Y̆ independent of x ,

lim
t→∞

Zt,L(x) = Ỹ .

In addition, if span{φ0, . . . , φL−1} includes the constant functions, we
have Y̆ = Ȳ . In that case,

lim
t→∞

NRMSEt = 1, lim
t→∞

ACt = 0.



Estimating the forecast uncertainty

Definition 3.15.
Let Ỹt = Zt ◦ X be the pullback of target function onto Ω. We define
the forecast variance associated with the initial condition x ∈ X as

βt(x) = Epx (Ỹ ′t )2.

We can approximate βt : X → R using an analogous approach as in the
construction of Zt,L and Zt,L,N , treating Y ′t as the response variable.



Kernels and kernel integral operators

For our purposes, a kernel is a bivariate function k : Ω× Ω→ R that
captures a notion of similarity or correlation between points in Ω.

Given a continuous kernel k ∈ C (Ω× Ω) and a Borel probability measure
ν ∈ M(Ω), there is an associated kernel integral operator
K : L2(ν)→ C (Ω), where

Kf (ω) =

∫
Ω

k(ω, ·)f dν.

Notation.
• When we wish to make the dependence of K on ν explicit, we will

use the notation Kν ≡ K .



Kernels and kernel integral operators

Lemma 3.16.
Under our general assumptions, K is a compact operator.

Corollary 3.17.
The operators G : L2(ν)→ L2(ν) and G̃ : C (Ω)→ C (Ω) with

G = ι ◦ K , G̃ = K ◦ ι

are compact.



Types of kernels

Definition 3.18.
1 A kernel k : Ω× Ω→ R on a set Ω is said to be positive-definite if

for any finite sequence ω1, . . . , ωn ∈ Ω and numbers c1, . . . , cn ∈ R,
we have

n∑
i,j=1

cicjk(ωi , ωj ) ≥ 0.

2 A kernel k : Ω× Ω→ R on a set Ω is said to be strictly
positive-definite if for any finite sequence ω1, . . . , ωn of distinct
points in Ω and numbers c1, . . . , cn ∈ R, at least one of which is
nonzero, we have

n∑
i,j=1

cicjk(ωi , ωj ) > 0.



Types of kernels

Definition 3.19.
Let Ω be a topological space and k : Ω× Ω→ R be a Borel-measurable,
bounded kernel.

1 k is said to be integrally positive-definite if for every finite, signed
Borel measure ν on Ω, we have∫

Ω

∫
Ω

k(ω, ω′) dν(ω) dν(ω′) ≥ 0.

2 k is said to be strictly integrally positive-definite if for every nonzero,
finite, signed Borel measure ν on Ω, we have∫

Ω

∫
Ω

k(ω, ω′) dν(ω) dν(ω′) > 0.

Remark 3.20.
If k is (strictly) integrally positive-definite, Gν : L2(ν)→ L2(ν) is a
(strictly) positive operator. We will then say that k is
L2(ν)-(strictly)-positive.



Types of kernels

Theorem 3.21.
Suppose that Ω is a compact metrizable space. Then, with the notation
of Definition 3.19, the following hold:

1 k is integrally positive-definite iff it is positive-definite.
2 If k is strictly integrally positive-definite then it is strictly

positive-definite.



Kernel eigenfunctions

Proposition 3.22.
Let K : L2(ν)→ C (Ω), G : L2(ν)→ L2(µ), G̃ : C (Ω)→ C (Ω) be the
operators from Corollary 3.17. Then:

1 There exists an orthonormal basis {φ0, φ1, . . .} of L2(ν) which are
eigenfunctions of G corresponding to real eigenvalues λ0, λ1, . . ., i.e.,

Gφj = λjφj .

2 Every nonzero eigenvalue λj has finite multiplicity, and the
eigenvalues can be ordered in a sequence |λ0| ≥ |λ1| ≥ · · · ↘ 0 with
no accumulation point other than 0.

3 For every λj 6= 0, the continuous function ϕj := λ−1
j Kφj is an

eigenfunction of G̃ corresponding to the same eigenvalue λj ,

G̃ϕj = λjϕj .



Data-driven basis

Algorithm 3.23 (data-driven basis).
Set ν = µN , KN ≡ KµN

, GN ≡ GµN
, G̃N ≡ G̃µN

. Assume k is symmetric.
1 Represent GN by the N × N kernel matrix K = [Kij ] with

Kij = 〈ei,N ,GNej,N〉L2(µN ) = k(ωi , ωj ).

2 Solve the matrix eigenvalue problem

Kφj = λj,Nφj , φj = (φ0j , . . . , φN−1,j )
>, ‖φj‖2 =

√
N.

3 Reconstruct the eigenvectors φj,N ∈ L2(µN ),

φj,N =
N−1∑
i=0

φij,Nei,N , GNφj,N = λj,Nφj,N .

4 For λj,N 6= 0, compute the continuous extensions ϕj,N ∈ C (Ω),

ϕj,N =
1
λj,N

KNφj,N =
1

λj,NN

N−1∑
i=0

k(·, ωi )φij,N , G̃Nϕj,N = λj,Nϕj,N .



Data-driven basis

Set ν = µ, K ≡ Kµ, G ≡ Gµ, G̃ ≡ G̃µ,

Gφj = λjφj , ϕj =
1
λj

Kφj , G̃ϕj = λjϕj .

Strategy.
• Use the weak-∗ convergence of µN to µ to deduce spectral

convergence of G̃N to G̃ . This implies convergence of the nonzero
λj,N to λj and convergence of ϕj,N to ϕj in a suitable sense.

• Use an integrally strictly positive-definite kernel k . Then, λj > 0,
and the ϕj,N converge to an orthonormal basis of L2(µ). The
assumptions of Theorem 3.7 are satisfied.



Compact convergence

Definition 3.24.
Let (F , ‖·‖F ) be a Banach space, and A1,A2, . . . a sequence of bounded
operators on F . We say that An converges compactly if it converges to a
(bounded) operator A pointwise, and for every bounded sequence fn ∈ F ,
the sequence (A− An)fn has a convergent subsequence in F .

Notation.
• B(F ): Banach space of bounded operators on F .
• σ(A): Spectrum of an operator A ∈ B(F ).



Compact convergence

Theorem 3.25.
With the notation of Definition 3.24, let An converge to A compactly. Let
λ ∈ σ(A) be an isolated eigenvalue of A with finite multiplicity m, and Π
the spectral projection of A corresponding to λ. Let S ⊆ C be an open
neighborhood of λ such that σ(A) ∩ S = {λ}. Then, the following hold.

1 There exists n∗ ∈ N such that for all n > n∗, σ(An) ∩ S is an
isolated subset of σ(An), consisting of at most m distinct
eigenvalues whose multiplicities sum up to m. Moreover, every
sequence λn ∈ σ(An) ∩ S satisfies limn→∞ λn = λ.

2 The spectral projections Πn of An corresponding to σ(An) ∩ S
(which are well-defined for n > n∗) converge strongly to Π. In
particular, for every eigenfunction φ of A at eigenvalue λ, there
exists a sequence of eigenfunctions φn of An at eigenvalue λn such
that limn→∞ φn = φ in the norm of F .



Compact convergence

Theorem 3.26.
Suppose that k : Ω× Ω→ R is a continuous kernel. Then, under our
general assumptions, G̃N converges compactly to G̃ .

Corollary 3.27.
If k is integrally strictly positive-definite, the conditions of Theorem 3.7
are satisfied.



Kernels on covariate space

In practice, we construct k : Ω× Ω→ R as a pullback of a continuous
kernel κ : X × X → R in covariate space, i.e.,

k(ω, ω′) = κ(X (ω),X (ω′)).

All computations involving GN and KN can be expressed using covariate
data.

• GN is represented by the N × N matrix

K = [Kij ], Kij = k(ωi , ωj ) = κ(xi , xj ).

• The continuous extension ϕj,N of φj,N is given by

ϕj,N (ω) =
1
λj,N

KNφj (ω) =
1

λj,NN

N−1∑
n=0

κ(F (ω), xn).



Kernels on covariate space

Every eigenfunction ϕj,N or ϕj corresponding to nonzero eigenvalue is of
the form

ϕj,N = ϕ
(X )
j,N ◦ X , ϕj = ϕ

(X )
j ◦ X ,

for continuous functions ϕ(X )
j,N , ϕ

(X )
j ∈ C (XΩ).

• The corresponding φj = ιϕj form an orthonormal set in L2(µ), but if
X is not injective they might not form an orthonormal basis (even if
κ is integrally positive definite).

Remark.
The kernel κ used to compute the basis vectors φj,N and φj need not
(and in general, will not) be the same as the kernel used to assign the
initial density ρx via Algorithm 3.8.



Data-driven forecast

The construction and evaluation of the data-driven target function
Zt,L,N (x) for x ∈ X and t = q ∆t, can be summarized as follows.

Algorithm 3.28 (data-driven target function).

1 Apply Algorithm 3.23 using the covariate training data xn and a
kernel κ : X × X → R to compute the basis vectors φj,N .

2 Apply Algorithm 3.8 using the covariate training data xn and a
strictly positive kernel κ̃ : X × X → R to compute the initial density
ρx .

3 Set a spectral resolution parameter L (number of eigenfunctions).
Apply Algorithm 3.10 using φj,N from Step 1, ρx from Step 2, and
the response training data yn to compute Zt,L,N (x).



Conditional expectation

Notation.
For a measure space (Ω,Σ, µ) and a sub-σ-algebra Σ′ ⊆ Σ, we let:
• L(Σ′) = {f : Ω→ R : f is Σ′-measurable} ⊆ L(Σ).
• L(µ,Σ′) = {[f ]µ : f ∈ L(Σ′)} ⊆ L(µ).
• Lp(µ,Σ′) = Lp(µ) ∩ L(µ,Σ).

Definition 3.29.
Let (Ω,Σ, µ) be a probability space. Given f ∈ L1(µ) and a
sub-σ-algebra Σ′ ⊆ Σ, the conditional expectation of f on Σ′ is the
unique element g ∈ L1(µ,Σ′) such that∫

E

f dµ =

∫
E

g dµ, E ∈ Σ′.

We write g ≡ E(f | Σ′).



Conditional expectation

Lemma 3.30.
With the notation of Definition 3.29, the following hold.

1 Lp(µ,Σ′) is a closed subspace of Lp(µ).
2 If f ∈ Lp(µ), then E(f | Σ′) ∈ Lp(µ,Σ′).
3 The map ΠΣ′ : Lp(µ)→ Lp(µ) with

ΠΣ′ f = E(f | Σ′)

is a linear projection onto Lp(µ,Σ′) with norm 1.
4 ΠΣ′ : L2(µ)→ L2(µ) is the orthogonal projection onto L2(µ,Σ′).



Conditional expectation

Corollary 3.31.
For any f ∈ L2(µ),

E(f | Σ′) = ΠΣ′ f

is the unique element of L2(µ,Σ′) that minimizes the distance from f to
L2(µ,Σ′), i.e.,

‖f − E(f | Σ′)‖L2(µ) < ‖f − g‖L2(µ), ∀g ∈ L2(µ,Σ′) \ {f }.



Conditional expectation on measurable maps

Definition 3.32.
Let (Ω,Σ, µ) be a probability space and X : (Ω,Σ)→ (X ,ΣX ) a
measurable map. We define the conditional expectation of f ∈ L1(µ) on
X as

E(f | X ) = E(f | ΣX ), ΣX = X−1(ΣX ).

Remark 3.33.
1 ΣX is the σ-algebra generated by X , i.e., the smallest sub-σ-algebra

of Σ such that X : (Ω,ΣX )→ (X ,ΣX ) is measurable.
2 Every f ∈ L(ΣX ) is of the form f = g ◦ X for g ∈ L(ΣX ).
3 Every f ∈ Lp(µ,ΣX ) is of the form f = g ◦X for g ∈ Lp(µX ), where
µX = X∗µ.



Ideal target function

Ω Y

X

Ut Y

X
Zt

In light of Corollary 3.31 and Remark 3.33, the ideal target function in
the sense of L2(µ) error (RMS error; see Definition 3.12) is Zt ∈ L2(µX )
such that

E(U tY | X ) = Zt ◦ X .

That is, Zt satisfies

‖U tY − Zt ◦ X‖L2(µ) ≤ ‖U tY − Ỹt‖L2(µ), ∀Ỹt ∈ L2(µ,ΣX ).



Conditional probability

Notation.
• χS : Ω→ {0, 1}: Characteristic function of a set S ⊆ Ω.

Definition 3.34.
Let (Ω,Σ, µ) be a probability space. For every sub-σ-algebra Σ′ ⊆ Σ and
measurable set S ∈ Σ, we define the conditional probability
P(S | Σ′) ∈ L1(µ,Σ′) as

P(S | Σ′) = E(χS | Σ′).

Remark 3.35.
The map S ∈ Σ 7→ P(S | Σ′) defines a vector measure on Σ′, i.e., an
L1(µ)-valued map such that for any sequence Sn of disjoint measurable
sets in Σ,

P

(⋃
n

Sn | Σ′

)
=
∑

n

P(Sn | Σ′).



Regular conditional probability

Definition 3.36.
With the notation of Definition 3.34 we say that P(S | Σ′) is a regular
conditional probability if there is a map p : Ω× Σ→ R such that:

1 For every ω ∈ Ω, p(ω, ·) is a probability measure on Σ.
2 For every S ∈ Σ, the map ω 7→ p(ω,S) is a representative of the

conditional probability P(S | Σ′) ∈ L1(µ).
The map p is called a Markov kernel.

If Σ′ = ΣX is the sub-σ-algebra generated by a measurable map
X : (Ω,Σ)→ (X , σX ) then we have

p(ω, ·) = pX (X (ω), ·)

for a Markov kernel pX : X × Σ→ R.



Regular conditional probability

Theorem 3.37.
For a compact metrizable space Ω equipped with its Borel σ-algebra
every conditional probability P(· | Σ′) is a regular conditional probability.

Proposition 3.38.
If P(· | Σ′) is a regular conditional probability with Markov kernel p, then
for every Y ∈ L1(µ) we have

E(Y | Σ′) =

∫
Ω

Y (ω) p(·, dω),

where the equality holds µ-a.e.



Conditional density

Definition 3.39.
With the notation of Definition 3.34, if p(ω, ·)� µ, we say that a
function ρ : Ω× Ω→ R is a conditional density of p if

ρ(ω, ·) =
dp(ω, ·)

dµ
, µ-a.e.

Proposition 3.40.
If it exists, ρ(ω, ·) lies in L∞(µ).

If Σ′ = ΣX is the sub-σ-algebra generated by X : Ω→ X , then we have
ρ(ω, ·) = ρX (X (ω), ·) for a function ρX : X × Ω→ R.



Conditional density

Remark 3.41.
If p has a conditional density, then for every Y ∈ L1(µ), we have

E(Y | Σ′) =

∫
Ω

Y (ω)ρ(·, ω) dµ(ω).

In particular, for Y ∈ L2(µ) and µ-a.e. ω′ ∈ Ω,

E(Y | Σ′)(ω′) = 〈ρ(ω′, ·),Y 〉L2(µ).



Hypothesis space
Ω R

X

Ut Y

X
Zt

Goal. Construct the ideal target function Zt : X :→ R such that
Zt ◦ X = E(U tY | X ), µ-a.e.

Strategy. Approximate Zt in a hypothesis space H of continuous
functions on XΩ such that:

1 H is a convex subset of a Hilbert space K of continuous functions
on XΩ.

2 The inclusion map ι : K → L2(µX ) is compact.
3 H ≡ ιH is closed in L2(µX ).

Proposition 3.42.
Under the assumptions stated above, there is a unique minimizer Zt,H of
the square error functional Et : H → R+, where

Et(f ) = ‖ιf − Zt‖2L2(µX ).



Reproducing kernel Hilbert spaces

Definition 3.43.
A Hilbert space (K, 〈·, ·〉K) of complex-valued functions functions on a
set X is called a reproducing kernel Hilbert space (RKHS) if for every
x ∈ X the pointwise evaluation functional δx : K → C is continuous.

By the Riesz representation theorem, for every x ∈ X , there exists a
unique function kx ∈ K such that

f (x) = 〈kx , f 〉K, ∀f ∈ K.

The function k : X × X → C with k(x , x ′) = kx (x ′) is called the
reproducing kernel of K.

Proposition 3.44.
k is a positive-definite kernel on X .



Reproducing kernel Hilbert spaces

Theorem 3.45 (Moore-Aronszajn).
Let k : X × X → C be a positive-definite kernel on a set X . Then, there
is a unique RKHS K on X with k as its reproducing kernel. Explicitly, K
is the completion of the inner product space (K0, 〈·, ·〉K0) with

K0 = span{kx : x ∈ X},

〈
m∑

i=1

aikxi ,

n∑
j=1

bjkxj

〉
K0

=
m∑

i=1

n∑
j=1

āik(xi , xj )bj .



Reproducing kernel Hilbert spaces

Lemma 3.46.
Let k : X × X → C be a positive-definite kernel on a set X with
associated RKHS K. Then, for any subset S ⊆ X , the restriction

K|S = {f |S : f ∈ K}

is an RKHS with reproducing kernel k |S×S .

Notation.
• If ν is a probability measure on X we write Kν ≡ K|supp ν and

kν ≡ k|supp ν×supp ν .



Mercer kernels

Theorem 3.47 (Mercer).
Let X be a compact Hausdorff space and k : X × X → C a continuous,
positive-definite kernel with associated RKHS K. Let ν be a Borel
probability measure on X . Consider the the corresponding self-adjoint
integral operator Gν : L2(ν)→ L2(ν), Gν = ιν ◦ Kν (see Corollary 3.17),
and its eigendecomposition as in Proposition 3.22,

Gνφj = λjφj , 〈φi , φj〉L2(ν) = δij , λ0 ≥ λ1 ≥ · · · ↘ 0.

Then, the kernel kν admits the series expansion

kν(x , x ′) =
∑

j :λj>0

λjϕj (x)ϕj (x
′),

where ϕj = λ−1
j Kνφj is the continuous representative of φj , and the

convergence is uniform with respect to (x , x ′) ∈ supp ν × supp ν.



Mercer kernels

Corollary 3.48.

1 K is a subspace of C (X ).
2 Upon restriction to supp ν, the range of Kν : L2(ν)→ C (X ) is a

dense subspace of Kν .
3 The functions ψj = λ

−1/2
j Kνφj form an orthonormal set in K, and

their restrictions to supp ν form an orthonormal basis of Kν .
4 The operator Gν : L2(ν)→ L2(ν) is of trace class, and we have

‖Gν‖1 = trGν =

∫
X
k(x , x) dν(x).



Inclusion operators

Proposition 3.49.
Viewing Kν as an operator from L2(ν) to K, the adjoint K∗ν : K → L2(ν)
coincides with the inclusion map ιν : C (X )→ L2(ν), i.e.,

K∗ν f = ιν f , ∀f ∈ K.

In particular, we have Gν = K∗νKν .

Corollary 3.50.

1 Kν embeds compactly into L2(ν).
2 Every element of ranK∗ν has a representative in K (and thus in

C (X )).
3 ranK∗ is closed iff Kν is finite-dimensional.



Universal kernels

Definition 3.51.
A positive-definite kernel k : X × X → C on a locally compact Hausdorff
space is said to be:

1 C0-universal if k(x , ·) lies in C0(X ) for all x ∈ X , and the
corresponding RKHS K is dense in C0(X ).

2 C -universal if X is compact, k is continuous, and the corresponding
RKHS K is dense in C (X ).

3 Lp-universal if for every Borel probability measure ν on X , K is a
dense subspace of Lp(ν) for some p ∈ [1,∞).

Theorem 3.52.
On a compact Hausdorff space, C -universality, Lp-universality, and strict
integral-positiveness are equivalent notions. Moreover, every kernel
having these properties is strictly positive-definite.



Radial kernels

Definition 3.53.
A bounded, continuous kernel k : Rd × Rd → C is said to be radial if
there exists a positive, finite Borel measure α on [0,∞) such that

k(x , x ′) =

∫
[0,∞)

e−s‖x−x′‖22 dα(s), ∀x , x ′ ∈ Rd .

Theorem 3.54.
A radial, strictly-positive definite kernel on Rd is C0-universal.

Theorem 3.55.
The radial basis function (RBF) kernel on Rd ,

k(x , x ′) = exp

(
−‖x − x ′‖22

ε2

)
, ε > 0,

is strictly positive-definite (and radial).



Feature maps

Definition 3.56.
A feature map on a set X is a map F : X → F , where F is a Hilbert
space, called feature space.

Lemma 3.57.
If F : X → F is a feature map, then k : X × X → C with

k(x , x ′) = 〈F (x),F (x ′)〉F

is a positive-definite kernel.

Definition 3.58.
Let k : X × X → C be a positive-definite kernel on a a set X . We say
that a feature map F : X → F is associated to k if

k(x , x ′) = 〈F (x),F (x ′)〉F .



Feature maps

Proposition 3.59.
Let k : X × X → C be a positive-definite kernel on a set X with
associated RKHS K.

1 F : X → K with F (x) = k(x , ·) is a feature map associated to k .
2 If k is strictly positive-definite, then F is injective. Moreover, F (x)

and F (x ′) are linearly independent whenever x and x ′ are distinct.



Feature maps

Lemma 3.60.
Let k : X × X → C be a continuous, positive-definite kernel on a
compact Hausdorff space X with associated RKHS K. Let {ψ0, ψ1, . . .}
be the orthonormal basis of Kν from Corollary 3.48. Then,
F : supp ν → `2 with

F (x) = (ψ0(x), ψ1(x), . . .)

is a feature map associated to kν .



Moore-Penrose pseudoinverse

Theorem 3.61.
Let A : H1 → H2 be a linear map between two finite-dimensional Hilbert
spaces. Then, there exists a unique linear map A+ : H2 → H1, called the
Moore-Penrose pseudoinverse of A, with the following properties:

1 kerA+ = ranA⊥.
2 ranA+ = kerA⊥.
3 AA+f = f for all f ∈ ranA.

Theorem 3.62.
With notation as above A+ : H2 → H1 is the pseudoinverse of A iff the
following conditions hold:

1 AA+A = A.
2 A+AA = A+.
3 (AA+)∗ = AA+.
4 (A+A)∗ = A+A.



Moore-Penrose pseudoinverse

Proposition 3.63.
With the notation of Theorem 3.61, the following hold.

1 If ranA = H2, then A+ = A∗(AA∗)−1 and AA+ = I .
2 If ranA∗ = H1, then A+ = (A∗A)−1A∗ and A+A = I .



Pseudoinverse in infinite-dimensional Hilbert spaces

Theorem 3.64.
Let H1 and H2 be Hilbert spaces, and A : D(A)→ H2 a closed linear map
with dense domain D(A) ⊆ H1. Then, there exists a unique, densely
defined, closed operator A+ : D(A+)→ H1 with domain D(A+) ⊆ H2,
called the pseudoinverse of A, such that

1 kerA+ = ranA⊥.
2 ranA+ = kerA⊥.
3 AA+f = f for all f ∈ ranA.

Theorem 3.65.
With notation as above, the following hold.

1 (A+)+ = A.
2 (A+)∗ = (A∗)+.
3 A+ is bounded iff ranA is closed.



Pseudoinverse in infinite-dimensional Hilbert spaces

Theorem 3.66.
With the notation of Theorem 3.64, given g ∈ D(A+), f = A+g has the
properties

1 ‖Af − g‖H2 = infh∈D(A)‖Ah − g‖H2 .
2 ‖f ‖H1 < ‖h‖H1 for all h 6= f attaining the infinum above.

We refer to g as the best approximate solution to the equation Af = g .



Nyström operator

Definition 3.67.
Let k : X × X → C be a continuous, positive-definite kernel on a
compact Hausdorff space X with corresponding RKHS K. Let ν be a
Borel probability measure on X . We define the Nyström operator
associated with k and ν as

Nν = (K∗ν )+.



Nyström operator

Proposition 3.68.
With the notation of Definition 3.67, the following hold.

1 ranNν = Kν . In particular, Nν has closed range.
2 The domain D(Nν) ⊆ L2(ν) is given by

D(Nν) =

f =
∑

j

cjφj :
∑

j :λj>0

|cj |2

λj
<∞

 .

3 Nν is bounded iff Kν is finite-dimensional.
4 For every f ∈ D(Nν) we have

Nν f =
∑

j :λj>0

cj

λ
1/2
j

ψj , cj = 〈φj , f 〉L2(ν).



Nyström operator

Proposition 3.69.
With the notation of Definition 3.67, the following hold.

1 For every f ∈ Kν ,
K∗νN+

ν f = f .

2 For every f ∈ D(Nν),

K∗νN+
ν f = Πν f ,

where Πν : L2(ν)→ L2(ν) is the orthogonal projection onto kerK⊥ν .



Truncated Nyström operator

Definition 3.70.
With the notation of Definition 3.67, and for L ∈ N such that λL−1 > 0,
we define the truncated Nyström operator Nν,L : L2(ν)→ Kν as

Nν,L = Nν ◦ Πν,L,

where Πν,L : L2(ν)→ L2(ν) is the orthogonal projection onto
span{φ0, . . . , φL−1}.

Lemma 3.71.
The following hold as L→∞.

1 Nν,L converges to Nν strongly on D(Nν).
2 K∗νNν,L converges to Πν strongly on L2(ν).

Corollary 3.72.
For every g ∈ L2(ν), fL = Nν,Lg is a sequence of continuous functions
that converges to Πνg in L2(ν) norm.



Approximating the conditional expectation

Theorem 3.73.
Let κ : X × X → C be a continuous, positive-definite kernel on the
covariate space X with associated RKHS K(X ). Let k : Ω× Ω→ C with
k(ω, ω′) = κ(X (ω),X (ω′)) be the pullback of κ to Ω. Define

Ỹt,L = Nµ,LU tY .

Then, the following hold:
1 Ỹt,L is the pullback of a function Zt,L ∈ K(X ), i.e.,

Ỹt,L = Zt,L ◦ X .

2 Zt,L is the minimizer of the error functional Et,L ≡ Et from
Proposition 3.42 for the hypothesis space HL ≡ H..

3 As L→∞, Et,L(Zt,L) converges to 0 and Ỹt,L converges in L2(µ)
norm to the conditional expectation E(U tY | X ).



Approximating the conditional expectation

Assume the notation of Theorem 3.73, set a lead time t = q ∆t, q ∈ N.

Algorithm 3.74 (data-driven conditional expectation).

1 Apply Algorithm 3.23 using the covariate training data xn and the
kernel κ(X ) to compute the basis vectors φl,N of L2(µN ).

2 Fix a spectral resolution parameter L, and compute the expansion
coefficients of Ûq

NY in the φl,N basis,

ŷt,N,l = 〈φl,N , Û
q
NY 〉L2(µN ).

3 Compute the target function Zt,L,N : X → R, where

Zt,L,N =
L−1∑
l=0

ŷt,N,lϕ
(X )
l .
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Section 4

Spectral theory



Setting and objectives

General assumptions

• Φ : G × Ω→ Ω: Continuous-time, continuous flow on compact,
metrizable space Ω.

• µ: Ergodic invariant Borel probability measure.
• X : Ω→ X continuous observation map into metric space X .
• U t : F → F : Koopman operator on Banach space F of

complex-valued observables.

Given. Time-ordered samples

xn = X (ωn), ωn = Φtn (ω0), tn = (n − 1) ∆t.

Goal. Using the data xn, identify a collection of observables ζj : Ω→ Y
which have the property of evolving coherently under the dynamics in a
suitable sense.



Setting and objectives

We recall the following facts from Section 2 (see Proposition 2.7 and
Theorems 2.29, 2.30).

Theorem 4.1.
1 {U t : C (Ω)→ C (Ω)}t∈R is a strongly continuous group of

isometries.
2 {U t : Lp(µ)→ Lp(µ)}t∈R, p ∈ [0,∞) is a strongly continuous group

of isometries. Moreover, U t : L2(µ)→ L2(µ) is unitary.
3 {U t : L∞(µ)→ L∞(µ)}t∈R is a weak-∗ continuous group of

isometries.

Notation.
• F : Any of the C (Ω) or Lp(µ) spaces with 1 ≤ p ≤ ∞.
• F0: Any of the C (Ω) or Lp(µ) spaces with 1 ≤ p <∞.
• C0 (semi)group ≡ strongly continuous (semi)group.
• C∗0 (semi)group ≡ weak-∗ continuous (semi)group.



Generator of C0 semigroups

Definition 4.2.
Let {S t}t≥0 be a C0 semigroup on a Banach space E . The generator
A : D(A)→ E of the semigroup {S t}t≥0 is defined as

Af = lim
t→0

S t f − f

t
, f ∈ D(A),

where the limit is taken in the norm of E , and the domain D(A) ⊆ E
consists of all f ∈ E for which the limit exists.



Generator of C0 semigroups

Theorem 4.3.
With the notation of Definition 4.2, the following hold.

1 A is closed and densely defined.
2 For all f ∈ D(A) and t ≥ 0, the function t 7→ S t f is continuously

differentiable, and satisfies

d

dt
S t f = AS t f = S tAf .

3 A uniquely characterizes the semigroup {S t}, i.e., if {S̃ t} is another
C0 semigroup on E with the same generator A, then S t = S̃ t for all
t ≥ 0.



Generator of C ∗0 semigroups

Definition 4.4.
Let {S t}t≥0 be a C∗0 semigroup on a Banach space E with predual E∗.
The generator A : D(A)→ E of the semigroup {S t}t≥0 is defined as the
weak-∗ limit

〈g ,Af 〉 = lim
t→0

〈g ,S t f − f 〉
t

, f ∈ D(A), ∀g ∈ E∗,

where the domain D(A) ⊆ E consists of all f ∈ E for which the limit
exists.



Theorem 4.5.
With the notation of Definition 4.4, the following hold.

1 A is weak-∗ closed and densely defined.
2 For all f ∈ D(A) and t ≥ 0, the function t 7→ S t f is weak-∗

continuously differentiable, and satisfies〈
g ,

d

dt
S t f

〉
= 〈g ,AS t f 〉 = 〈g ,S tAf 〉.

3 A uniquely characterizes the semigroup {S t}, i.e., if {S̃ t} is another
C∗0 semigroup on E with the same generator A, then S t = S̃ t for all
t ≥ 0.



Generator of unitary C0 groups

Theorem 4.6 (Stone).
Let {S t}t≥0 be a unitary C0 group on a Hilbert space H. Then, the
generator A : D(A)→ H is skew-adjoint, i.e.,

A∗ = −A.

Conversely, if A : D(A)→ H is skew-adjoint, it is the generator of a
unitary evolution group.



Generator of Koopman evolution groups

Corollary 4.7.
Under our general assumptions the following hold:

1 The Koopman evolution groups U t : F0 → F0 are uniquely
characterized by their generator V : D(V )→ F0, where

Vf = lim
t→0

U t f − f

t
.

Moreover, for F0 = L2(µ), V is skew-adjoint.
2 The Koopman evolution group U t : L∞(µ)→ L∞(µ) is uniquely

characterized by its generator V : D(V )→ F0, where

Vf = lim
t→0

U t f − f

t

in weak-∗ sense.



Generator of Koopman evolution groups

Theorem 4.8 (ter Elst & Lemańczyk).
Let (Ω,Σ) be a compact metrizable space equipped with its Borel
σ-algebra Σ. Let µ be a Borel probability measure on Ω and
U t : L2(µ)→ L2(µ) a C0 unitary evolution group with generator
V : D(V )→ L2(µ). Then, the following are equivalent.

1 For every t ∈ R there exists a µ-a.e. invertible, measurable, and
measure-preserving flow Φt : Ω→ Ω such that U t f = f ◦ Φt .

2 The space A(V ) = D(V ) ∩ L∞(µ) is an algebra with respect to
function multiplication, and V is a derivation on A:

V (fg) = (Vf )g + f (Vg), ∀f , g ∈ A(V ).



Point spectrum

Definition 4.9.
Let A : D(A)→ E be an operator on a Banach space with domain
D(A) ⊆ E . The point spectrum of A, denoted as σp(A) ⊆ C is defined as
the set of its eigenvalues. That is, λ ∈ C is an element of σp(A) iff there
is a nonzero vector u ∈ E (an eigenvector) such that

Au = λu.

Notation.
• We use the notation σp(A;E ) when we wish to make explicit the

Banach space on which A acts.



Eigenvalues and eigenfunctions

Definition 4.10.
Let A : D(A)→ E be the generator of a C0 semigroup {S t}t≥0 on a
Banach space E . We say that λ ∈ C is an eigenvalue of the semigroup if
λ is an eigenvalue of A, i.e., there exists a nonzero u ∈ D(A) such that

Au = λu.

Lemma 4.11.
With notation as above, λ is an eigenvalue of {S t} if and only if z is an
eigenvector of S t for all t ≥ 0, i.e., there exist Λt ∈ C such that

S tu = Λtu, ∀t ≥ 0.

In particular, we have Λt = eλt .



Point spectra for measure-preserving flows

Theorem 4.12.
Let Φt : Ω→ Ω a be a measure-preserving flow of a probability space
(Ω,Σ, µ). Let U t : Lp(µ)→ Lp(µ) be the associated Koopman operators
on Lp(µ), p ∈ [1,∞], and V : D(V )→ Lp(µ) the corresponding
generators. Then, the following hold.

1 For every p, q ∈ [1,∞] and t ∈ R, σp(U t , Lp(µ)) = σp(U t , Lq(µ)).
2 σp(V , Lp(µ)) = σp(V , Lq(µ)).
3 σp(U t) is a subgroup of S1.
4 σp(V ) is a subgroup of iR.

Corollary 4.13.
Every eigenfunction of V lies in L∞(µ), and thus in Lp(µ) for every
p ∈ [1,∞].

Given λ = iα ∈ σp(V ), we say that α is an eigenfrequency of V .



Generating frequencies

Definition 4.14.
Assume the notation of Theorem 4.12.

1 We say that {ia0, ia1, . . .} ⊆ σp(V ) is a generating set if for every
iα ∈ σp(V ) there exist j1, j2, . . . , jn ∈ Z and k1, k2, . . . , kn ∈ N such
that

α = j1αk1 + j2αk2 + . . .+ jnαkn .

2 We say that σp(V ) is finitely generated if it has a finite generating
set.

3 A generating set is said to be minimal if it does does not have any
proper subsets which are generating sets.

Lemma 4.15.
1 The elements of a minimal generating set are rationally independent.
2 If a minimal generating set has at least two elements, then σp(V ) is

a dense subset of the imaginary line.



Generating frequencies

Lemma 4.16.
Let g1, g2, . . . be eigenfunctions corresponding to the eigenvalues of the
generating set in Definition 4.14, i.e., Vgj = iαjgj . Then, for every
iα ∈ σp(V ) with α = j1αk1 + j2αk2 + . . .+ jnαkn ,

z = g j1
k1
g j2

k2
· · · g jn

kn

is an eigenfunction of V corresponding to the eigenfrequency α.



Invariant subspaces

Notation.
• Hp = span{u ∈ L2(µ): u is an eigenfunction of V }.
• Hc = H⊥p .
• {z0, z1, . . .}: Orthonormal eigenbasis of Hp, Vzj = iαjzj .

Theorem 4.17.
Let Φt : Ω→ Ω be a measure-preserving flow on a completely metrizable
space with an invariant probability measure µ.

1 Hp and Hc are U t-invariant subspaces.
2 Every f ∈ Hp satisfies

U t f =
∞∑

j=0

f̂je
iαj tzj , f̂j = 〈zj , f 〉L2(µ).

3 Every f ∈ Hc satisfies

lim
T→∞

1
T

∫ T

0
|〈g ,U t f 〉L2(µ)| = 0, ∀g ∈ L2(µ).



Pure point spectrum

Definition 4.18.
With the notation of Theorem 4.17, we say that a measure-preserving
flow Φt : Ω→ Ω has pure point spectrum if Hp = L2(µ).

Remark 4.19.
For a system with pure point spectrum:

1 The spectrum of V is not necessarily discrete.
2 The continuous spectrum is not necessarily empty.



Point spectra for ergodic flows

Proposition 4.20.
With the notation of Theorem 4.12, assume that Φt : Ω→ Ω is ergodic.

1 Every eigenvalue λ ∈ σp(V ) is simple.
2 Every corresponding eigenfunction z ∈ Lp(µ) normalized such that
‖z‖Lp(µ) = 1 for any p ∈ [1,∞] satisfies |z | = 1 µ-a.e.



Factor maps

Definition 4.21.
Let T1 : Ω1 → Ω1 and T2 : Ω2 → Ω2 be measure-preserving
transformations of the probability spaces (Ω1,Σ1, µ1) and (Ω2,Σ2, µ2).
We say that T2 is a factor of T1 if there exists a T1-invariant set S1 ∈ Σ1
with µ2(S+1) = 1, a T2-invariant set S2 ∈ Σ2 with µ2(S2) = 1, and a
measure-preserving, surjective map ϕ : S1 → S2 such that

T2 ◦ ϕ = ϕ ◦ T1.

Such a map ϕ is called a factor map and satisfies the following
commutative diagram:

M1 M1

M2 M2

T1

ϕ ϕ

T2

.



Metric isomorphisms

Definition 4.22.
With the notation of Definition 4.21, we say that T1 and T2 are
measure-theoretically isomorphic or metrically isomorphic if there is a
factor ϕ : S1 → S2 with a measurable inverse.

Theorem 4.23 (von Neumann).
Let Φt : Ω→ Ω be a measure-preserving flow on a completely metrizable
probability space (Ω,Σ, µ) with pure point spectrum. Then, Φt is
metrically isomorphic to a translation on a compact abelian group G.
Explicitly, G can be chosen as the character group of the point spectrum
σp(V ).



Metric isomorphisms

Corollary 4.24.
If σp(V ) is finitely generated, then Φt is metrically isomorphism to an
ergodic rotation on the d-torus, where d is the number of generating
frequencies of σp(V ). Explicitly, supposing that {iα1, . . . , iαd} is a
minimal generating set of σp(V ) with corresponding unit-norm
eigenfunctions z1, . . . , zd we have

R t ◦ ϕ = ϕ ◦ Φt ,

where R t : Td → Td is the torus rotation with frequencies α1, . . . , αd ,
and

ϕ(ω) = (z1(ω), . . . , zd (ω)), µ-a.e.



Spectral isomorphisms

Definition 4.25.
With the notation of Definition 4.22, let U1 : L2(µ1)→ L2(µ1) and
U2 : L2(µ2)→ L2(µ2) be the Koopman operators associated with T1 and
T2, respectively. We say that T1 and T2 are spectrally isomorphic if there
exists a unitary map U : L2(µ1)→ L2(µ2) such that

U2 ◦ U = U ◦ U1.

Theorem 4.26 (von Neumann).
Two measure-preserving flows with pure point spectra are metrically
isomorphic iff they are spectrally isomorphic.



Dynamics-invariant kernels

k : Ω× Ω→ R, G : L2(µ)→ L2(µ), Gf =

∫
Ω

k(·, ω)f (ω) dµ(ω)

• k : Bounded, symmetric kernel.
• G is self-adjoint, compact.

Proposition 4.27.
If k is invariant under the product flow,

k(Φt(ω),Φt(ω′)) = k(ω, ω′),

then G commutes with the Koopman operator,

[U t ,G ] = U tG − GU t = 0.



Dynamics-invariant kernels

k : M ×M → R, G : L2(µ)→ L2(µ), Gf =

∫
Ω

k(·, ω)f (ω) dµ(ω)

Corollary 4.28.
Every eigenspace W of G with nonzero corresponding eigenvalue is a
finite-dimensional, U t-invariant subspace of Hp, and V |W is unitarily
diagonalizable.



Kernels from delay-coordinate maps

SQ(ω, ω′) =
1
Q

Q−1∑
q=0

∥∥X (Φq ∆t(ω))− X (Φq ∆t(ω′))
∥∥2
.

By the mean ergodic theorem,

SQ −−−−→
Q→∞

S̄ ,

in L2(µ× µ), where S̄ is a U t ⊗ U t invariant function.

Proposition 4.29.
Fix a continuous kernel shape function h : R+ → R+. Then:

1 k̄(ω, ω′) := h(S̄(ω, ω′)) satisfies the assumptions of
Proposition 4.27.

2 GQ : L2(µ)→ L2(µ) with

GQ f =

∫
Ω

kQ(·, ω)f dµ(ω)

converges to G in L2(µ) operator norm.



Finite-difference approximation of the generator

V∆t,N : L2(µN )→ L2(µN ), V∆t,N =
Ṽ∆t,N − Ṽ ∗∆t,N

2
, Ṽ∆t,N =

ÛN − Id

∆t

Explicitly, we have

Ṽ∆t,N f (ωn) =

{
(f (ωn+1)− f (ωn))/∆t, 0 ≤ n ≤ N − 2,
−f (ωN−1)/∆t, n = N − 1.



Finite-difference approximation of the generator

V∆t,N : L2(µN )→ L2(µN ), V∆t,N =
Ṽ∆t,N − Ṽ ∗∆t,N

2
, Ṽ∆t,N =

ÛN − Id

∆t

Lemma 4.30.
For f ∈ C 1(Ω) and g ∈ C (Ω),

lim
∆t→0

lim
N→∞

〈g ,V∆t,N f 〉L2(µN ) = 〈g ,Vf 〉L2(µ).

Corollary 4.31.
With the notation of Section 3, if k is C 1, then for every i , j ∈ N such
that λi , λj 6= 0,

lim
∆t→0

lim
N→∞

〈φi,NVN,∆tφj,N〉L2(µN ) = 〈φi ,Vφj〉L2(µ).



Markov normalization

pν(ω, ω′) =
k̃(ω, ω′)

ρν(ω)
, k̃ν(ω, ω′) =

k(ω, ω′)

σν(ω′)
,

ρν(ω) =

∫
Ω

k̃ν(ω, ω′) dν(ω′), σν(ω′) =

∫
Ω

k(ω′, ω′′) dν(ω′′)

• Assume: k ≥ 0, k , k−1 ∈ L∞(ν × ν).
• p is a Markov kernel with respect to ν, i.e.,

p ≥ 0,
∫

Ω

p(ω, ·) dν = 1, ν-a.e. ω ∈ M.



Markov normalization

pν(ω, ω′) =
k̃(ω, ω′)

ρν(ω)
, k̃ν(ω, ω′) =

k(ω, ω′)

σν(ω′)
,

ρν(ω) =

∫
Ω

k̃ν(ω, ω′) dν(ω′), σν(ω′) =

∫
Ω

k(ω′, ω′′) dν(ω′′)

Set: k = kQ , ν = µN or ν = µ. We get Markov operators
GQ,N : L2(µN )→ L2(µN ), GQ : L2(µ)→ L2(µ) with continuous transition
kernels:

GQ,N f =

∫
Ω

pQ,µN
(·, ω)f (ω) dµN (ω), Gf =

∫
Ω

pQ,µ(·, ω)f (ω) dµN (ω),

Large-data limit: As N →∞, GQ,N converges spectrally to GQ in the
sense of Theorem 3.25.



Markov normalization

pν(ω, ω′) =
k̃(ω, ω′)

ρν(ω)
, k̃ν(ω, ω′) =

k(ω, ω′)

σν(ω′)
,

ρν(ω) =

∫
Ω

k̃ν(ω, ω′) dν(ω′), σν(ω′) =

∫
Ω

k(ω′, ω′′) dν(ω′′)

Set: k = k̄ , ν = µ. We get a self-adjoint Markov operator
G : L2(µ)→ L2(µ) that commutes with the Koopman operator:

Gf =

∫
Ω

p̄µ(·, ω)f (ω) dµ(ω).

Infinite-delay limit: As Q →∞ GQ converges in operator norm, and thus
spectrally, to G .

Remark.
By Corollary 4.28, every eigenfunction φj of G corresponding to nonzero
eigenvalue lies in the domain of the generator V .



Diffusion regularization
∆ : D(∆)→ H̃p, ∆ = (I − G )−1

∆φj = ηjφj , ηj = 1− 1
λj

• H̃p = ranG ⊆ Hp.
• D(∆) ≡ H̃2

p = {f ∈ H̃p :
∑

j ηj |〈φj , f 〉L2(µ)|2 <∞}.

Proposition 4.32.

1 For every ε > 0,
Lε = V − ε∆,

is a well-defined dissipative operator on H̃2
p , i.e., Re〈f ,Lεf 〉 ≤ 0.

2 Let z be an eigenfunction of V lying in H2
p with corresponding

eigenvalue iω. Then, we have

∆z = ηz , Lεz = γz , γ = −εη + iω.



Petrov-Galerkin method

Infinite-dimensional variational problem

Find zj ∈ H̃2
p and γj ∈ C, such that for all f ∈ H̃p,

〈f ,Vzj〉L2(µ) − ε〈f ,∆z〉L2(µ) = γj〈f , z〉L2(µ).

• The above is a well-defined variational eigenvalue problem, i.e., it
satisfies the appropriate boundedness and coercivity conditions.

• We order the solutions zj in order of increasing Dirichlet energy,

Ej = 〈zj ,∆zj〉L2(µ) = Re γj/ε.



Petrov-Galerkin method

Data-driven approximation

Find zj ∈ H̃2
p,L,Q,N and γ ∈ C, such that for all f ∈ H̃p,L,Q,N ,

〈f ,Vzj〉L2(µN ) − ε〈f ,∆zj〉L2(µN ) = γj〈f , zj〉L2(µN ).

• H̃p,L,Q,N = span{φ0,Q,N , . . . , φL−1,Q,N} ⊆ L2(µN ), where φj,Q,N are
eigenfunctions of GQ,N .

• H2
p,L,Q,N defined analogously to H̃2

p .
• The data-driven scheme converges in the iterated limit

lim
L→∞

lim
Q→∞

lim
∆t→0

lim
N→∞

.



Variable-speed rotation on T2

ω̇(t) = ~V (ω(t))

~V (ω) = (V1,V2), ω = (θ1, θ2)

V1 = 1 + β cos θ1

V2 = α(1− β sin θ2)

α =
√
30, β =

√
1/2



Koopman eigenfunctions



Koopman eigenfunctions from noisy data

Koopman eigenfunctions for the variable-speed flow on T2 recovered from
data from data corrupted with i.i.d. Gaussian noise in R3 with SNR ' 1.



Approximate Koopman eigenfunctions

Definition 4.33.
An observable z ∈ L2(µ) is said to be an ε-approximate Koopman
eigenfunction if there exists νt ∈ C such that

‖U tz − νtz‖L2(µ) < ε‖z‖L2(µ).

• A Koopman eigenfunction is an ε-approximate eigenfunction for
every ε > 0.

• We seek z ∈ L2(µ) which is an ε-approximate eigenfunction for
“small” ε, and t lying in a “large” time interval.



Approximate eigenfunctions from delay-coordinate maps

Theorem 4.34.
Let φ and ψ be mutually-orthogonal, unit-norm, real eigenfunctions of
GQ corresponding to nonzero eigenvalues κ and λ, respectively, with
κ ≥ λ. Assume that κ, λ are simple if distinct and twofold-degenerate if
equal. Define

z =
1√
2

(φ+ iψ), αt = 〈z ,U tz〉, ν = 〈ψ,Vφ〉,

where ω is real, and set T = (Q − 1) ∆t, δT = (κ− λ)/
√
2, δ̃T = δT/κ,

γT = min
u∈σ(GQ )\{κ,λ}

{min{|κ− u|, |λ− u|}} .

Then, the following hold for every t ≥ 0:



Approximate eigenfunctions from delay-coordinate maps

Theorem 4.34.
1 αt lies in the ε̃t-approximate point spectrum of U t , and z is a

corresponding ε̃t-approximate eigenfunction for the bound

ε̃t = st +
√
St ,

where

st =
1
γT

(
C1t

T
+ 3δT

)
, St =

C2(1 + δ̃T )

λ

∫ t

0
su du.

Here, C1 and C2 are constants that depend only on the observation
map F and generator V .

2 The modulus |ν| is independent of the choice of the real
orthonormal basis {φ, ψ} for the eigenspace(s) corresponding to κ
and λ. Moreover, the phase factor e iνt is related to the
autocorrelation function αt according to the bound

|αt − e iνt | ≤ 2
√
St .



Application to L63 system



Application to L63 system



Application to L63 system



Application to L63 system



Spectrum

Definition 4.35.
Let A : D(A)→ F be a densely-define operator on a Banach space F
over C with domain D(A) ⊆ F .

1 The spectrum of A, denoted as σ(A) is the set of complex numbers
λ such that A− λI has no bounded inverse.

2 The resolvent set of A, denoted as ρ(A), is the complement of σ(A)
in C.

3 For every λ ∈ ρ(A) the resolvent RA(λ) is the bounded operator
given by ρ(A) = (A− λI )−1.

4 The spectral radius of A is defined as rσ(A) = supλ∈σ(A)|λ|.



Spectrum

Theorem 4.36.
With the notation of Definition 4.35, the following hold.

1 σ(A) is a closed subset of C.
2 If A is not closed, then σ(A) = C.
3 If D(A) = F and A is bounded, then rσ(A) ≤ ‖A‖.



Projection-valued measures

Definition 4.37.
Let (H, 〈·, ·〉H ) be a Hilbert space over C. A map E : B(C)→ B(H) is
called a projection-valued measure (PVM) if:

1 For every S ∈ B(C), E (S) is an orthogonal projection.
2 E (C) = I .
3 For every f , g ∈ H, the map εfg : B(C)→ C with

εfg (S) = 〈f ,E (S)g〉H

is a complex measure.



Projection-valued measures

Theorem 4.38.
With the notation of Definition 4.37, let f : C→ C be a
Borel-measurable function. Then, there exists a unique operator
Ef : D(Ef )→ H with domain

D(Ef ) =

{
h ∈ H :

∫
C
|f |2 dεhh <∞

}
,

such that

〈g ,Ef h〉H =

∫
C
f dεgh, ∀g ∈ H, ∀h ∈ D(Ef ).

Notation.
• ∫C f dE ≡ Ef .
• If A =

∫
C Id dE , then f (A) ≡ Ef .



Spectral theorem for skew-adjoint operators

Theorem 4.39.
Let A : D(A)→ H be skew-adjoint.

1 σ(A) is a subset of the imaginary line.
2 There exists a unique PVM EA : B(C)→ C such that

A =

∫
R
iα dE (α).

3 i suppEA = σ(A).
4 If {U t : H → H}t∈R is the C0 unitary group generated by A, then

U t = etA ≡
∫
R
e iαt dE (α).



Unitary Koopman evolution group

U t : L2(µ)→ L2(µ), U t f = f ◦ Φt , U t∗ = U−t

Generator: V : D(V )→ L2(µ),

D(V ) ⊂ L2(µ), V ∗ = −V , Vf = lim
t→0

U t f − f

t
.

Spectral measure: E : B(R)→ B(L2(µ)),

V =

∫
R
iω dE (α), U t =

∫
R
e iαt dE (ω).



Unitary Koopman evolution group

U t : L2(µ)→ L2(µ), U t f = f ◦ Φt , U t∗ = U−t

Theorem 4.40.
There is a U t-invariant orthogonal splitting L2(µ) = Hp ⊕ Hc such that:

1 Hp has an orthonormal basis {zj} consisting of eigenfunctions of the
generator,

Vzj = iαjzj , αj ∈ R.

2 For every f ∈ Hc and g ∈ L2(µ),

lim
T→∞

1
T

∫ T

0
|〈g ,U t f 〉L2(µ)| dt = 0.

3 E = Ep + Ec , where:
• Ep is a purely atomic measure taking values in B(Hp).
• Ec is a continuous measure taking values in B(Hc).



Compactification schemes for the Koopman generator

Given:

Positive-definite, C 1 kernel k : Ω× Ω→ R.

Integral operators K : L2(µ)→ K, G = K∗K .

Pre-smoothing:

A : L2(µ)→ L2(µ), A = VG .

• ranG ⊆ ranK∗ ⊂ D(V ).
• A = VG is a Hilbert-Schmidt integral operator on L2(µ) with kernel
k ′ ∈ C (X × X ), k ′(·, ω) = Vk(·, ω), i.e.,

Af =

∫
Ω

k ′(·, ω)f (ω) dµ(ω).



Compactification schemes for the Koopman generator

Given:

Positive-definite, C 1 kernel k : Ω× Ω→ R.

Integral operators K : L2(µ)→ K, G = K∗K .

Post-smoothing:

B : L2(µ)→ L2(µ), B = GV .

• GV ⊂ (GV )∗∗ = B = −A∗.
• B is a Hilbert-Schmidt integral operator with

Bf = −
∫

Ω

k ′(·, ω)f (ω) dµ(ω).



Compactification schemes for the Koopman generator

Given:

Positive-definite, C 1 kernel k : Ω× Ω→ R.

Integral operators K : L2(µ)→ K, G = K∗K .

Skew-adjoint compactification on the RKHS:

W : K → K, W = KVK∗.

• W is a skew-adjoint, Hilbert-Schmidt operator on K satisfying

Wf = −
∫

Ω

k ′(ω, ·)f (ω) dµ(ω).



Compactification schemes for the Koopman generator

Given:

Positive-definite, C 1 kernel k : Ω× Ω→ R.

Integral operators K : L2(µ)→ K, G = K∗K .

Skew-adjoint compactification on L2(µ):

Ṽ : L2(µ)→ L2(µ), Ṽ = G 1/2VG 1/2.

• K = UG 1/2 (polar decomposition).
• Ṽ is a skew-adjoint, Hilbert-Schmidt operator on L2(µ) related to
W by

Ṽ = U∗WU .



Eigenvalues and eigenfunctions

Proposition 4.41.
Let k : Ω× Ω→ R be a C 1, L2-universal, µ-Markov ergodic kernel.

1 There exists an orthonormal basis z̃0, z̃1, . . . , of L2(µ) consisting of
eigenfunctions of Ṽ ,

Ṽ zj = iαj z̃j , αj ∈ R.

2 In the above, iα0 = 0 is a simple eigenvalue corresponding to the
constant eigenfunction z̃0 = 1.

3 Ṽ has an associated purely atomic PVM Ẽ : B(R)→ B(L2(µ))
such that

Ẽ (S) =
∑

j :αj∈S

〈z̃j , ·〉L2(µ)z̃j , Ṽ =

∫
R
iα dẼ (α).



Strong resolvent convergence

Definition 4.42.
1 A one-parameter family of operators Aτ : D(Aτ )→ H, τ > 0, on a

Hilbert space H is said to converge to a skew-adjoint operator
A : D(A)→ H in strong resolvent sense if for every ρ ∈ C \ {iR} in
the resolvent set of A the resolvents (Aτ − ρ)−1 converge to
(A− ρ)−1 strongly.

2 The family Aτ is said to be p2-continuous if it is uniformly bounded
and τ 7→ ‖p(Aτ )‖ is continuous for every degree-2 polynomial p.

3 If Aτ is skew-adjoint, Aτ is said to converge to A in strong
dynamical sense if for every t ∈ R, etAτ converges to etA strongly.



Strong resolvent convergence

Theorem 4.43.
With the notation of Definition 4.42, suppose that Aτ is skew-adjoint.
Then:

1 Strong resolvent convergence is equivalent to strong dynamical
convergence.

2 A sufficient condition for strong resolvent convergence Aτ → A is
that Aτ converges to A strongly in a core, i.e., a subspace
C ⊆ D(A) such that A|C = A.

3 The domain D(A2) is a core for A.



Strong resolvent convergence

Theorem 4.44.
Let Aτ : D(Aτ )→ H be a one-parameter family of skew-adjoint
operators that converges to a skew-adjoint operator A : D(A)→ H in
strong resolvent sense. Let Eτ : B(R)→ B(H) and E : B(R)→ B(H)
be the PVMs associated with Aτ and A, respectively.

1 For every bounded, Borel-measurable set Ω ⊂ R such that
E (∂Ω) = 0, Eτ (Ω) converges strongly to E (Ω).

2 For every bounded, continuous function Z : iR→ C, Z (Aτ )
converges strongly to Z (A).

3 If the operators Aτ are compact, then for every element iα ∈ iR of
the spectrum of A there exists a one-parameter family iατ of
eigenvalues of Aτ such that limτ→0 ατ = α. Moreover, if Aτ is
p2-continuous, the curve τ 7→ ατ is continuous.



Spectral convergence of the compactified generators

Theorem 4.45.
Let {Gτ}τ≥0 be a strongly continuous, ergodic semigroup of Markov
operators on L2(µ) such that for every τ > 0,

Gτ f =

∫
Ω

kτ (·, ω)f (ω) dµ(ω),

where kτ : Ω× Ω→ R is a C 1, L2-universal, positive-definite kernel.
Then, Theorem 4.44 holds for the compactified generators

Ṽτ = G 1/2
τ VG 1/2

τ .



Construction of the semigroup Gτ

1 Start from an L2-universal, C 1 kernel κ : Ω× Ω→ R.
2 Normalize κ to an L2-universal, C 1, bistochastic Markov kernel

p : Ω× Ω→ R (Coifman & Hirn ’13). Let P : L2(µ)→ L2(µ) be
the associated integral operator.

3 Define the Laplace-like operator ∆ = (I − P)−1.
4 Define Gτ = e−τ∆.

https://dx.doi.org/10.1016/j.acha.2013.01.001


Dirichlet energy

Pφj = λjφj , λj > 0, 〈φi , φj〉L2(µ) = δij

Gτφj = λj,τφj , λj,τ = e−τηj , ηj = 1− 1
λj
.

• H: RKHS associated with p.
• f ∈ L2(µ) has a representative in H iff

D̃(f ) :=
∞∑

j=0

|〈φj , f 〉L2(µ)|2

λj
<∞.

• For every such (nonzero) f , we define the Dirichlet energy

D(f ) =
D̃(f )

‖f ‖2L2(µ)

− 1.



Coherent observables

Wτ = KτVK
∗
τ

Wτζj,τ = iωj,τζj,τ , zj,τ =
K∗τ ζj,τ

‖K∗τ ζj,τ‖L2(µ)
.

Proposition 4.46.
There exists a continuous function R(ε, τ) that diverges as τ → 0 for
every ε > 0 such that

‖U tzj,τ − e iωj,τ zj,τ‖L2(µ) < ε, |t| ≤ T (ε, τ) :=
R(ε, τ)√
D(zj,τ ) + 1

.

Moreover:
1 If limτ→0 ωj,τ =: ωj exists and T (ε, τ) diverges as τ → 0 for every
ε > 0, then iω is an element of the spectrum of Ṽ .

2 If limτ→ω exists and D(zj,τ ) is bounded as τ → 0, then iω is an
eigenvalue of V . Moreover, zj,τ converges to the eigenspace of V
corresponding to iω.



Numerical examples



Torus rotation—eigenfunctions of Wτ



Torus rotation
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Fig. 5. Real and imaginary parts of numerical Koopman eigenfunctions for the torus flow obtained from data-driven approximations 
of the generator without regularization (a–d) and the RKHS regularization Wτ (e–h), for different dataset sizes N and values of 
the regularization and spectral resolution parameters τ and L. The eigenfunctions depicted here are those whose corresponding 
eigenfrequency in the data-driven spectrum is closest to the theoretical eigenfrequency α1 = 1. For an exact approximation of a 
normalized Koopman eigenfunction, the numerical eigenfunctions should take values in the unit circle in the complex plane.

Fig. 6. Data-driven prediction of the components F1 and F3 of the embedding F of the 2-torus into R3 (left and center columns), 
and the non-polynomial observable exp(F1 + F3) (right column) for the linear torus flow, using the operator etWτ with τ = 10−5. 
Top row: Comparison of the true and predicted signals as a function of lead time t for a fixed initial condition in the verification 
dataset. Bottom row: Normalized RMSE ε(t) as a function of lead time.

Due to the density of the spectrum in the imaginary line, regularization is
important, even for a system with pure point spectrum.



L63 system—eigenfunctions of Wτ



Rössler system—eigenfunctions of Wτ
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