MATH 146

Current Problems in Applied Mathematics: Dynamical Systems and Data Science

Dimitris Giannakis
dimitrios.giannakis@dartmouth.edu

Dartmouth College
Winter Term 2022

Section 1

Introduction

Ergodic theory

Ergodic theory studies the statistical behavior of measurable actions of groups or semigroups on spaces.

Definition 1.1.

A left action, or flow, of a (semi)group G on a set Ω is a map
$G \times \Omega \rightarrow \Omega$ with the following properties:
(1) $\Phi(e, \omega)=\omega$, for the the identity element $e \in G$ and all $\omega \in \Omega$.
(2) $\Phi(g h, \omega)=\Phi(g, \Phi(h, \omega))$, for all $g, h \in G$ and $\omega \in \Omega$.

The set Ω is called the state space.
In this course, G will be an abelian group or semigroup that represents the time domain. Common choices include:

$$
\mathbb{N}, \quad \mathbb{Z}, \quad \mathbb{R}_{+}, \quad \mathbb{R} .
$$

We write $\Phi^{g} \equiv \Phi(g, \cdot), n \in \mathbb{N}, \mathbb{Z}$, and $t \in \mathbb{R}_{+}, \mathbb{R}$.

Ergodic theory

Ludwig Boltzmann

James Clerk Maxwell

Ergodic theory has its origin in the mid 19th century with the work of Boltzmann and Maxwell on statistical mechanics.

The term ergodic is an amalgamation of the Greek words ergo (épro), which means work, and odos (oठóऽ), which means street.

Ergodic theory

Bernard Osgood Koopman

John von Neumann

The mathematical foundations of the subject were established by Koopman, von Neumann, Birkhoff, and many others, in work dating to the 1930s.

Modern ergodic theory is a highly diverse subject with connections to functional analysis, harmonic analysis, probability theory, topology, geometry, number theory, and other mathematical disciplines.

Observables and ergodic hypothesis

Rather than studying the flow Φ directly, ergodic theory focuses on its induced action on linear spaces of observables, e.g.,

$$
\mathcal{F}=\{f: \Omega \rightarrow \mathcal{Y}\},
$$

for a vector space \mathcal{Y} (oftentimes, $\mathcal{Y}=\mathbb{R}$ or \mathbb{C}).
Drawing on intuition from mechanical systems, Boltzmann postulated that time averages of observables should well-approximate expectation values with respect to a reference distribution, μ.

This is encapsulated in the ergodic hypothesis,

which is stipulated to hold for typical initial conditions $\omega \in \Omega$ and observables $f: \Omega \rightarrow \mathcal{Y}$ in a suitable class.

Operator-theoretic perspective

Definition 1.2.

(1) For every $g \in G$, the composition operator, or Koopman operator is the linear map $U^{g}: \mathcal{F} \rightarrow \mathcal{F}$ defined as

$$
U^{g}=f \circ \Phi^{g} .
$$

(2) The transfer operator $P^{g}: \mathcal{F}^{\prime} \rightarrow \mathcal{F}^{\prime}$ is the transpose of U^{g}, defined as

$$
P^{g} \mu=\mu \circ U^{g} .
$$

Koopman and transfer operators allow the study of nonlinear dynamics using techniques from linear operator theory.

A central theme of this course is that operator-theoretic techniques also provide a bridge between dynamical systems theory and data science.

Connections with representation theory

Observe that the set $\tilde{\Phi}=\left\{\phi^{g} \mid g \in G\right\}$ equipped with composition of maps forms a group.
(1) $h: G \rightarrow \tilde{\Phi}$ with $h(g)=\phi^{g}$ is a group homomorphism.
(2) $\varrho: \tilde{\Phi} \rightarrow \operatorname{End}(\mathcal{F})$ with $\varrho(\phi)=U^{g}$ is a representation.

Using operator-theoretic techniques, we study the dynamics through the induced representation $\rho: G \rightarrow \operatorname{End}(\mathcal{F})$, where $\rho=\varrho \circ h$:

Examples

Circle rotation in continuous time

- $G=\mathbb{R}, \Omega=S^{1}$.
- Frequency parameter $\alpha \in \mathbb{R}$.
- $\phi^{t}(\theta)=\theta+\alpha t \bmod 2 \pi$.

Examples

Rational circle rotation in discrete time

- $G=\mathbb{Z}, \Omega=S^{1}$.
- Rotation angle $A \in[0,2 \pi), A /(2 \pi) \in \mathbb{Q}$.
- $\Phi^{1}(\theta) \equiv \Phi(\theta)=\theta+A \bmod 2 \pi$.

Examples

Irrational circle rotation in discrete time

- $G=\mathbb{Z}, \Omega=S^{1}$.
- Rotation angle $A \in[0,2 \pi), A /(2 \pi) \notin \mathbb{Q}$.
- $\Phi^{1}(\theta) \equiv \Phi(\theta)=\theta+A \bmod 2 \pi$.

Examples

Doubling map

- $G=\mathbb{N}, \Omega=S^{1}$.
- $\Phi(\theta)=2 \theta \bmod 2 \pi$.

Examples

Rational torus flow

- $G=\mathbb{R}, \Omega=\mathbb{T}^{2}$.
- Frequency vector $\alpha=\left(\alpha_{1}, \alpha_{2}\right) \in \mathbb{R}^{2}, \alpha_{1} / \alpha_{2} \in \mathbb{Q}$.
- $\phi^{t}(\theta)=\theta+\alpha t \bmod 2 \pi$.

Examples

Irrational torus flow

- $G=\mathbb{R}, \Omega=\mathbb{T}^{2}$.
- Frequency vector $\alpha=\left(\alpha_{1}, \alpha_{2}\right) \in \mathbb{R}^{2}, \alpha_{1} / \alpha_{2} \notin \mathbb{Q}$.
- $\phi^{t}(\theta)=\theta+\alpha t \bmod 2 \pi$.

Examples

Arnold cat map

- $G=\mathbb{Z}, \Omega=\mathbb{T}^{2}$.
- $\Phi(\theta)=A \theta \bmod 2 \pi, A=\left(\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right)$.

Examples

Lorenz 63 system

- $G=\mathbb{R}, \Omega=\mathbb{R}^{3}$.
- $\phi^{t}(x)$ is the solution map of the initial-value problem

$$
\dot{x}(t)=v(x(t)), \quad x(0)=x
$$

with

$$
\begin{gathered}
v(y)=\left(v_{1}, v_{2}, v_{3}\right) \\
v_{1}=\sigma\left(x_{2}-x_{1}\right), \quad v_{2}=x_{1}\left(\rho-x_{3}\right), \quad v_{3}=x_{1} x_{2}-\beta x_{3}, \\
\rho=28, \sigma=10, \quad \beta=8 / 3 .
\end{gathered}
$$

Dynamical systems and data science

Given. Time-ordered samples $\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right), \ldots,\left(x_{N-1}, y_{N-1}\right)$ of observables $X: \Omega \rightarrow \mathcal{X}$ (covariate) and $Y: \Omega \rightarrow \mathcal{Y}$ (response), where \mathcal{Y} is a vector space and

$$
x_{n}=X\left(\omega_{n}\right), \quad y_{n}=Y\left(\omega_{n}\right), \quad \omega_{n}=\Phi^{t_{n}}\left(\omega_{0}\right), \quad t_{n}=(n-1) \Delta t .
$$

Problem 1 [forecasting]. Using the data (x_{n}, y_{n}), construct ("learn") a function $Z_{t}: \mathcal{X} \rightarrow \mathcal{Y}$ that predicts Y at a lead time $t \geq 0$. That is, Z_{t} should have the property that $Z_{t} \circ X$ is closest to $Y_{t}:=Y \circ \Phi^{t}$ among all functions in a suitable class.

Problem 2 [coherent pattern extraction]. Using the data x_{n}, identify a collection of observables $\zeta_{j}: \Omega \rightarrow \mathcal{Y}$ which have the property of evolving coherently under the dynamics in a suitable sense.

Dynamical systems and data science

In this course, we explore various approaches for pointwise approximation (for Problem 1) and spectral analysis (for Problem 2) of Koopman/transfer operators.

A major requirement is that the approximations are refinable, i.e., the learned functions Z_{t} and φ_{j} should have well-controlled limits as $N \rightarrow \infty$.

Challenges. Linear operators on infinite-dimensional function spaces can exhibit qualitatively new features which are not present in finite-dimensional linear algebra, including:
(1) Discontinuous (unbounded) linear maps.
(2) Elements of the spectrum which are not eigenvalues (e.g., continuous spectrum).

Further reading

[1] T. Berry, D. Giannakis, and J. Harlim, "Bridging data science and dynamical systems theory," Notices Amer. Math. Soc., vol. 67, no. 9, pp. 1336-1349, 2020. DOI: 10.1090/noti2151.
[2] F. Cucker and S. Smale, "On the mathematical foundations of learning," Bull. Amer. Math. Soc., vol. 39, no. 1, pp. 1-49, 2001. DOI: 10.1090/S0273-0979-01-00923-5.
[3] M. Dellnitz and O. Junge, "On the approximation of complicated dynamical behavior," SIAM J. Numer. Anal., vol. 36, p. 491, 1999. DOI: 10.1137/S0036142996313002.
[4] T. Eisner, B. Farkas, M. Haase, and R. Nagel, Operator Theoretic Aspects of Ergodic Theory, ser. Graduate Texts in Mathematics. Springer, 2015, vol. 272.
[5] B. O. Koopman, "Hamiltonian systems and transformation in Hilbert space," Proc. Natl. Acad. Sci., vol. 17, no. 5, pp. 315-318, 1931. DOI: 10.1073/pnas.17.5.315.

Further reading

[6] I. Mezić, "Spectral properties of dynamical systems, model reduction and decompositions," Nonlinear Dyn., vol. 41, pp. 309-325, 2005. DOI: 10.1007/s11071-005-2824-x.

Section 2

Measure-preserving transformations; Ergodic theorems

Measure-preserving dynamical systems

Definition 2.1.

Let (Ω, Σ, μ) be a measure space.
(1) A measurable map $T: \Omega \rightarrow \Omega$ is said to be measure-preserving if $T_{*} \mu=\mu$, i.e.,

$$
\mu\left(T^{-1}(S)\right)=\mu(S), \quad \forall S \in \Sigma .
$$

Conversely, we say that μ is an invariant measure for T.
(2) A measure-preserving map $T: \Omega \rightarrow \Omega$ is said to be invertible measure-preserving if T is bijective and T^{-1} is also measure-preserving.
3 A measurable action $\Phi: G \times \Omega \rightarrow \Omega$ is μ-preserving if $\phi^{g}: \Omega \rightarrow \Omega$ is μ-preserving for every $g \in G$.

Recurrence

Theorem 2.2 (Poincaré).

Let $T: \Omega \rightarrow \Omega$ be a measure-preserving transformation of the probability space (Ω, Σ, μ). Let $S \in \Sigma$ be a measurable set with $\mu(S)>0$. Then, under iteration by T, almost every point of S returns to S infinitely often. That is, for μ-a.e. $\omega \in S$, there exists a sequence $n_{1}<n_{2}<n_{3}<\cdots$ of natural numbers, increasing to infinity, such that $T^{n_{j}}(\omega) \in S$ for all j.

Ergodicity

Definition 2.3.

Let (Ω, Σ, μ) be a probability space.
(1) A measurable map $T: \Omega \rightarrow \Omega$ is said to be ergodic if for every T-invariant set, i.e., every $S \in \Sigma$ such that $T^{-1}(S)=S$ we have either $\mu(S)=0$ or $\mu(S)=1$.
(2) A measurable action $\Phi: G \times \Omega \rightarrow \Omega$ is ergodic if for every $S \in \Sigma$ such that $\Phi^{-g}(S)=S$ for all $g \in G$ we have either $\mu(S)=0$ or $\mu(S)=1$.

Measure-theoretic characterization of ergodicity

Theorem 2.4.
Let $T: \Omega \rightarrow \Omega$ be a measure-preserving transformation of the probability space (Ω, Σ, μ). Then, the following are equivalent.
(1) T is ergodic.
(2) The only measurable sets $S \in \Sigma$ such that $\mu\left(T^{-1}(S) \triangle S\right)=0$ have either $\mu(S)=0$ or $\mu(S)=1$.
3 For every $S \in \Sigma$ with $\mu(S)>0$, we have $\mu\left(\bigcup_{n=1}^{\infty} T^{-1}(S)\right)=1$.
(4) For every $R, S \in \Sigma$ with $\mu(R)>0$ and $\mu(S)>0$, there exists $n>0$ with $\mu\left(T^{-n}(R) \cap S\right)>0$.

Measure-theoretic characterization of ergodicity

Theorem 2.5.
Let (Ω, Σ, μ) be a probability space.
(1) A measure-preserving action $\Phi: \mathbb{N} \times \Omega \rightarrow \Omega$ is ergodic iff

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=0}^{N-1} \mu\left(\Phi^{-n}(R) \cap S\right)=\mu(R) \mu(S), \quad \forall R, S \in \Sigma
$$

(2) A measure-preserving action $\Phi: \mathbb{R}_{+} \times \Omega \rightarrow \Omega$ is ergodic iff

$$
\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} \mu\left(\Phi^{-t}(R) \cap S\right) d t=\mu(R) \mu(S), \quad \forall R, S \in \Sigma
$$

Koopman operators on L^{p} spaces

Definition 2.6.
A measurable map $T: \Omega \rightarrow \Omega$ on a measure space (Ω, Σ, μ) is said to be nonsingular if it preserves null sets, i.e., if whenever $\mu(S)=0$ we have $T_{*} \mu(S)=\mu\left(T^{-1}(S)\right)=0$.

Notation.

- $\mathbb{L}(\Sigma)=\{f: \Omega \rightarrow \mathbb{R}: f$ is Σ-measurable $\}$.
- $L(\mu)=\left\{[f]_{\mu}: f \in \mathbb{L}(\Sigma)\right\}$.
- $L^{p}(\mu)=\left\{[f]_{\mu} \in L(\mu): \int_{\Omega}|f|^{p} d \mu<\infty\right\}$.
- $L^{\infty}(\mu)=\left\{[f]_{\mu} \in L(\mu): \operatorname{esssup}_{\mu}|f|<\infty\right\}$.

Koopman operators on L^{p} spaces

Proposition 2.7.

With notation as above, the following hold.
(1) If T is measurable, then the composition map $U: f \mapsto f \circ T$ maps $\mathbb{L}(\Sigma)$ into itself.
(2) If T is nonsingular, then $\mathcal{U}: L(\mu) \rightarrow L(\mu)$ with $\mathcal{U}[f]_{\mu}=[U f]_{\mu}$ is a well-defined linear map.
3 If T is nonsingular, then $L^{\infty}(\mu)$ is invariant under \mathcal{U}, i.e.,

$$
\mathcal{U} L^{\infty}(\mu) \subseteq L^{\infty}(\mu)
$$

(4) If T is measure-preserving, then \mathcal{U} is an isometry of $L^{p}(\mu)$, $1 \leq p \leq \infty$, i.e.,

$$
\left\|\mathcal{U}[f]_{\mu}\right\|_{L^{p}(\mu)}=\left\|[f]_{\mu}\right\|_{L^{p}(\mu)} .
$$

(5) If T is invertible measure-preserving, then \mathcal{U} is an isomorphism of $L^{p}(\mu), 1 \leq p \leq \infty$, i.e., \mathcal{U} and \mathcal{U}^{-1} are both isometries.

Henceforth, we abbreviate $[f]_{\mu} \equiv f, U \equiv \mathcal{U}$.

Koopman operators on L^{2}

Notation.

- $\left\langle f_{1}, f_{2}\right\rangle_{L^{2}(\mu)}=\int_{\Omega} f_{1} f_{2} d \mu$.

The Koopman operator induced by a μ-preserving map $T: \Omega \rightarrow \Omega$ preservers Hilbert space inner products,

$$
\left\langle U f_{1}, U f_{2}\right\rangle_{L^{2}(\mu)}=\left\langle f_{1}, f_{2}\right\rangle_{L^{2}(\mu)} .
$$

If, in addition, T is invertible measure-preserving, then U is a unitary operator,

$$
U^{*}=U^{-1} .
$$

Duality of L^{p} spaces

Notation.

For a probability space (Ω, Σ, μ), we let:

- $M_{q}(\Omega, \mu)=\left\{\right.$ measures $\nu \ll \mu$ with density $\left.\frac{d \nu}{d \mu} \in L^{q}(\mu)\right\}$.
- Duality pairing: $\langle\cdot, \cdot\rangle_{\mu}: L^{p}(\mu)^{*} \times L^{p}(\mu) \rightarrow \mathbb{R},\langle\alpha, f\rangle_{\mu}=\alpha f$.

For $1 \leq p<\infty$, we can identify functionals in $L^{p}(\mu)^{*}$ with measures in $M_{q}(\Omega, \mu), \frac{1}{p}+\frac{1}{q}=1$, through the map $\iota_{q}: M_{q}(\Omega, \mu) \rightarrow L^{p}(\mu)^{*}$,

$$
\left(\iota_{q} \nu\right) f=\int_{\Omega} f \rho d \mu, \quad \rho=\frac{d \nu}{d \mu}
$$

Equipping $M_{q}(\Omega, \mu)$ with the norm

$$
\|\nu\|_{M_{q}(\Omega, \nu)}=\left\|\frac{d \nu}{d \mu}\right\|_{L^{q}(\mu)}
$$

ι_{q} becomes an isomorphism of Banach spaces. Thus, we have

$$
L^{p}(\mu)^{*} \simeq M_{q}(\Omega, \mu) \simeq L^{q}(\mu), \quad 1 \leq p<\infty, \quad \frac{1}{p}+\frac{1}{q}=1
$$

Transfer operators on L^{p}

Definition 2.8.

With the notation of Proposition 2.7, the transfer operator $P: L^{1}(\mu) \rightarrow L^{1}(\mu)$ is is the unique operator satisfying

$$
\int_{S} P f d \mu=\int_{T^{-1}(S)} f d \mu, \quad \forall f \in L^{1}(\mu) .
$$

We define $P: L^{p}(\mu) \rightarrow L^{p}(\mu), 1<p \leq \infty$ by restriction of $P: L^{1}(\mu) \rightarrow L^{1}(\mu)$.

Proposition 2.9.

Under the identification $L^{1}(\mu)^{*} \simeq L^{\infty}(\mu)$, the transpose $P^{\prime}: L^{1}(\mu)^{*} \rightarrow L^{1}(\mu)^{*}$ of the transfer operator $P: L^{1}(\mu) \rightarrow L^{1}(\mu)$ is identified with the Koopman operator $U: L^{\infty}(\mu) \rightarrow L^{\infty}(\mu)$; that is,

$$
\int_{\Omega} f(P g) d \mu=\int_{\Omega}(U f) g d \mu, \quad \forall f \in L^{\infty}(\mu), \quad \forall g \in L^{1}(\mu) .
$$

Duality between Koopman and transfer operators

Proposition 2.10.

Let $1 \leq p<\infty$. Then, under the identification $L^{p}(\mu)^{*} \simeq L^{q}(\mu)$, $\frac{1}{p}+\frac{1}{q}=1$, the following hold:
(1) The transpose $U^{\prime}: L^{p}(\mu)^{*} \rightarrow L^{p}(\mu)^{*}$ of the Koopman operator $U: L^{p}(\mu) \rightarrow L^{p}(\mu)$ is identified with the transfer operator $P: L^{q}(\mu) \rightarrow L^{q}(\mu)$; that is,

$$
\langle f, U g\rangle_{\mu}=\langle P f, g\rangle_{\mu}, \quad \forall f \in L^{q}(\mu), \quad \forall g \in L^{p}(\mu) .
$$

(2) The transpose $P^{\prime}: L^{p}(\mu)^{*} \rightarrow L^{p}(\mu)^{*}$ of the transfer operator $P: L^{p}(\mu) \rightarrow L^{p}(\mu)$ is identified with the Koopman operator $U: L^{q}(\mu) \rightarrow L^{q}(\mu)$; that is,

$$
\langle f, P g\rangle_{\mu}=\langle U f, g\rangle_{\mu}, \quad \forall f \in L^{q}(\mu), \quad \forall g \in L^{p}(\mu) .
$$

Duality between Koopman and transfer operators

Corollary 2.11.
(1) For $1<p<\infty, U: L^{p}(\mu) \rightarrow L^{p}(\mu)$ and $P: L^{p}(\mu) \rightarrow L^{p}(\mu)$ satisfy

$$
U=U^{\prime \prime}, \quad P=P^{\prime \prime} .
$$

(2) In the Hilbert space case, $p=2$, we have $P=U^{*}$.

3 For $1 \leq p \leq \infty, P$ has unit operator norm, $\|P\|_{L^{p}(\mu)}=1$.

Lemma 2.12.

With the notation of Proposition 2.8, if $T: \Omega \rightarrow \Omega$ is invertible measure-preserving then $P: L^{p}(\mu) \rightarrow L^{p}(\mu)$ is the inverse of $U: L^{p}(\mu) \rightarrow L^{p}(\mu), P=U^{-1}$.

Spectral characterization of ergodicity

Observe that the Koopman operator $U: \mathcal{F} \rightarrow \mathcal{F}$ on any function space \mathcal{F} has an eigenvalue equal to 1 with a constant corresponding eigenfunction, $\mathbb{1}: \Omega \rightarrow \mathbb{R}$,

$$
U \mathbb{1}=\mathbb{1}, \quad \mathbb{1}(\omega)=1 .
$$

Theorem 2.13.
Let $T: \Omega \rightarrow \Omega$ be a measure-preserving transformation of a probability space (Ω, Σ, μ). Then, μ is ergodic iff the eigenvalue equal to 1 of the associated Koopman operator U on $L(\mu)$ (and thus on any of the $L^{p}(\mu)$ spaces with $1 \leq p \leq \infty$) is simple, i.e.,

$$
U f=f \Longrightarrow f=\text { const. } \mu \text {-a.e. }
$$

Spectral characterization of ergodicity

Theorem 2.14.
(1) Let $\Phi: \mathbb{N} \times \Omega \rightarrow \Omega$ be a measure-preserving action and $U^{n}, n \in \mathbb{N}$, the associated Koopman operators on any of $L(\mu)$ or $L^{p}(\mu)$, $1 \leq p \leq \infty$. Then Φ is ergodic iff $U^{n} f=f$ for all $n \in \mathbb{N}$ implies that f is constant μ-a.e.
(2) Let $\Phi: \mathbb{R}_{+} \times \Omega \rightarrow \Omega$ be a measure-preserving action and U^{t}, $t \in \mathbb{R}_{+}$, the associated Koopman operators on any of $L(\mu)$ or $L^{p}(\mu)$, $1 \leq p \leq \infty$. Then, Φ is ergodic iff $U^{t} f=f$ for all $t \in \mathbb{R}_{+}$implies that f is constant μ-a.e.

Pointwise ergodic theorem

Theorem 2.15 (Birkhoff).

Let $T: \Omega \rightarrow \Omega$ be a measure-preserving transformation of a probability space (Ω, Σ, μ) with associated Koopman operator $U: L^{1}(\mu) \rightarrow L^{1}(\mu)$.
Then, for every $f \in L^{1}(\mu)$ and μ-a.e. $\omega \in \Omega$,

$$
f_{N}(\omega):=\frac{1}{N} \sum_{n=0}^{N-1} f\left(T^{n}(\omega)\right)
$$

converges to a function $\bar{f} \in L^{1}(\mu)$ that satisfies

$$
U \bar{f}=\bar{f}, \quad \int_{\Omega} f d \mu=\int_{\Omega} \bar{f} d \mu .
$$

In particular, if T is ergodic, then for μ-a.e. $\omega \in \Omega$,

$$
\bar{f}(\omega)=\int_{\Omega} f d \mu .
$$

Mean ergodic theorem

Theorem 2.16 (von Neumann).

Let $T: \Omega \rightarrow \Omega$ be a measure-preserving transformation of a probability space (Ω, Σ, μ) with associated Koopman operator $U: L^{2}(\mu) \rightarrow L^{2}(\mu)$. Let $\Pi: L^{2}(\mu) \rightarrow L^{2}(\mu)$ be the orthogonal projection onto the eigenspace of U corresponding to eigenvalue 1. Then, the sequence of operators $U_{N}=N^{-1} \sum_{n=0}^{N-1} U^{n}$ converges strongly to Π, i.e.,

$$
\lim _{N \rightarrow \infty} U_{N} f=\Pi f, \quad \forall f \in L^{2}(\mu)
$$

In particular, if T is ergodic, Π is the projection onto the 1-dimensional subspace of $L^{2}(\mu)$ containing μ-a.e. constant functions, i.e.,

$$
\Pi f=\langle\mathbb{1}, f\rangle_{L^{2}(\mu)} \mathbb{1}=\left(\int_{\Omega} f d \mu\right) \mathbb{1} .
$$

Topological dynamics

Of particular interest is the case where $\left(G, \tau_{G}\right)$ and $\left(\Omega, \tau_{\Omega}\right)$ are topological spaces and $\Phi: G \times \Omega \rightarrow \Omega$ is a continuous, and thus Borel-measurable, action. We let $\mathfrak{B}(\Omega)$ denote the Borel σ-algebra of Ω.

Definition 2.17.

The support of a measure $\mu: \mathfrak{B}(\Omega) \rightarrow[0, \infty]$ is the set

$$
\operatorname{supp} \mu:=\left\{\omega \in \Omega: \mu\left(N_{\omega}\right)>0, \forall N_{\omega} \in \tau_{\Omega}\right\} .
$$

Lemma 2.18.

With notation as above, the following hold.
(1) supp μ is a closed (and thus Borel-measurable) subset of Ω.
(2) If Ω is Hausdorff, and μ is a Radon measure, every Borel-measurable set $S \subset \Omega \backslash$ supp μ has $\mu(S)=0$.
3 If μ is invariant under a continuous map $T: \Omega \rightarrow \Omega$, then $\operatorname{supp} \mu$ is also invariant,

$$
T^{-1}(\operatorname{supp} \mu) \subseteq \operatorname{supp} \mu .
$$

Existence of invariant measures

Theorem 2.19 (Krylov-Bogoliubov).
Let $\left(\Omega, \tau_{\Omega}\right)$ be a compact metrizable space and $T: \Omega \rightarrow \Omega$ a continuous map. Then, there exists an invariant Borel probability measure under T.

Existence of dense orbits

Theorem 2.20.
Let $\left(\Omega, \tau_{\Omega}\right)$ be a compact metrizable space, $T: \Omega \rightarrow \Omega$ a continuous map, and μ an ergodic, invariant Borel probability measure with $\operatorname{supp} \mu=\Omega$. Then, μ-a.e. $\omega \in \Omega$ has a dense orbit $\left\{T^{n}(\omega)\right\}_{n=0}^{\infty}$.

Geometry of invariant measures

Theorem 2.21.
Let $T: \Omega \rightarrow \Omega$ be a continuous map on a compact metrizable space. Let $\mathcal{M}(\Omega ; T)$ denote the set of T-invariant Borel probability measures on Ω. Then, the following hold:
(1) $\mathcal{M}(\Omega ; T)$ is a weak-* compact, convex space.
(2) μ is an extreme point of $\mathcal{M}(\Omega ; T)$ iff it is ergodic.

3 If μ and ν are distinct, ergodic measures in $\mathcal{M}(\Omega ; T)$, then they are mutually singular.

Equidistributed sequences

Definition 2.22.

Let $T: \Omega \rightarrow \Omega$ be a continuous map on a compact metrizable space $\left(\Omega, \tau_{\Omega}\right)$ and μ a Borel probability measure. A sequence $\omega_{0}, \omega_{1}, \ldots$ with $\omega_{n}=T^{n}\left(\omega_{0}\right)$ is said to be μ-equidistributed if

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=0}^{N-1} f\left(\omega_{n}\right)=\int_{\Omega} f d \mu, \quad \forall f \in C(\Omega) .
$$

Remark.

μ-equidistribution of $\omega_{0}, \omega_{1}, \ldots$ is equivalent to weak-* convergence of the sampling measures $\mu_{N}=N^{-1} \sum_{n=0}^{N-1} \delta_{\omega_{n}}$ to the measure μ.

Basin of a measure

Definition 2.23.

With the notation of Definition 2.22 the basin of μ is the set

$$
\mathcal{B}(\mu)=\left\{\omega_{0} \in \Omega: \omega_{0}, \omega_{1}, \ldots \text { is } \mu \text {-equidistributed }\right\} .
$$

By the pointwise ergodic theorem (Theorem 2.15), if Ω is a metrizable space and μ is an ergodic invariant measure with compact support, then μ-a.e. $\omega \in \Omega$ lies in $\mathcal{B}(\mu)$.

Observable measures

Definition 2.24.

With the notation of Definition 2.23, let ν be a reference Borel probability measure on Ω. The measure μ is said to be ν-observable if there exists a Borel set $S \in \mathfrak{B}(\Omega)$ with $\nu(S)>0$ such that ν-a.e. $\omega \in S$ lies in $\mathcal{B}(\mu)$.

Intuitively, we think of ν as the measure from which we draw initial conditions. ν-observability of μ then means that the statistics of observables with respect to μ can be approximated from experimentally accessible initial conditions.

Koopman operators on spaces of continuous functions

Proposition 2.25.
Let $T: \Omega \rightarrow \Omega$ be a continuous map on a locally compact Hausdorff space. Then, the Koopman operator $U: f \mapsto f \circ T$ is well-defined as a linear map from $C(\Omega)$ into itself. Moreover:
(1) U is a contraction, i.e.,

$$
\|U f\|_{C(\Omega)} \leq\|f\|_{C(\Omega)}, \quad \forall f \in C(\Omega),
$$

with equality if T is invertible.
(2) U has operator norm $\|U\|=1$.
$3 U$ has the properties

$$
U(f g)=(U f)(U g), \quad U\left(f^{*}\right)=(U f)^{*}, \quad \forall f, g \in C(\Omega),
$$

i.e., it is a *-homomorphism of the C^{*}-algebra $C(\Omega)$.

Transfer operators on Borel measures

Notation.

- $M(\Omega)$: Space of signed Borel measures on topological space $\left(\Omega, \tau_{\Omega}\right)$.

Definition 2.26.

Let $T: \Omega \rightarrow \Omega$ be a continuous map on a compact metrizable space. The transfer operator $P: C(\Omega)^{*} \rightarrow C(\Omega)^{*}$ is the transpose (dual) operator to the Koopman operator $U: C(\Omega) \rightarrow C(\Omega)$,

$$
P \alpha=\alpha \circ U .
$$

Unique ergodicity

Definition 2.27.

Let $T: \Omega \rightarrow \Omega$ be a continuous map on a compact metrizable space (Ω, τ_{Ω}). T is said to be uniquely ergodic if there is only one T-invariant Borel probability measure.

Theorem 2.28.

With notation as above, the following are equivalent.
(1) T is uniquely ergodic.
2. For every $f \in C(\Omega), N^{-1} \sum_{n=0}^{N-1} f\left(T^{n}(\omega)\right)$ converges to a constant, uniformly with respect to $\omega \in \Omega$.
(3) For every $f \in C(\Omega), N^{-1} \sum_{n=0}^{N-1} f\left(T^{n}(\omega)\right)$ converges pointwise to a constant.
(4) There exists an invariant Borel probability measure μ such that

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=0}^{N-1} f\left(T^{n}(\omega)\right)=\int_{\Omega} f d \mu, \quad \forall \omega \in \Omega .
$$

Strong and weak continuity of continuous-time (semi)flows

Theorem 2.29.

Let $\Phi^{t}: \Omega \rightarrow \Omega, t \geq 0$, be a continuous-time, continuous, semiflow on a compact metrizable space Ω with associated Koopman operators $U^{t}: C(\Omega) \rightarrow C(\Omega)$. Then, as $t \rightarrow 0, U^{t}$ converges strongly to the identity,

$$
\lim _{t \rightarrow 0}\left\|U^{t} f-f\right\|_{C(\Omega)}=0, \quad \forall f \in C(\Omega)
$$

Theorem 2.30.
Let $\Phi^{t}: \Omega \rightarrow \Omega, t \geq 0$, be a continuous-time, measurable semiflow with invariant probability measure μ and associated Koopman operators $U^{t}: L^{p}(\mu) \rightarrow L^{p}(\mu)$. Then, the following hold as $t \rightarrow 0$:
(1) For $1 \leq p<\infty, U^{t}$ converges strongly to the identity,

$$
\lim _{t \rightarrow 0}\left\|U^{t} f-f\right\|_{L^{p}(\mu)}=0, \quad \forall f \in L^{p}(\mu)
$$

(2 For $p=\infty, U^{t}$ converges in weak-* sense to the identity,

$$
\lim _{t \rightarrow 0} \int_{\Omega} g\left(U^{t} f\right) d \mu=\int_{\Omega} g f d \mu, \quad \forall f \in L^{\infty}(\mu), \quad \forall g \in L^{1}(\mu)
$$

Mixing

Recall from Theorem 2.4 that a measure-preserving transformation is ergodic iff

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=0}^{N-1} \mu\left(T^{-n}(R) \cap S\right)=\mu(R) \mu(S), \quad \forall R, S \in \Sigma
$$

Definition 2.31.

Let $T: \Omega \rightarrow \Omega$ be a measure-preserving transformation of the probability space (Ω, Σ, μ).
(1) T is said to be weak-mixing if

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=0}^{N-1}\left|\mu\left(T^{-n}(R) \cap S\right)-\mu(R) \mu(S)\right|=0, \quad \forall R, S \in \Sigma
$$

(2) T is said to be strong-mixing, or mixing, if

$$
\lim _{n \rightarrow \infty} \mu\left(T^{-n}(R) \cap S\right)=\mu(R) \mu(S), \quad \forall R, S \in \Sigma
$$

Mixing

Theorem 2.32.
Let $T: \Omega \rightarrow \Omega$ be a measure-preserving transformation of the probability space (Ω, Σ, μ). Then, the following are equivalent.
(1) T is weak-mixing.
(2) There is a subset $\mathcal{N} \subset \mathbb{N}$ of zero density such that

$$
\lim _{\substack{n \rightarrow \infty \\ n \notin \mathcal{N}}} \mu\left(T^{-n}(R) \cap S\right)=\mu(R) \mu(S), \quad \forall R, S \in \Sigma .
$$

Observable-centric characterization of ergodicity and mixing

Let $T: \Omega \rightarrow \Omega$ be a measure-preserving transformation of the probability space (Ω, Σ, μ). Let $U: L^{2}(\mu) \rightarrow L^{2}(\mu)$ be the associated Koopman operator on L^{2}.

For $f, g \in L^{2}(\mu)$, define the cross-correlation function $C_{f g}: \mathbb{N} \rightarrow \mathbb{R}$, where

$$
C_{f g}(n)=\left\langle f, U^{n} g\right\rangle_{L^{2}(\mu)},
$$

and the autocorrelation function $C_{f}=C_{f f}$.
Consider also the expectation values $\bar{f}=\int_{\Omega} f d \mu$ and $\bar{g}=\int_{\Omega} g d \mu$.
Theorem 2.33.
With notation as above, the following are equivalent.
(1) T is ergodic.
(2) For all $f, g \in L^{2}(\mu), \lim _{n \rightarrow \infty} N^{-1} \sum_{n=0}^{N-1} C_{f g}(n)=\bar{f} \bar{g}$.

3 For all $f \in L^{2}(\mu), \lim _{n \rightarrow \infty} N^{-1} \sum_{n=0}^{N-1} C_{f}(n)=\bar{f}^{2}$.

Observable-centric characterization of ergodicity and mixing

Theorem 2.34.
With notation as above, the following are equivalent.
(1) T is weak-mixing.
(2) For all $f, g \in L^{2}(\mu), \lim _{N \rightarrow \infty} N^{-1} \sum_{n=0}^{N-1}\left|C_{f g}(n)-\bar{f} \bar{g}\right|=0$.
3. For all $f \in L^{2}(\mu), \lim _{N \rightarrow \infty} N^{-1} \sum_{n=0}^{N-1}\left|C_{f}(n)-\bar{f}^{2}\right|=0$.

Theorem 2.35.
With notation as above, the following are equivalent.
(1) T is mixing.
(2) For all $f, g \in L^{2}(\mu), \lim _{N \rightarrow \infty} C_{f g}(n)=\bar{f} \bar{g}$.

3 For all $f \in L^{2}(\mu), \lim _{N \rightarrow \infty} C_{f}(n)=\bar{f}^{2}$.

Spectral characterization of mixing

Theorem 2.36.
Let $T: \Omega \rightarrow \Omega$ be a measure-preserving transformation of the probability space (Ω, Σ, μ), and $U: L^{2}(\mu) \rightarrow L^{2}(\mu)$ the corresponding Koopman operator. Then, T is weak-mixing iff the only eigenvalue of U is the eigenvalue equal to 1.

Mixing and product flows

Theorem 2.37.
Let $T: \Omega \rightarrow \Omega$ be a measure-preserving transformation of the probability space (Ω, Σ, μ). Then, the following are equivalent.
(1) T is weak-mixing.
(2) $T \times T$ is ergodic with respect to the product measure $\mu \times \mu$.

3 $T \times T$ is weak-mixing with respect to the product measure $\mu \times \mu$.

Further reading

[1] V. Baladi, Positive Transfer Operators and Decay of Correlations, ser. Advanced Series in Nonlinear Dynamics. Singapore: World Scientific, 2000, vol. 16.
[2] N. Edeko, M. Gerlach, and V. Kühner, "Measure-preserving semiflows and one-parameter Koopman semigrpoups," Semigr. Forum, vol. 98, pp. 48-63, 2019. DOI: 10.1007/s00233-018-9960-3.
[3] T. Eisner, B. Farkas, M. Haase, and R. Nagel, Operator Theoretic Aspects of Ergodic Theory, ser. Graduate Texts in Mathematics. Springer, 2015, vol. 272.
[4] P. Walters, An Introduction to Ergodic Theory, ser. Graduate Texts in Mathematics. New York: Springer-Verlag, 1981, vol. 79.

Section 3

Forecasting

Setting

Recall the forecasting problem from Section 1:

Given. Time-ordered samples $\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right), \ldots,\left(x_{N-1}, y_{N-1}\right)$ of observables $X: \Omega \rightarrow \mathcal{X}$ (covariate) and $Y: \Omega \rightarrow \mathcal{Y}$ (response), where \mathcal{Y} is a vector space and

$$
x_{n}=X\left(\omega_{n}\right), \quad y_{n}=Y\left(\omega_{n}\right), \quad \omega_{n}=\Phi^{t_{n}}\left(\omega_{0}\right), \quad t_{n}=(n-1) \Delta t .
$$

Goal. Using the data $\left(x_{n}, y_{n}\right)$, construct ("learn") a function $Z_{t}: \mathcal{X} \rightarrow \mathcal{Y}$ that predicts Y at a lead time $t \geq 0$. That is, Z_{t} should have the property that $Z_{t} \circ X$ is closest to $Y_{t}:=Y \circ \Phi^{t}$ among all functions in a suitable class.

General assumptions and notation

Throughout this section we assume:
(1) $\Phi^{t}: \Omega \rightarrow \Omega, t \geq 0$, is a continuous, measure-preserving, ergodic semiflow on a compact metrizable space Ω, with a Borel invariant probability measure μ.
(2) $X: \Omega \rightarrow \mathcal{X}$ is a continuous map into a metrizable space \mathcal{X}.

3 $Y: \Omega \rightarrow \mathcal{Y}$ is a continuous map into a Banach space \mathcal{Y} (typically, $\mathcal{Y}=\mathbb{R})$.
(4) The discrete-time $\phi^{\Delta t}: \Omega \rightarrow \Omega$ is ergodic.

Notation.

- $M_{p}(\Omega ; \mu)=\left\{\right.$ measures $\nu \ll \mu$ with density $\left.\frac{d \nu}{d \mu} \in L^{p}(\mu)\right\}$.
- $M_{C}(\Omega ; \mu)=\left\{\right.$ measures $\nu \ll \mu$ with density $\left.\frac{d \nu}{d \mu} \in C(\Omega)\right\}$.
- $\mathcal{X}_{\Omega}=X(\Omega)$: Image of state space in covariate space.
- $\mu_{\mathcal{X}}=X_{*} \mu$: Pushforward of invariant measure into covariate space.

Probabilistic initial conditions

We first consider the case where we assign to each initial condition $x \in \mathcal{X}$ with $x=X(\omega)$ a probability measure $p_{x} \in M_{2}(\Omega ; \mu)$ with continuous density.

We let $\rho_{x}=\frac{d p_{x}}{d \mu} \in C(\Omega)$ be the density of p_{x} relative to μ.
Algorithm 3.1 (construction of the density ρ_{x}).
(1) Pick a continuous, strictly positive kernel function $\kappa: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}_{+}$, e.g.,

$$
\kappa\left(x, x^{\prime}\right)=\exp \left(-\frac{d_{\mathcal{X}}^{2}\left(x, x^{\prime}\right)}{\epsilon^{2}}\right), \quad \epsilon>0 .
$$

(2) Normalize κ to a continuous Markov kernel $\rho: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}_{+}$,

$$
\rho\left(x, x^{\prime}\right)=\frac{\kappa\left(x, x^{\prime}\right)}{v(x)}, \quad v(x)=\int_{\mathcal{X}} \kappa(x, \cdot) d \mu_{\mathcal{X}} .
$$

3 Set $\rho_{x}(\omega)=\rho(x, X(\omega))$.

Target function

Assuming $Y \in L^{2}(\mu)$, define the target function $Z_{t} \in C\left(\mathcal{X}_{\Omega}\right)$ where

$$
Z_{t}(x)=\mathbb{E}_{p_{x}}\left(U^{t} Y\right)=\left\langle\rho_{x}, U^{t} Y\right\rangle_{L^{2}(\mu)} \equiv\left\langle P^{t} \rho_{X}, Y\right\rangle_{L^{2}(\mu)}
$$

Notation.

- $\phi_{0}, \phi_{1}, \ldots$: Orthonormal basis functions of $L^{2}(\mu)$.
- $\Pi_{L}: L^{2}(\mu) \rightarrow L^{2}(\mu)$: Orthogonal projection onto $\operatorname{span}\left\{\phi_{0}, \ldots, \phi_{L-1}\right\}$.
- $U_{L}^{(t)}=\Pi_{L} U^{t} \Pi_{L}$: Finite-rank approximation of the Koopman operator.

Proposition 3.2.

With notation as above, as $L \rightarrow \infty U_{L}^{(t)}$ converges to U^{t} weakly. As a result, $Z_{t, L}=\mathbb{E}_{p_{x}}\left(U_{L}^{(t)} Y\right)$ satisfies

$$
\lim _{L \rightarrow \infty} Z_{t, L}(x)=Z_{t}(x)
$$

where the convergence is uniform with respect to $x \in \mathcal{X}_{\Omega}$ and t in compact sets.

Target function

Algorithm 3.3 (evaluation of the target function).
(1) Represent $U_{L}^{(t)}$ by the $L \times L$ matrix $U^{(t)}=\left[U_{i j}^{(t)}\right]$ with

$$
U_{i j}^{(t)}=\left\langle\phi_{i}, U^{t} \phi_{j}\right\rangle_{L^{2}(\mu)}, \quad i, j=0, \ldots, L-1 .
$$

(2) Represent ρ_{x} by the column vector $\hat{\boldsymbol{\rho}}_{x}=\left(\hat{\rho}_{x, 0}, \ldots, \hat{\rho}_{x, L-1}\right)^{\top} \in \mathbb{R}^{L}$ with

$$
\hat{\rho}_{x, i}=\left\langle\phi_{i}, \rho_{x}\right\rangle_{L^{2}(\mu)} .
$$

3 Represent Y by the column vector $\hat{\boldsymbol{y}}=\left(\hat{y}_{0}, \ldots, \hat{y}_{L-1}\right)^{\top} \in \mathbb{R}^{L}$ with

$$
\hat{y}_{i}=\left\langle\phi_{i}, Y\right\rangle_{L^{2}(\mu)} .
$$

(4) Compute $Z_{t, L}(x)$ as the matrix-vector product

$$
Z_{t, L}(x)=\hat{\boldsymbol{\rho}}_{x}^{\top} \boldsymbol{U}^{(t)} \hat{\boldsymbol{y}}
$$

Shift operator

Notation.

- $\mathcal{B}(\mu)$: Basin of the invariant measure.
- $\mu_{N}=N^{-1} \sum_{n=0}^{N-1} \delta_{\omega_{n}}$: Sampling measure.
- $\mu_{\mathcal{X}, N}:=X_{*} \mu_{N}=N^{-1} \sum_{n=0}^{N-1} \delta_{x_{n}}$: Sampling measure in data space.
- $\left\{e_{0, N}, \ldots, e_{N-1, N}\right\}, e_{j, N}\left(\omega_{n}\right)=N^{1 / 2} \delta_{j n}$: Orthonormal basis of $L^{2}\left(\mu_{N}\right)$.
- $\iota: C(\Omega) \rightarrow L^{2}(\mu), \iota f=[f]_{\mu}$: Inclusion map.
- $\iota_{N}: C(\Omega) \rightarrow L^{2}\left(\mu_{N}\right), \iota f=[f]_{\mu_{N}}$: Restriction map.

Shift operator

Definition 3.4.

For $q \in \mathbb{N}$ we define the shift operator $\hat{U}_{N}^{q}: L^{2}\left(\mu_{N}\right) \rightarrow L^{2}\left(\mu_{N}\right)$ as

$$
\left(\hat{U}_{N}^{q} f\right)\left(\omega_{n}\right)= \begin{cases}f\left(\omega_{n+1}\right), & 0 \leq n \leq N-1-q, \\ 0, & N-q \leq n \leq N-1 .\end{cases}
$$

Remark 3.5.

Intuitively, \hat{U}_{N}^{q} should be related to $U^{q \Delta t}$. However, it is not a composition operator. In fact, it is a nilpotent operator, $\hat{U}_{N}^{N-q+1}=0$.

Lemma 3.6.

The following hold:
(1) $U^{t} \circ \iota=\iota \circ \mathcal{U}^{t}$.
(2) For every $q \in \mathbb{N}$ and $f \in C(\Omega)$,

$$
\left(\hat{U}_{N}^{q} \circ \iota_{N}\right) f=\left(\iota_{N} \circ \mathcal{U}^{q \Delta t}\right) f+r_{N},
$$

where r_{N} is a remainder satisfying $\lim _{N \rightarrow \infty}\left\|r_{N}\right\|_{L^{2}\left(\mu_{N}\right)}=0$.

Koopman operator approximation in a continuous basis

Theorem 3.7.

Let $\left\{\phi_{0, N}, \ldots, \phi_{N-1, N}\right\}$ be an orthonormal basis of $L^{2}\left(\mu_{N}\right)$ such that

$$
\phi_{j, N}=\iota_{N} \varphi_{j, N}, \quad \varphi_{j, N} \xrightarrow[N \rightarrow \infty]{C(\Omega)} \varphi_{j}
$$

where $\phi_{j}=\iota \varphi_{j}$ are orthonormal basis vectors of $L^{2}(\mu)$. Let $\Pi_{L, N}: L^{2}\left(\mu_{N}\right) \rightarrow L^{2}\left(\mu_{N}\right)$ be the orthogonal projection onto $\operatorname{span}\left\{\phi_{0, N}, \ldots, \phi_{L-1, N}\right\}$. Assume that the initial state ω_{0} lies in the basin $\mathcal{B}(\mu)$, and set $q, L \in \mathbb{N}$. Then, the $L \times L$ matrix representations $\hat{\boldsymbol{U}}_{N}^{(q)}=\left[\hat{U}_{i j, N}^{(q)}\right]$ and $\boldsymbol{U}^{(q \Delta t)}=\left[U_{i j}^{(q \Delta t)}\right]$ of $\hat{U}_{L, N}^{(q)}$ and $U_{L}^{q \Delta t}$, respectively, with

$$
\hat{U}_{i j, N}^{(q)}=\left\langle\phi_{i, N}, \hat{U}_{N}^{q} \phi_{j, N}\right\rangle_{L^{2}\left(\mu_{N}\right)}, \quad U_{i j}^{(q \Delta t)}=\left\langle\phi_{i}, U^{\Delta t} \phi_{j}\right\rangle_{L^{2}(\mu)}
$$

satisfy $\lim _{N \rightarrow \infty} \hat{\boldsymbol{U}}_{N}^{(q)}=\boldsymbol{U}^{(q \Delta t)}$, in any matrix norm.

Discrete density

We assign to each initial condition $x \in \mathcal{X}$ with $x=X(\omega)$ a probability measure $p_{x, N} \in M_{2}\left(\Omega ; \mu_{N}\right)$ with continuous density.

We let $\rho_{x, N}=\frac{d p_{x, N}}{d \mu_{N}} \in C(\Omega)$ be the density of $p_{x, N}$ relative to μ_{N}.
Algorithm 3.8 (construction of the discrete density $\rho_{x, N}$).
(1) Pick a continuous, strictly positive kernel function $\kappa: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}_{+}$ as in Algorithm 3.1, e.g.,

$$
\kappa\left(x, x^{\prime}\right)=\exp \left(-\frac{d_{\mathcal{X}}^{2}\left(x, x^{\prime}\right)}{\epsilon^{2}}\right), \quad \epsilon>0 .
$$

(2) Normalize κ to a continuous Markov kernel $\rho_{N}: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}_{+}$with respect to $\mu_{\mathcal{X}, N}$,

$$
\rho_{N}\left(x, x^{\prime}\right)=\frac{\kappa\left(x, x^{\prime}\right)}{v_{N}(x)}, \quad v_{N}(x)=\int_{\mathcal{X}} \kappa(x, \cdot) d \mu_{\mathcal{X}, N} .
$$

3 Set $\rho_{x, N}(\omega)=\rho_{N}(x, X(\omega))$.

Discrete density

Proposition 3.9.

With the notation of Algorithm 3.8, the following hold as $N \rightarrow \infty$ for every initial state $\omega_{0} \in \mathcal{B}(\mu)$:
(1) $\rho_{x, N}$ converges to ρ_{x} in the $C(\Omega)$ norm, uniformly with respect to $x \in \mathcal{X}_{\Omega}$.
(2) $p_{x, N}$ converges to p_{x} in the weak-* topology of $M(\Omega)$.

Target function based on samples

We consider a forecast lead time $t=q \Delta t, q \in \mathbb{N}$.
Algorithm 3.10 (evaluation of the sample-based target function).
(1) Represent $\hat{U}_{L, N}^{(q)}$ by the $L \times L$ matrix $\hat{U}_{N}^{(q)}=\left[\hat{U}_{i j, N}^{(q)}\right]$ with

$$
\hat{U}_{i j, N}^{(q)}=\left\langle\phi_{i, N}, \hat{U}_{N}^{q} \phi_{j, N}\right\rangle_{L^{2}\left(\mu_{N}\right)}, \quad i, j=0, \ldots, L-1 .
$$

(2) Represent $\rho_{x, N}$ by the column vector

$$
\hat{\boldsymbol{\rho}}_{x, N}=\left(\hat{\rho}_{x, N, 0}, \ldots, \hat{\rho}_{x, N, L-1}\right)^{\top} \in \mathbb{R}^{L} \text { with }
$$

$$
\hat{\rho}_{x, N, i}=\left\langle\phi_{i, N}, \rho_{X, N}\right\rangle_{L^{2}\left(\mu_{N}\right)} .
$$

3 Represent Y by the column vector $\hat{y}_{N}=\left(\hat{y}_{N, 0}, \ldots, \hat{y}_{N, L-1}\right)^{\top} \in \mathbb{R}^{L}$ with

$$
\hat{y}_{N, i}=\left\langle\phi_{i, N}, Y\right\rangle_{L^{2}\left(\mu_{N}\right)} .
$$

(4) Compute $Z_{t, L, N}(x)$ as the matrix-vector product

$$
Z_{t, L, N}(x)=\hat{\boldsymbol{\rho}}_{x, N}^{\top} \hat{\boldsymbol{U}}_{N} \hat{\boldsymbol{y}}_{N} .
$$

Approximation in a continuous basis

Corollary 3.11.
With the notation of Algorithm 3.10, the target function $Z_{t, L, N}: \mathcal{X} \rightarrow \mathbb{R}$,

$$
Z_{t, L, N}(x)=\hat{\boldsymbol{\rho}}_{x, N}^{\top} \hat{\boldsymbol{U}}_{N}^{(q)} \hat{\boldsymbol{y}}_{N},
$$

satisfies

$$
\lim _{N \rightarrow \infty} Z_{t, L, N}(x)=Z_{t, L}(x),
$$

uniformly with respect to $x \in \mathcal{X}_{\Omega}$ and t in compact sets.

Measures of forecast skill

Definition 3.12.

For forecast lead time $t \geq 0$ and a target function $Z_{t}: \mathcal{X} \rightarrow \mathbb{R}$ such that $\tilde{Y}_{t}:=Z_{t} \circ X$ lies in $L^{2}(\mu)$, we define:
(1) Mean: $\bar{Y}=\mathbb{E}_{\mu} Y, \tilde{Y}_{t}=\mathbb{E}_{\mu} \tilde{Y}_{t}$.
(2) Anomaly relative to mean: $Y^{\prime}=Y-\bar{Y}, \tilde{Y}_{t}^{\prime}=Y_{t}-\bar{Y}_{t}$.

3 Standard deviation: std $Y=\left\|Y^{\prime}\right\|_{L^{2}(\mu)}$, std $\tilde{Y}_{t}=\left\|\tilde{Y}_{t}^{\prime}\right\|_{L^{2}(\mu)}$.
(4) Root mean square error (RMSE): $\operatorname{RMSE}_{t}=\left\|\tilde{Y}_{t}-Y_{t}\right\|_{L^{2}(\mu)}$.
(5) Normalized RMSE: NRMSE $_{t}=\operatorname{RMSE}_{t} /$ std Y.
(6 Anomaly correlation: $\mathrm{AC}_{t}=\left\langle\tilde{Y}_{t}^{\prime}, Y_{t}\right\rangle_{L^{2}(\mu)} /\left(\operatorname{std} \tilde{Y}_{t}\right.$ std $\left.Y\right)$.

Remark 3.13.

In practice, we estimate the skill scores in Definition 3.12 by approximating integrals with respect to μ by integrals (time averages) with respect to a sampling measure $\hat{\mu}_{\hat{N}}$ associated with a trajectory that is independent of the training trajectory $\omega_{0}, \omega_{1}, \ldots$..

Mixing and loss of predictability

Proposition 3.14.

With notation as above, suppose that the system is mixing. Then, for any $x \in \mathcal{X}$ and $L \in \mathbb{N}$, the long-time limit of the target function $Z_{t, L}(x)$ is a constant \breve{Y} independent of x,

$$
\lim _{t \rightarrow \infty} Z_{t, L}(x)=\tilde{Y} .
$$

In addition, if span $\left\{\phi_{0}, \ldots, \phi_{L-1}\right\}$ includes the constant functions, we have $\check{Y}=\bar{Y}$. In that case,

$$
\lim _{t \rightarrow \infty} \operatorname{NRMSE}_{t}=1, \quad \lim _{t \rightarrow \infty} \mathrm{AC}_{t}=0
$$

Estimating the forecast uncertainty

Definition 3.15.

Let $\tilde{\gamma}_{t}=Z_{t} \circ \mathcal{X}$ be the pullback of target function onto Ω. We define the forecast variance associated with the initial condition $x \in \mathcal{X}$ as

$$
\beta_{t}(x)=\mathbb{E}_{p_{x}}\left(\tilde{Y}_{t}^{\prime}\right)^{2} .
$$

We can approximate $\beta_{t}: \mathcal{X} \rightarrow \mathbb{R}$ using an analogous approach as in the construction of $Z_{t, L}$ and $Z_{t, L, N}$, treating Y_{t}^{\prime} as the response variable.

Kernels and kernel integral operators

For our purposes, a kernel is a bivariate function $k: \Omega \times \Omega \rightarrow \mathbb{R}$ that captures a notion of similarity or correlation between points in Ω.

Given a continuous kernel $k \in C(\Omega \times \Omega)$ and a Borel probability measure $\nu \in M(\Omega)$, there is an associated kernel integral operator $K: L^{2}(\nu) \rightarrow C(\Omega)$, where

$$
K f(\omega)=\int_{\Omega} k(\omega, \cdot) f d \nu
$$

Notation.

- When we wish to make the dependence of K on ν explicit, we will use the notation $K_{\nu} \equiv K$.

Kernels and kernel integral operators

Lemma 3.16.
Under our general assumptions, K is a compact operator.
Corollary 3.17.
The operators $G: L^{2}(\nu) \rightarrow L^{2}(\nu)$ and $\tilde{G}: C(\Omega) \rightarrow C(\Omega)$ with

$$
G=\iota \circ K, \quad \tilde{G}=K \circ \iota
$$

are compact.

Types of kernels

Definition 3.18.

(1) A kernel $k: \Omega \times \Omega \rightarrow \mathbb{R}$ on a set Ω is said to be positive-definite if for any finite sequence $\omega_{1}, \ldots, \omega_{n} \in \Omega$ and numbers $c_{1}, \ldots, c_{n} \in \mathbb{R}$, we have

$$
\sum_{i, j=1}^{n} c_{i} c_{j} k\left(\omega_{i}, \omega_{j}\right) \geq 0
$$

(2) A kernel $k: \Omega \times \Omega \rightarrow \mathbb{R}$ on a set Ω is said to be strictly positive-definite if for any finite sequence $\omega_{1}, \ldots, \omega_{n}$ of distinct points in Ω and numbers $c_{1}, \ldots, c_{n} \in \mathbb{R}$, at least one of which is nonzero, we have

$$
\sum_{i, j=1}^{n} c_{i} c_{j} k\left(\omega_{i}, \omega_{j}\right)>0 .
$$

Types of kernels

Definition 3.19.

Let Ω be a topological space and $k: \Omega \times \Omega \rightarrow \mathbb{R}$ be a Borel-measurable, bounded kernel.
(1) k is said to be integrally positive-definite if for every finite, signed Borel measure ν on Ω, we have

$$
\int_{\Omega} \int_{\Omega} k\left(\omega, \omega^{\prime}\right) d \nu(\omega) d \nu\left(\omega^{\prime}\right) \geq 0 .
$$

(2 k is said to be strictly integrally positive-definite if for every nonzero, finite, signed Borel measure ν on Ω, we have

$$
\int_{\Omega} \int_{\Omega} k\left(\omega, \omega^{\prime}\right) d \nu(\omega) d \nu\left(\omega^{\prime}\right)>0 .
$$

Remark 3.20.

If k is (strictly) integrally positive-definite, $G_{\nu}: L^{2}(\nu) \rightarrow L^{2}(\nu)$ is a (strictly) positive operator. We will then say that k is $L^{2}(\nu)$-(strictly)-positive.

Types of kernels

Theorem 3.21.

Suppose that Ω is a compact metrizable space. Then, with the notation of Definition 3.19, the following hold:
(1) k is integrally positive-definite iff it is positive-definite.

2 If k is strictly integrally positive-definite then it is strictly positive-definite.

Kernel eigenfunctions

Proposition 3.22.
Let $K: L^{2}(\nu) \rightarrow C(\Omega), G: L^{2}(\nu) \rightarrow L^{2}(\mu), \tilde{G}: C(\Omega) \rightarrow C(\Omega)$ be the operators from Corollary 3.17. Then:
(1) There exists an orthonormal basis $\left\{\phi_{0}, \phi_{1}, \ldots\right\}$ of $L^{2}(\nu)$ which are eigenfunctions of G corresponding to real eigenvalues $\lambda_{0}, \lambda_{1}, \ldots$, i.e.,

$$
G \phi_{j}=\lambda_{j} \phi_{j} .
$$

(2) Every nonzero eigenvalue λ_{j} has finite multiplicity, and the eigenvalues can be ordered in a sequence $\left|\lambda_{0}\right| \geq\left|\lambda_{1}\right| \geq \cdots \searrow 0$ with no accumulation point other than 0 .
(3) For every $\lambda_{j} \neq 0$, the continuous function $\varphi_{j}:=\lambda_{j}^{-1} K \phi_{j}$ is an eigenfunction of \tilde{G} corresponding to the same eigenvalue λ_{j},

$$
\tilde{G} \varphi_{j}=\lambda_{j} \varphi_{j} .
$$

Data-driven basis

Algorithm 3.23 (data-driven basis).

Set $\nu=\mu_{N}, K_{N} \equiv K_{\mu_{N}}, G_{N} \equiv G_{\mu_{N}}, \tilde{G}_{N} \equiv \tilde{G}_{\mu_{N}}$. Assume k is symmetric.
(1) Represent G_{N} by the $N \times N$ kernel matrix $K=\left[K_{i j}\right]$ with

$$
K_{i j}=\left\langle e_{i, N}, G_{N} e_{j, N}\right\rangle_{L^{2}\left(\mu_{N}\right)}=k\left(\omega_{i}, \omega_{j}\right) .
$$

(2) Solve the matrix eigenvalue problem

$$
\boldsymbol{K} \phi_{j}=\lambda_{j, N} \phi_{j}, \quad \phi_{j}=\left(\phi_{0 j}, \ldots, \phi_{N-1, j}\right)^{\top}, \quad\left\|\phi_{j}\right\|_{2}=\sqrt{N} .
$$

3 Reconstruct the eigenvectors $\phi_{j, N} \in L^{2}\left(\mu_{N}\right)$,

$$
\phi_{j, N}=\sum_{i=0}^{N-1} \phi_{i j, N} e_{i, N}, \quad G_{N} \phi_{j, N}=\lambda_{j, N} \phi_{j, N} .
$$

(4) For $\lambda_{j, N} \neq 0$, compute the continuous extensions $\varphi_{j, N} \in C(\Omega)$,

$$
\varphi_{j, N}=\frac{1}{\lambda_{j, N}} K_{N} \phi_{j, N}=\frac{1}{\lambda_{j, N} N} \sum_{i=0}^{N-1} k\left(\cdot, \omega_{i}\right) \phi_{i j, N}, \quad \tilde{G}_{N} \varphi_{j, N}=\lambda_{j, N} \varphi_{j, N}
$$

Data-driven basis

Set $\nu=\mu, K \equiv K_{\mu}, G \equiv G_{\mu}, \tilde{G} \equiv \tilde{G}_{\mu}$,

$$
G \phi_{j}=\lambda_{j} \phi_{j}, \quad \varphi_{j}=\frac{1}{\lambda_{j}} K \phi_{j}, \quad \tilde{G} \varphi_{j}=\lambda_{j} \varphi_{j} .
$$

Strategy.

- Use the weak-* convergence of μ_{N} to μ to deduce spectral convergence of \tilde{G}_{N} to \tilde{G}. This implies convergence of the nonzero $\lambda_{j, N}$ to λ_{j} and convergence of $\varphi_{j, N}$ to φ_{j} in a suitable sense.
- Use an integrally strictly positive-definite kernel k. Then, $\lambda_{j}>0$, and the $\varphi_{j, N}$ converge to an orthonormal basis of $L^{2}(\mu)$. The assumptions of Theorem 3.7 are satisfied.

Compact convergence

Definition 3.24.

Let $\left(F,\|\cdot\|_{F}\right)$ be a Banach space, and A_{1}, A_{2}, \ldots a sequence of bounded operators on F. We say that A_{n} converges compactly if it converges to a (bounded) operator A pointwise, and for every bounded sequence $f_{n} \in F$, the sequence $\left(A-A_{n}\right) f_{n}$ has a convergent subsequence in F.

Notation.

- $B(F)$: Banach space of bounded operators on F.
- $\sigma(A)$: Spectrum of an operator $A \in B(F)$.

Compact convergence

Theorem 3.25.

With the notation of Definition 3.24, let A_{n} converge to A compactly. Let $\lambda \in \sigma(A)$ be an isolated eigenvalue of A with finite multiplicity m, and Π the spectral projection of A corresponding to λ. Let $S \subseteq \mathbb{C}$ be an open neighborhood of λ such that $\sigma(A) \cap S=\{\lambda\}$. Then, the following hold.
(1) There exists $n_{*} \in \mathbb{N}$ such that for all $n>n_{*}, \sigma\left(A_{n}\right) \cap S$ is an isolated subset of $\sigma\left(A_{n}\right)$, consisting of at most m distinct eigenvalues whose multiplicities sum up to m. Moreover, every sequence $\lambda_{n} \in \sigma\left(A_{n}\right) \cap S$ satisfies $\lim _{n \rightarrow \infty} \lambda_{n}=\lambda$.
(2) The spectral projections Π_{n} of A_{n} corresponding to $\sigma\left(A_{n}\right) \cap S$ (which are well-defined for $n>n_{*}$) converge strongly to Π. In particular, for every eigenfunction ϕ of A at eigenvalue λ, there exists a sequence of eigenfunctions ϕ_{n} of A_{n} at eigenvalue λ_{n} such that $\lim _{n \rightarrow \infty} \phi_{n}=\phi$ in the norm of F.

Compact convergence

Theorem 3.26.
Suppose that $k: \Omega \times \Omega \rightarrow \mathbb{R}$ is a continuous kernel. Then, under our general assumptions, \tilde{G}_{N} converges compactly to \tilde{G}.

Corollary 3.27.
If k is integrally strictly positive-definite, the conditions of Theorem 3.7 are satisfied.

Kernels on covariate space

In practice, we construct $k: \Omega \times \Omega \rightarrow \mathbb{R}$ as a pullback of a continuous kernel $\kappa: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ in covariate space, i.e.,

$$
k\left(\omega, \omega^{\prime}\right)=k\left(X(\omega), X\left(\omega^{\prime}\right)\right) .
$$

All computations involving G_{N} and K_{N} can be expressed using covariate data.

- G_{N} is represented by the $N \times N$ matrix

$$
\boldsymbol{K}=\left[K_{i j}\right], \quad K_{i j}=k\left(\omega_{i}, \omega_{j}\right)=\kappa\left(x_{i}, x_{j}\right) .
$$

- The continuous extension $\varphi_{j, N}$ of $\phi_{j, N}$ is given by

$$
\varphi_{j, N}(\omega)=\frac{1}{\lambda_{j, N}} K_{N} \phi_{j}(\omega)=\frac{1}{\lambda_{j, N} N} \sum_{n=0}^{N-1} \kappa\left(F(\omega), x_{n}\right) .
$$

Kernels on covariate space

Every eigenfunction $\varphi_{j, N}$ or φ_{j} corresponding to nonzero eigenvalue is of the form

$$
\varphi_{j, N}=\varphi_{j, N}^{(\mathcal{X})} \circ \mathcal{X}, \quad \varphi_{j}=\varphi_{j}^{(\mathcal{X})} \circ \mathcal{X},
$$

for continuous functions $\varphi_{j, N}^{(\mathcal{X})}, \varphi_{j}^{(\mathcal{X})} \in C\left(\mathcal{X}_{\Omega}\right)$.

- The corresponding $\phi_{j}=\iota \varphi_{j}$ form an orthonormal set in $L^{2}(\mu)$, but if X is not injective they might not form an orthonormal basis (even if κ is integrally positive definite).

Remark.

The kernel κ used to compute the basis vectors $\phi_{j, N}$ and ϕ_{j} need not (and in general, will not) be the same as the kernel used to assign the initial density ρ_{x} via Algorithm 3.8.

Data-driven forecast

The construction and evaluation of the data-driven target function $Z_{t, L, N}(x)$ for $x \in \mathcal{X}$ and $t=q \Delta t$, can be summarized as follows.

Algorithm 3.28 (data-driven target function).

(1) Apply Algorithm 3.23 using the covariate training data x_{n} and a kernel $\kappa: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ to compute the basis vectors $\phi_{j, N}$.
(2) Apply Algorithm 3.8 using the covariate training data x_{n} and a strictly positive kernel $\tilde{\kappa}: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ to compute the initial density ρ_{x}.
3 Set a spectral resolution parameter L (number of eigenfunctions). Apply Algorithm 3.10 using $\phi_{j, N}$ from Step 1, ρ_{x} from Step 2, and the response training data y_{n} to compute $Z_{t, L, N}(x)$.

Conditional expectation

Notation.
For a measure space (Ω, Σ, μ) and a sub- σ-algebra $\Sigma^{\prime} \subseteq \Sigma$, we let:

- $\mathbb{L}\left(\Sigma^{\prime}\right)=\left\{f: \Omega \rightarrow \mathbb{R}: f\right.$ is Σ^{\prime}-measurable $\} \subseteq \mathbb{L}(\Sigma)$.
- $L\left(\mu, \Sigma^{\prime}\right)=\left\{[f]_{\mu}: f \in \mathbb{L}\left(\Sigma^{\prime}\right)\right\} \subseteq L(\mu)$.
- $L^{p}\left(\mu, \Sigma^{\prime}\right)=L^{p}(\mu) \cap L(\mu, \Sigma)$.

Definition 3.29.

Let (Ω, Σ, μ) be a probability space. Given $f \in L^{1}(\mu)$ and a sub- σ-algebra $\Sigma^{\prime} \subseteq \Sigma$, the conditional expectation of f on Σ^{\prime} is the unique element $g \in L^{1}\left(\mu, \Sigma^{\prime}\right)$ such that

$$
\int_{E} f d \mu=\int_{E} g d \mu, \quad E \in \Sigma^{\prime}
$$

We write $g \equiv \mathbb{E}\left(f \mid \Sigma^{\prime}\right)$.

Conditional expectation

Lemma 3.30.

With the notation of Definition 3.29, the following hold.
(1) $L^{p}\left(\mu, \Sigma^{\prime}\right)$ is a closed subspace of $L^{p}(\mu)$.

2 If $f \in L^{p}(\mu)$, then $\mathbb{E}\left(f \mid \Sigma^{\prime}\right) \in L^{p}\left(\mu, \Sigma^{\prime}\right)$.
3 The map $\Pi_{\Sigma^{\prime}}: L^{p}(\mu) \rightarrow L^{p}(\mu)$ with

$$
\Pi_{\Sigma^{\prime}} f=\mathbb{E}\left(f \mid \Sigma^{\prime}\right)
$$

is a linear projection onto $L^{p}\left(\mu, \Sigma^{\prime}\right)$ with norm 1.
(4) $\Pi_{\Sigma^{\prime}}: L^{2}(\mu) \rightarrow L^{2}(\mu)$ is the orthogonal projection onto $L^{2}\left(\mu, \Sigma^{\prime}\right)$.

Conditional expectation

Corollary 3.31.

For any $f \in L^{2}(\mu)$,

$$
\mathbb{E}\left(f \mid \Sigma^{\prime}\right)=\Pi_{\Sigma^{\prime}} f
$$

is the unique element of $L^{2}\left(\mu, \Sigma^{\prime}\right)$ that minimizes the distance from f to $L^{2}\left(\mu, \Sigma^{\prime}\right)$, i.e.,

$$
\left\|f-\mathbb{E}\left(f \mid \Sigma^{\prime}\right)\right\|_{L^{2}(\mu)}<\|f-g\|_{L^{2}(\mu)}, \quad \forall g \in L^{2}\left(\mu, \Sigma^{\prime}\right) \backslash\{f\} .
$$

Conditional expectation on measurable maps

Definition 3.32.
Let (Ω, Σ, μ) be a probability space and $X:(\Omega, \Sigma) \rightarrow\left(\mathcal{X}, \Sigma_{\mathcal{X}}\right)$ a measurable map. We define the conditional expectation of $f \in L^{1}(\mu)$ on X as

$$
\mathbb{E}(f \mid X)=\mathbb{E}\left(f \mid \Sigma_{X}\right), \quad \Sigma_{X}=X^{-1}\left(\Sigma_{\mathcal{X}}\right) .
$$

Remark 3.33.

(1) Σ_{X} is the σ-algebra generated by X, i.e., the smallest sub- σ-algebra of Σ such that $X:\left(\Omega, \Sigma_{X}\right) \rightarrow\left(\mathcal{X}, \Sigma_{\mathcal{X}}\right)$ is measurable.
(2) Every $f \in \mathbb{L}\left(\Sigma_{X}\right)$ is of the form $f=g \circ X$ for $g \in \mathbb{L}\left(\Sigma_{\mathcal{X}}\right)$.

3 Every $f \in L^{p}\left(\mu, \Sigma_{X}\right)$ is of the form $f=g \circ X$ for $g \in L^{p}\left(\mu_{\mathcal{X}}\right)$, where $\mu_{\mathcal{X}}=X_{*} \mu$.

Ideal target function

In light of Corollary 3.31 and Remark 3.33, the ideal target function in the sense of $L^{2}(\mu)$ error (RMS error; see Definition 3.12) is $Z_{t} \in L^{2}\left(\mu_{\mathcal{X}}\right)$ such that

$$
\mathbb{E}\left(U^{t} Y \mid X\right)=Z_{t} \circ X
$$

That is, Z_{t} satisfies

$$
\left\|U^{t} Y-Z_{t} \circ X\right\|_{L^{2}(\mu)} \leq\left\|U^{t} Y-\tilde{Y}_{t}\right\|_{L^{2}(\mu)}, \quad \forall \tilde{Y}_{t} \in L^{2}\left(\mu, \Sigma_{X}\right) .
$$

Conditional probability

Notation.

- $\chi_{S}: \Omega \rightarrow\{0,1\}$: Characteristic function of a set $S \subseteq \Omega$.

Definition 3.34.

Let (Ω, Σ, μ) be a probability space. For every sub- σ-algebra $\Sigma^{\prime} \subseteq \Sigma$ and measurable set $S \in \Sigma$, we define the conditional probability
$\mathbb{P}\left(S \mid \Sigma^{\prime}\right) \in L^{1}\left(\mu, \Sigma^{\prime}\right)$ as

$$
\mathbb{P}\left(S \mid \Sigma^{\prime}\right)=\mathbb{E}\left(\chi_{S} \mid \Sigma^{\prime}\right)
$$

Remark 3.35.

The map $S \in \Sigma \mapsto \mathbb{P}\left(S \mid \Sigma^{\prime}\right)$ defines a vector measure on Σ^{\prime}, i.e., an $L^{1}(\mu)$-valued map such that for any sequence S_{n} of disjoint measurable sets in Σ,

$$
\mathbb{P}\left(\bigcup_{n} S_{n} \mid \Sigma^{\prime}\right)=\sum_{n} \mathbb{P}\left(S_{n} \mid \Sigma^{\prime}\right)
$$

Regular conditional probability

Definition 3.36.

With the notation of Definition 3.34 we say that $\mathbb{P}\left(S \mid \Sigma^{\prime}\right)$ is a regular conditional probability if there is a map $p: \Omega \times \Sigma \rightarrow \mathbb{R}$ such that:
(1) For every $\omega \in \Omega, p(\omega, \cdot)$ is a probability measure on Σ.
(2) For every $S \in \Sigma$, the map $\omega \mapsto p(\omega, S)$ is a representative of the conditional probability $\mathbb{P}\left(S \mid \Sigma^{\prime}\right) \in L^{1}(\mu)$.
The map p is called a Markov kernel.
If $\Sigma^{\prime}=\Sigma_{X}$ is the sub- σ-algebra generated by a measurable map $X:(\Omega, \Sigma) \rightarrow\left(\mathcal{X}, \sigma_{\mathcal{X}}\right)$ then we have

$$
p(\omega, \cdot)=p_{\mathcal{X}}(X(\omega), \cdot)
$$

for a Markov kernel $p_{\mathcal{X}}: \mathcal{X} \times \Sigma \rightarrow \mathbb{R}$.

Regular conditional probability

Theorem 3.37.
For a compact metrizable space Ω equipped with its Borel σ-algebra every conditional probability $\mathbb{P}\left(\cdot \mid \Sigma^{\prime}\right)$ is a regular conditional probability.

Proposition 3.38.

If $\mathbb{P}\left(\cdot \mid \Sigma^{\prime}\right)$ is a regular conditional probability with Markov kernel p, then for every $Y \in L^{1}(\mu)$ we have

$$
\mathbb{E}\left(Y \mid \Sigma^{\prime}\right)=\int_{\Omega} Y(\omega) p(\cdot, d \omega)
$$

where the equality holds μ-a.e.

Conditional density

Definition 3.39.
With the notation of Definition 3.34, if $p(\omega, \cdot) \ll \mu$, we say that a function $\rho: \Omega \times \Omega \rightarrow \mathbb{R}$ is a conditional density of p if

$$
\rho(\omega, \cdot)=\frac{d p(\omega, \cdot)}{d \mu}, \quad \mu \text {-a.e. }
$$

Proposition 3.40.

If it exists, $\rho(\omega, \cdot)$ lies in $L^{\infty}(\mu)$.
If $\Sigma^{\prime}=\Sigma_{X}$ is the sub- σ-algebra generated by $X: \Omega \rightarrow \mathcal{X}$, then we have $\rho(\omega, \cdot)=\rho_{\mathcal{X}}(X(\omega), \cdot)$ for a function $\rho_{\mathcal{X}}: \mathcal{X} \times \Omega \rightarrow \mathbb{R}$.

Conditional density

Remark 3.41.

If p has a conditional density, then for every $Y \in L^{1}(\mu)$, we have

$$
\mathbb{E}\left(Y \mid \Sigma^{\prime}\right)=\int_{\Omega} Y(\omega) \rho(\cdot, \omega) d \mu(\omega)
$$

In particular, for $Y \in L^{2}(\mu)$ and μ-a.e. $\omega^{\prime} \in \Omega$,

$$
\mathbb{E}\left(Y \mid \Sigma^{\prime}\right)\left(\omega^{\prime}\right)=\left\langle\rho\left(\omega^{\prime}, \cdot\right), Y\right\rangle_{L^{2}(\mu)}
$$

Hypothesis space

Goal. Construct the ideal target function $Z_{t}: \mathcal{X}: \rightarrow \mathbb{R}$ such that $Z_{t} \circ X=\mathbb{E}\left(U^{t} Y \mid X\right), \mu$-a.e.

Strategy. Approximate Z_{t} in a hypothesis space \mathcal{H} of continuous functions on \mathcal{X}_{Ω} such that:
(1) \mathcal{H} is a convex subset of a Hilbert space \mathcal{K} of continuous functions on \mathcal{X}_{Ω}.
(2) The inclusion map $\iota: \mathcal{K} \rightarrow L^{2}\left(\mu_{\mathcal{X}}\right)$ is compact.
$3 H \equiv \iota \mathcal{H}$ is closed in $L^{2}\left(\mu_{\mathcal{X}}\right)$.

Proposition 3.42.

Under the assumptions stated above, there is a unique minimizer $Z_{t, \mathcal{H}}$ of the square error functional $\mathcal{E}_{t}: \mathcal{H} \rightarrow \mathbb{R}_{+}$, where

$$
\mathcal{E}_{t}(f)=\left\|\iota f-Z_{t}\right\|_{L^{2}\left(\mu_{\chi}\right)}^{2} .
$$

Reproducing kernel Hilbert spaces

Definition 3.43 .

A Hilbert space ($\mathcal{K},\langle\cdot, \cdot\rangle_{\mathcal{K}}$) of complex-valued functions functions on a set \mathcal{X} is called a reproducing kernel Hilbert space (RKHS) if for every $x \in \mathcal{X}$ the pointwise evaluation functional $\delta_{x}: \mathcal{K} \rightarrow \mathbb{C}$ is continuous.

By the Riesz representation theorem, for every $x \in \mathcal{X}$, there exists a unique function $k_{x} \in \mathcal{K}$ such that

$$
f(x)=\left\langle k_{x}, f\right\rangle_{\mathcal{K}}, \quad \forall f \in \mathcal{K} .
$$

The function $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{C}$ with $k\left(x, x^{\prime}\right)=k_{x}\left(x^{\prime}\right)$ is called the reproducing kernel of \mathcal{K}.

Proposition 3.44.

k is a positive-definite kernel on \mathcal{X}.

Reproducing kernel Hilbert spaces

Theorem 3.45 (Moore-Aronszajn).

Let $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{C}$ be a positive-definite kernel on a set \mathcal{X}. Then, there is a unique $\mathrm{RKHS} \mathcal{K}$ on \mathcal{X} with k as its reproducing kernel. Explicitly, \mathcal{K} is the completion of the inner product space $\left(\mathcal{K}_{0},\langle\cdot, \cdot\rangle_{\mathcal{K}_{0}}\right)$ with

$$
\mathcal{K}_{0}=\operatorname{span}\left\{k_{x}: x \in \mathcal{X}\right\}, \quad\left\langle\sum_{i=1}^{m} a_{i} k_{x_{i}}, \sum_{j=1}^{n} b_{j} k_{x_{j}}\right\rangle_{\mathcal{K}_{0}}=\sum_{i=1}^{m} \sum_{j=1}^{n} \bar{a}_{i} k\left(x_{i}, x_{j}\right) b_{j} .
$$

Reproducing kernel Hilbert spaces

Lemma 3.46.

Let $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{C}$ be a positive-definite kernel on a set \mathcal{X} with associated RKHS \mathcal{K}. Then, for any subset $S \subseteq \mathcal{X}$, the restriction

$$
\left.\mathcal{K}\right|_{S}=\left\{\left.f\right|_{S}: f \in \mathcal{K}\right\}
$$

is an RKHS with reproducing kernel $\left.k\right|_{S \times s}$.
Notation.

- If ν is a probability measure on \mathcal{X} we write $\left.\mathcal{K}_{\nu} \equiv \mathcal{K}\right|_{\text {supp } \nu}$ and $\left.k_{\nu} \equiv k\right|_{\text {supp }} \nu \times$ supp ν.

Mercer kernels

Theorem 3.47 (Mercer).

Let \mathcal{X} be a compact Hausdorff space and $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{C}$ a continuous, positive-definite kernel with associated RKHS \mathcal{K}. Let ν be a Borel probability measure on \mathcal{X}. Consider the the corresponding self-adjoint integral operator $G_{\nu}: L^{2}(\nu) \rightarrow L^{2}(\nu), G_{\nu}=\iota_{\nu} \circ K_{\nu}$ (see Corollary 3.17), and its eigendecomposition as in Proposition 3.22,

$$
G_{\nu} \phi_{j}=\lambda_{j} \phi_{j}, \quad\left\langle\phi_{i}, \phi_{j}\right\rangle_{L^{2}(\nu)}=\delta_{i j}, \quad \lambda_{0} \geq \lambda_{1} \geq \cdots \searrow 0 .
$$

Then, the kernel k_{ν} admits the series expansion

$$
k_{\nu}\left(x, x^{\prime}\right)=\sum_{j: \lambda_{j}>0} \lambda_{j} \overline{\varphi_{j}(x)} \varphi_{j}\left(x^{\prime}\right),
$$

where $\varphi_{j}=\lambda_{j}^{-1} K_{\nu} \phi_{j}$ is the continuous representative of ϕ_{j}, and the convergence is uniform with respect to $\left(x, x^{\prime}\right) \in \operatorname{supp} \nu \times \operatorname{supp} \nu$.

Mercer kernels

Corollary 3.48 .

(1) \mathcal{K} is a subspace of $C(\mathcal{X})$.
(2) Upon restriction to supp ν, the range of $K_{\nu}: L^{2}(\nu) \rightarrow C(\mathcal{X})$ is a dense subspace of \mathcal{K}_{ν}.
3 The functions $\psi_{j}=\lambda_{j}^{-1 / 2} K_{\nu} \phi_{j}$ form an orthonormal set in \mathcal{K}, and their restrictions to supp ν form an orthonormal basis of \mathcal{K}_{ν}.
(4) The operator $G_{\nu}: L^{2}(\nu) \rightarrow L^{2}(\nu)$ is of trace class, and we have

$$
\left\|G_{\nu}\right\|_{1}=\operatorname{tr} G_{\nu}=\int_{\mathcal{X}} k(x, x) d \nu(x) .
$$

Inclusion operators

Proposition 3.49.

Viewing K_{ν} as an operator from $L^{2}(\nu)$ to \mathcal{K}, the adjoint $K_{\nu}^{*}: \mathcal{K} \rightarrow L^{2}(\nu)$ coincides with the inclusion map $\iota_{\nu}: C(\mathcal{X}) \rightarrow L^{2}(\nu)$, i.e.,

$$
K_{\nu}^{*} f=\iota_{\nu} f, \quad \forall f \in \mathcal{K} .
$$

In particular, we have $G_{\nu}=K_{\nu}^{*} K_{\nu}$.

Corollary 3.50.

(1) \mathcal{K}_{ν} embeds compactly into $L^{2}(\nu)$.
(2) Every element of ran K_{ν}^{*} has a representative in \mathcal{K} (and thus in $C(\mathcal{X})$).
3 ran K^{*} is closed iff \mathcal{K}_{ν} is finite-dimensional.

Universal kernels

Definition 3.51.

A positive-definite kernel $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{C}$ on a locally compact Hausdorff space is said to be:
(1) C_{0}-universal if $k(x, \cdot)$ lies in $C_{0}(\mathcal{X})$ for all $x \in \mathcal{X}$, and the corresponding RKHS \mathcal{K} is dense in $C_{0}(\mathcal{X})$.
(2) C-universal if \mathcal{X} is compact, k is continuous, and the corresponding RKHS \mathcal{K} is dense in $C(\mathcal{X})$.
3 L^{p}-universal if for every Borel probability measure ν on \mathcal{X}, \mathcal{K} is a dense subspace of $L^{p}(\nu)$ for some $p \in[1, \infty)$.

Theorem 3.52.

On a compact Hausdorff space, C-universality, L^{p}-universality, and strict integral-positiveness are equivalent notions. Moreover, every kernel having these properties is strictly positive-definite.

Radial kernels

Definition 3.53.

A bounded, continuous kernel $k: \mathbb{R}^{d} \times \mathbb{R}^{d} \rightarrow \mathbb{C}$ is said to be radial if there exists a positive, finite Borel measure α on $[0, \infty)$ such that

$$
k\left(x, x^{\prime}\right)=\int_{[0, \infty)} e^{-s\left\|x-x^{\prime}\right\|_{2}^{2}} d \alpha(s), \quad \forall x, x^{\prime} \in \mathbb{R}^{d} .
$$

Theorem 3.54.
A radial, strictly-positive definite kernel on \mathbb{R}^{d} is C_{0}-universal.
Theorem 3.55.
The radial basis function (RBF) kernel on \mathbb{R}^{d},

$$
k\left(x, x^{\prime}\right)=\exp \left(-\frac{\left\|x-x^{\prime}\right\|_{2}^{2}}{\epsilon^{2}}\right), \quad \epsilon>0
$$

is strictly positive-definite (and radial).

Feature maps

Definition 3.56.

A feature map on a set \mathcal{X} is a map $F: \mathcal{X} \rightarrow \mathcal{F}$, where \mathcal{F} is a Hilbert space, called feature space.

Lemma 3.57.

If $F: \mathcal{X} \rightarrow \mathcal{F}$ is a feature map, then $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{C}$ with

$$
k\left(x, x^{\prime}\right)=\left\langle F(x), F\left(x^{\prime}\right)\right\rangle_{\mathcal{F}}
$$

is a positive-definite kernel.

Definition 3.58.

Let $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{C}$ be a positive-definite kernel on a a set \mathcal{X}. We say that a feature map $F: \mathcal{X} \rightarrow \mathcal{F}$ is associated to k if

$$
k\left(x, x^{\prime}\right)=\left\langle F(x), F\left(x^{\prime}\right)\right\rangle_{\mathcal{F}} .
$$

Feature maps

Proposition 3.59.

Let $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{C}$ be a positive-definite kernel on a set \mathcal{X} with associated RKHS \mathcal{K}.
(1) $F: \mathcal{X} \rightarrow \mathcal{K}$ with $F(x)=k(x, \cdot)$ is a feature map associated to k.
(2) If k is strictly positive-definite, then F is injective. Moreover, $F(x)$ and $F\left(x^{\prime}\right)$ are linearly independent whenever x and x^{\prime} are distinct.

Feature maps

Lemma 3.60.

Let $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{C}$ be a continuous, positive-definite kernel on a compact Hausdorff space \mathcal{X} with associated RKHS \mathcal{K}. Let $\left\{\psi_{0}, \psi_{1}, \ldots\right\}$ be the orthonormal basis of \mathcal{K}_{ν} from Corollary 3.48. Then, $F: \operatorname{supp} \nu \rightarrow \ell^{2}$ with

$$
F(x)=\left(\psi_{0}(x), \psi_{1}(x), \ldots\right)
$$

is a feature map associated to k_{ν}.

Moore-Penrose pseudoinverse

Theorem 3.61.

Let A : $H_{1} \rightarrow H_{2}$ be a linear map between two finite-dimensional Hilbert spaces. Then, there exists a unique linear map $A^{+}: H_{2} \rightarrow H_{1}$, called the Moore-Penrose pseudoinverse of A, with the following properties:
(1) $\operatorname{ker} A^{+}=\operatorname{ran} A^{\perp}$.
(2) $\operatorname{ran} A^{+}=\operatorname{ker} A^{\perp}$.
(3 $A A^{+} f=f$ for all $f \in \operatorname{ran} A$.

Theorem 3.62.

With notation as above $A^{+}: H_{2} \rightarrow H_{1}$ is the pseudoinverse of A iff the following conditions hold:
(1) $A A^{+} A=A$.
(2) $A^{+} A A=A^{+}$.
$3\left(A A^{+}\right)^{*}=A A^{+}$.
(4) $\left(A^{+} A\right)^{*}=A^{+} A$.

Moore-Penrose pseudoinverse

Proposition 3.63.

With the notation of Theorem 3.61, the following hold.
(1) If ran $A=H_{2}$, then $A^{+}=A^{*}\left(A A^{*}\right)^{-1}$ and $A A^{+}=I$.
(2) If $\operatorname{ran} A^{*}=H_{1}$, then $A^{+}=\left(A^{*} A\right)^{-1} A^{*}$ and $A^{+} A=I$.

Pseudoinverse in infinite-dimensional Hilbert spaces

Theorem 3.64.
Let H_{1} and H_{2} be Hilbert spaces, and $A: D(A) \rightarrow H_{2}$ a closed linear map with dense domain $D(A) \subseteq H_{1}$. Then, there exists a unique, densely defined, closed operator $A^{+}: D\left(A^{+}\right) \rightarrow H_{1}$ with domain $D\left(A^{+}\right) \subseteq H_{2}$, called the pseudoinverse of A, such that
(1) $\operatorname{ker} A^{+}=\operatorname{ran} A^{\perp}$.
(2) $\overline{\operatorname{ran} A^{+}}=\operatorname{ker} A^{\perp}$.
(3) $A A^{+} f=f$ for all $f \in \operatorname{ran} A$.

Theorem 3.65.

With notation as above, the following hold.
(1) $\left(A^{+}\right)^{+}=A$.
(2) $\left(A^{+}\right)^{*}=\left(A^{*}\right)^{+}$.
$3 A^{+}$is bounded iff ran A is closed.

Pseudoinverse in infinite-dimensional Hilbert spaces

Theorem 3.66.
With the notation of Theorem 3.64, given $g \in D\left(A^{+}\right), f=A^{+} g$ has the properties
(1) $\|A f-g\|_{H_{2}}=\inf _{h \in D(A)}\|A h-g\|_{H_{2}}$.
(2) $\|f\|_{H_{1}}<\|h\|_{H_{1}}$ for all $h \neq f$ attaining the infinum above.

We refer to g as the best approximate solution to the equation $A f=g$.

Nyström operator

Definition 3.67.

Let $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{C}$ be a continuous, positive-definite kernel on a compact Hausdorff space \mathcal{X} with corresponding RKHS \mathcal{K}. Let ν be a Borel probability measure on \mathcal{X}. We define the Nyström operator associated with k and ν as

$$
\mathcal{N}_{\nu}=\left(K_{\nu}^{*}\right)^{+} .
$$

Nyström operator

Proposition 3.68.

With the notation of Definition 3.67, the following hold.
(1) $\operatorname{ran} \mathcal{N}_{\nu}=\mathcal{K}_{\nu}$. In particular, \mathcal{N}_{ν} has closed range.
(2) The domain $D\left(\mathcal{N}_{\nu}\right) \subseteq L^{2}(\nu)$ is given by

$$
D\left(\mathcal{N}_{\nu}\right)=\left\{f=\sum_{j} c_{j} \phi_{j}: \sum_{j: \lambda_{j}>0} \frac{\left|c_{j}\right|^{2}}{\lambda_{j}}<\infty\right\} .
$$

$3 \mathcal{N}_{\nu}$ is bounded iff \mathcal{K}_{ν} is finite-dimensional.
(4) For every $f \in D\left(\mathcal{N}_{\nu}\right)$ we have

$$
\mathcal{N}_{\nu} f=\sum_{j: \lambda_{j}>0} \frac{c_{j}}{\lambda_{j}^{1 / 2}} \psi_{j}, \quad c_{j}=\left\langle\phi_{j}, f\right\rangle_{L^{2}(\nu)} .
$$

Nyström operator

Proposition 3.69.

With the notation of Definition 3.67, the following hold.
(1) For every $f \in \mathcal{K}_{\nu}$,

$$
K_{\nu}^{*} \mathcal{N}_{\nu}^{+} f=f .
$$

2 For every $f \in D\left(\mathcal{N}_{\nu}\right)$,

$$
K_{\nu}^{*} \mathcal{N}_{\nu}^{+} f=\Pi_{\nu} f,
$$

where $\Pi_{\nu}: L^{2}(\nu) \rightarrow L^{2}(\nu)$ is the orthogonal projection onto ker K_{ν}^{\perp}.

Truncated Nyström operator

Definition 3.70.

With the notation of Definition 3.67, and for $L \in \mathbb{N}$ such that $\lambda_{L-1}>0$, we define the truncated Nyström operator $\mathcal{N}_{\nu, L}: L^{2}(\nu) \rightarrow \mathcal{K}_{\nu}$ as

$$
\mathcal{N}_{\nu, L}=\mathcal{N}_{\nu} \circ \Pi_{\nu, L},
$$

where $\Pi_{\nu, L}: L^{2}(\nu) \rightarrow L^{2}(\nu)$ is the orthogonal projection onto $\operatorname{span}\left\{\phi_{0}, \ldots, \phi_{L-1}\right\}$.

Lemma 3.71.

The following hold as $L \rightarrow \infty$.
(1) $\mathcal{N}_{\nu, L}$ converges to \mathcal{N}_{ν} strongly on $D\left(\mathcal{N}_{\nu}\right)$.
(2) $K_{\nu}^{*} \mathcal{N}_{\nu, L}$ converges to Π_{ν} strongly on $L^{2}(\nu)$.

Corollary 3.72.
For every $g \in L^{2}(\nu), f_{L}=\mathcal{N}_{\nu, L g}$ is a sequence of continuous functions that converges to $\Pi_{\nu} g$ in $L^{2}(\nu)$ norm.

Approximating the conditional expectation

Theorem 3.73.

Let $\kappa: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{C}$ be a continuous, positive-definite kernel on the covariate space \mathcal{X} with associated RKHS $\mathcal{K}^{(\mathcal{X})}$. Let $k: \Omega \times \Omega \rightarrow \mathbb{C}$ with $k\left(\omega, \omega^{\prime}\right)=\kappa\left(X(\omega), X\left(\omega^{\prime}\right)\right)$ be the pullback of κ to Ω. Define

$$
\tilde{Y}_{t, L}=\mathcal{N}_{\mu, L} U^{t} Y
$$

Then, the following hold:
(1) $\tilde{Y}_{t, L}$ is the pullback of a function $Z_{t, L} \in \mathcal{K}^{(\mathcal{X})}$, i.e.,

$$
\tilde{Y}_{t, L}=Z_{t, L} \circ X
$$

(2) $Z_{t, L}$ is the minimizer of the error functional $\mathcal{E}_{t, L} \equiv \mathcal{E}_{t}$ from Proposition 3.42 for the hypothesis space $\mathcal{H}_{L} \equiv \mathcal{H}$..
3 As $L \rightarrow \infty, \mathcal{E}_{t, L}\left(Z_{t, L}\right)$ converges to 0 and $\tilde{Y}_{t, L}$ converges in $L^{2}(\mu)$ norm to the conditional expectation $\mathbb{E}\left(U^{t} Y \mid X\right)$.

Approximating the conditional expectation

Assume the notation of Theorem 3.73, set a lead time $t=q \Delta t, q \in \mathbb{N}$.
Algorithm 3.74 (data-driven conditional expectation).
(1) Apply Algorithm 3.23 using the covariate training data x_{n} and the kernel $\kappa^{(\mathcal{X})}$ to compute the basis vectors $\phi_{I, N}$ of $L^{2}\left(\mu_{N}\right)$.
(2 Fix a spectral resolution parameter L, and compute the expansion coefficients of $\hat{U}_{N}^{q} Y$ in the $\phi_{I, N}$ basis,

$$
\hat{y}_{t, N, I}=\left\langle\phi_{I, N}, \hat{U}_{N}^{q} Y\right\rangle_{L^{2}\left(\mu_{N}\right)} .
$$

3 Compute the target function $Z_{t, L, N}: \mathcal{X} \rightarrow \mathbb{R}$, where

$$
Z_{t, L, N}=\sum_{l=0}^{L-1} \hat{y}_{t, N, I} \varphi_{l}^{(\mathcal{X})} .
$$

Further reading

[1] R. Alexander and D. Giannakis, "Operator-theoretic framework for forecasting nonlinear time series with kernel analog techniques," Phys. D, vol. 409, p. 132 520, 2020. DOI: 10.1016/j.physd.2020.132520.
[2] F. J. Beutler and W. L. Root, "The operator pseudoinverse in control and systems identification," in Generalized Inverses and Applications, M. Zuhair Nashed, Ed., University of Wisconsin-Madison, Academic Press, 1973, pp. 397-494. DOI: 10.1016/B978-0-12-514250-2.50014-7.
[3] F. Cucker and S. Smale, "On the mathematical foundations of learning," Bull. Amer. Math. Soc., vol. 39, no. 1, pp. 1-49, 2001. DOI: 10.1090/S0273-0979-01-00923-5.
[4] U. von Luxburg, M. Belkin, and O. Bousquet, "Consitency of spectral clustering," Ann. Stat., vol. 26, no. 2, pp. 555-586, 2008. DOI: 10.1214/009053607000000640.

Further reading

[5] V. I. Paulsen and M. Raghupathi, An Introduction to the Theory of Reproducing Kernel Hilbert Spaces, ser. Cambridge Studies in Advanced Mathematics. Cambridge: Cambridge University Press, 2016, vol. 152.
[6] B. K. Sriperumbudur, K. Fukumizu, and G. R. Lanckriet, "Universality, characteristic kernels and RKHS embedding of measures," J. Mach. Learn. Res., vol. 12, pp. 2389-2410, 2011.

Section 4

Spectral theory

Setting and objectives

General assumptions

- $\Phi: G \times \Omega \rightarrow \Omega$: Continuous-time, continuous flow on compact, metrizable space Ω.
- μ : Ergodic invariant Borel probability measure.
- $X: \Omega \rightarrow \mathbb{X}$ continuous observation map into metric space \mathcal{X}.
- $U^{t}: \mathcal{F} \rightarrow \mathcal{F}$: Koopman operator on Banach space \mathcal{F} of complex-valued observables.

Given. Time-ordered samples

$$
x_{n}=X\left(\omega_{n}\right), \quad \omega_{n}=\phi^{t_{n}}\left(\omega_{0}\right), \quad t_{n}=(n-1) \Delta t .
$$

Goal. Using the data x_{n}, identify a collection of observables $\zeta_{j}: \Omega \rightarrow \mathcal{Y}$ which have the property of evolving coherently under the dynamics in a suitable sense.

Setting and objectives

We recall the following facts from Section 2 (see Proposition 2.7 and Theorems 2.29, 2.30).

Theorem 4.1.

(1) $\left\{U^{t}: C(\Omega) \rightarrow C(\Omega)\right\}_{t \in \mathbb{R}}$ is a strongly continuous group of isometries.
(2) $\left\{U^{t}: L^{p}(\mu) \rightarrow L^{p}(\mu)\right\}_{t \in \mathbb{R}}, p \in[0, \infty)$ is a strongly continuous group of isometries. Moreover, $U^{t}: L^{2}(\mu) \rightarrow L^{2}(\mu)$ is unitary.
$3\left\{U^{t}: L^{\infty}(\mu) \rightarrow L^{\infty}(\mu)\right\}_{t \in \mathbb{R}}$ is a weak-* continuous group of isometries.

Notation.

- \mathcal{F} : Any of the $C(\Omega)$ or $L^{p}(\mu)$ spaces with $1 \leq p \leq \infty$.
- \mathcal{F}_{0} : Any of the $C(\Omega)$ or $L^{p}(\mu)$ spaces with $1 \leq p<\infty$.
- C_{0} (semi)group \equiv strongly continuous (semi)group.
- C_{0}^{*} (semi)group \equiv weak-* continuous (semi)group.

Generator of C_{0} semigroups

Definition 4.2.

Let $\left\{S^{t}\right\}_{t \geq 0}$ be a C_{0} semigroup on a Banach space E. The generator $A: D(A) \rightarrow E$ of the semigroup $\left\{S^{t}\right\}_{t \geq 0}$ is defined as

$$
A f=\lim _{t \rightarrow 0} \frac{S^{t} f-f}{t}, \quad f \in D(A),
$$

where the limit is taken in the norm of E, and the domain $D(A) \subseteq E$ consists of all $f \in E$ for which the limit exists.

Generator of C_{0} semigroups

Theorem 4.3.

With the notation of Definition 4.2, the following hold.
(1) A is closed and densely defined.
(2) For all $f \in D(A)$ and $t \geq 0$, the function $t \mapsto S^{t} f$ is continuously differentiable, and satisfies

$$
\frac{d}{d t} S^{t} f=A S^{t} f=S^{t} A f .
$$

3 A uniquely characterizes the semigroup $\left\{S^{t}\right\}$, i.e., if $\left\{\tilde{S}^{t}\right\}$ is another C_{0} semigroup on E with the same generator A, then $S^{t}=\tilde{S}^{t}$ for all $t \geq 0$.

Generator of C_{0}^{*} semigroups

Definition 4.4.

Let $\left\{S^{t}\right\}_{t \geq 0}$ be a C_{0}^{*} semigroup on a Banach space E with predual E_{*}. The generator $A: D(A) \rightarrow E$ of the semigroup $\left\{S^{t}\right\}_{t \geq 0}$ is defined as the weak-* limit

$$
\langle g, A f\rangle=\lim _{t \rightarrow 0} \frac{\left\langle g, S^{t} f-f\right\rangle}{t}, \quad f \in D(A), \quad \forall g \in E_{*},
$$

where the domain $D(A) \subseteq E$ consists of all $f \in E$ for which the limit exists.

Theorem 4.5.

With the notation of Definition 4.4, the following hold.
(1) A is weak-* closed and densely defined.
(2) For all $f \in D(A)$ and $t \geq 0$, the function $t \mapsto S^{t} f$ is weak-* continuously differentiable, and satisfies

$$
\left\langle g, \frac{d}{d t} S^{t} f\right\rangle=\left\langle g, A S^{t} f\right\rangle=\left\langle g, S^{t} A f\right\rangle .
$$

3 A uniquely characterizes the semigroup $\left\{S^{t}\right\}$, i.e., if $\left\{\tilde{S}^{t}\right\}$ is another C_{0}^{*} semigroup on E with the same generator A, then $S^{t}=\tilde{S}^{t}$ for all $t \geq 0$.

Generator of unitary C_{0} groups

Theorem 4.6 (Stone).
Let $\left\{S^{t}\right\}_{t \geq 0}$ be a unitary C_{0} group on a Hilbert space H. Then, the generator $A: D(A) \rightarrow H$ is skew-adjoint, i.e.,

$$
A^{*}=-A .
$$

Conversely, if $A: D(A) \rightarrow H$ is skew-adjoint, it is the generator of a unitary evolution group.

Generator of Koopman evolution groups

Corollary 4.7.

Under our general assumptions the following hold:
(1) The Koopman evolution groups $U^{t}: \mathcal{F}_{0} \rightarrow \mathcal{F}_{0}$ are uniquely characterized by their generator $V: D(V) \rightarrow \mathcal{F}_{0}$, where

$$
V f=\lim _{t \rightarrow 0} \frac{U^{t} f-f}{t}
$$

Moreover, for $\mathcal{F}_{0}=L^{2}(\mu), V$ is skew-adjoint.
(2) The Koopman evolution group $U^{t}: L^{\infty}(\mu) \rightarrow L^{\infty}(\mu)$ is uniquely characterized by its generator $V: D(V) \rightarrow \mathcal{F}_{0}$, where

$$
V f=\lim _{t \rightarrow 0} \frac{U^{t} f-f}{t}
$$

in weak-* sense.

Generator of Koopman evolution groups

Theorem 4.8 (ter Elst \& Lemańczyk).

Let (Ω, Σ) be a compact metrizable space equipped with its Borel σ-algebra \sum. Let μ be a Borel probability measure on Ω and $U^{t}: L^{2}(\mu) \rightarrow L^{2}(\mu)$ a C_{0} unitary evolution group with generator $V: D(V) \rightarrow L^{2}(\mu)$. Then, the following are equivalent.
(1) For every $t \in \mathbb{R}$ there exists a μ-a.e. invertible, measurable, and measure-preserving flow $\Phi^{t}: \Omega \rightarrow \Omega$ such that $U^{t} f=f \circ \Phi^{t}$.
(2) The space $\mathfrak{A}(V)=D(V) \cap L^{\infty}(\mu)$ is an algebra with respect to function multiplication, and V is a derivation on \mathfrak{A} :

$$
V(f g)=(V f) g+f(V g), \quad \forall f, g \in \mathfrak{A}(V) .
$$

Point spectrum

Definition 4.9.

Let $A: D(A) \rightarrow E$ be an operator on a Banach space with domain $D(A) \subseteq E$. The point spectrum of A, denoted as $\sigma_{p}(A) \subseteq \mathbb{C}$ is defined as the set of its eigenvalues. That is, $\lambda \in \mathbb{C}$ is an element of $\sigma_{p}(A)$ iff there is a nonzero vector $u \in E$ (an eigenvector) such that

$$
A u=\lambda u .
$$

Notation.

- We use the notation $\sigma_{p}(A ; E)$ when we wish to make explicit the Banach space on which A acts.

Eigenvalues and eigenfunctions

Definition 4.10.

Let $A: D(A) \rightarrow E$ be the generator of a C_{0} semigroup $\left\{S^{t}\right\}_{t \geq 0}$ on a Banach space E. We say that $\lambda \in \mathbb{C}$ is an eigenvalue of the semigroup if λ is an eigenvalue of A, i.e., there exists a nonzero $u \in D(A)$ such that

$$
A u=\lambda u .
$$

Lemma 4.11.

With notation as above, λ is an eigenvalue of $\left\{S^{t}\right\}$ if and only if z is an eigenvector of S^{t} for all $t \geq 0$, i.e., there exist $\Lambda^{t} \in \mathbb{C}$ such that

$$
S^{t} u=\Lambda^{t} u, \quad \forall t \geq 0 .
$$

In particular, we have $\Lambda^{t}=e^{\lambda t}$.

Point spectra for measure-preserving flows

Theorem 4.12.
Let $\Phi^{t}: \Omega \rightarrow \Omega$ a be a measure-preserving flow of a probability space (Ω, Σ, μ). Let $U^{t}: L^{p}(\mu) \rightarrow L^{p}(\mu)$ be the associated Koopman operators on $L^{p}(\mu), p \in[1, \infty]$, and $V: D(V) \rightarrow L^{p}(\mu)$ the corresponding generators. Then, the following hold.
(1) For every $p, q \in[1, \infty]$ and $t \in \mathbb{R}, \sigma_{p}\left(U^{t}, L^{p}(\mu)\right)=\sigma_{p}\left(U^{t}, L^{q}(\mu)\right)$.
(2) $\sigma_{p}\left(V, L^{p}(\mu)\right)=\sigma_{p}\left(V, L^{q}(\mu)\right)$.
(3) $\sigma_{p}\left(U^{t}\right)$ is a subgroup of S^{1}.
(4) $\sigma_{p}(V)$ is a subgroup of $i \mathbb{R}$.

Corollary 4.13.

Every eigenfunction of V lies in $L^{\infty}(\mu)$, and thus in $L^{p}(\mu)$ for every $p \in[1, \infty]$.

Given $\lambda=i \alpha \in \sigma_{p}(V)$, we say that α is an eigenfrequency of V.

Generating frequencies

Definition 4.14.

Assume the notation of Theorem 4.12.
(1) We say that $\left\{i a_{0}, i a_{1}, \ldots\right\} \subseteq \sigma_{p}(V)$ is a generating set if for every $i \alpha \in \sigma_{p}(V)$ there exist $j_{1}, j_{2}, \ldots, j_{n} \in \mathbb{Z}$ and $k_{1}, k_{2}, \ldots, k_{n} \in \mathbb{N}$ such that

$$
\alpha=j_{1} \alpha_{k_{1}}+j_{2} \alpha_{k_{2}}+\ldots+j_{n} \alpha_{k_{n}} .
$$

(2) We say that $\sigma_{p}(V)$ is finitely generated if it has a finite generating set.
3 A generating set is said to be minimal if it does does not have any proper subsets which are generating sets.

Lemma 4.15.

(1) The elements of a minimal generating set are rationally independent.
(2) If a minimal generating set has at least two elements, then $\sigma_{p}(V)$ is a dense subset of the imaginary line.

Generating frequencies

Lemma 4.16.

Let g_{1}, g_{2}, \ldots be eigenfunctions corresponding to the eigenvalues of the generating set in Definition 4.14, i.e., $V g_{j}=i \alpha_{j} g_{j}$. Then, for every $i \alpha \in \sigma_{p}(V)$ with $\alpha=j_{1} \alpha_{k_{1}}+j_{2} \alpha_{k_{2}}+\ldots+j_{n} \alpha_{k_{n}}$,

$$
z=g_{k_{1}}^{j_{1}} g_{k_{2}}^{j_{2}} \cdots g_{k_{n}}^{j_{n}}
$$

is an eigenfunction of V corresponding to the eigenfrequency α.

Invariant subspaces

Notation.

- $H_{p}=\overline{\operatorname{span}\left\{u \in L^{2}(\mu): u \text { is an eigenfunction of } V\right\}}$.
- $H_{c}=H_{p}^{\perp}$.
- $\left\{z_{0}, z_{1}, \ldots\right\}$: Orthonormal eigenbasis of $H_{p}, V z_{j}=i \alpha_{j} z_{j}$.

Theorem 4.17.
Let $\Phi^{t}: \Omega \rightarrow \Omega$ be a measure-preserving flow on a completely metrizable space with an invariant probability measure μ.
(1) H_{p} and H_{c} are U^{t}-invariant subspaces.
(2) Every $f \in H_{p}$ satisfies

$$
U^{t} f=\sum_{j=0}^{\infty} \hat{f}_{j} e^{i \alpha_{j} t} z_{j}, \quad \hat{f}_{j}=\left\langle z_{j}, f\right\rangle_{L^{2}(\mu)}
$$

(3) Every $f \in H_{c}$ satisfies

$$
\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T}\left|\left\langle g, U^{t} f\right\rangle_{L^{2}(\mu)}\right|=0, \quad \forall g \in L^{2}(\mu)
$$

Pure point spectrum

Definition 4.18.

With the notation of Theorem 4.17, we say that a measure-preserving flow $\Phi^{t}: \Omega \rightarrow \Omega$ has pure point spectrum if $H_{p}=L^{2}(\mu)$.

Remark 4.19.

For a system with pure point spectrum:
(1) The spectrum of V is not necessarily discrete.
(2) The continuous spectrum is not necessarily empty.

Point spectra for ergodic flows

Proposition 4.20.

With the notation of Theorem 4.12, assume that $\Phi^{t}: \Omega \rightarrow \Omega$ is ergodic.
(1) Every eigenvalue $\lambda \in \sigma_{p}(V)$ is simple.
(2) Every corresponding eigenfunction $z \in L^{p}(\mu)$ normalized such that $\|z\|_{L^{p}(\mu)}=1$ for any $p \in[1, \infty]$ satisfies $|z|=1 \mu$-a.e.

Factor maps

Definition 4.21.

Let $T_{1}: \Omega_{1} \rightarrow \Omega_{1}$ and $T_{2}: \Omega_{2} \rightarrow \Omega_{2}$ be measure-preserving transformations of the probability spaces $\left(\Omega_{1}, \Sigma_{1}, \mu_{1}\right)$ and $\left(\Omega_{2}, \Sigma_{2}, \mu_{2}\right)$. We say that T_{2} is a factor of T_{1} if there exists a T_{1}-invariant set $S_{1} \in \Sigma_{1}$ with $\mu_{2}\left(S_{+} 1\right)=1$, a T_{2}-invariant set $S_{2} \in \Sigma_{2}$ with $\mu_{2}\left(S_{2}\right)=1$, and a measure-preserving, surjective map $\varphi: S_{1} \rightarrow S_{2}$ such that

$$
T_{2} \circ \varphi=\varphi \circ T_{1} .
$$

Such a map φ is called a factor map and satisfies the following commutative diagram:

\[

\]

Metric isomorphisms

Definition 4.22.
With the notation of Definition 4.21, we say that T_{1} and T_{2} are measure-theoretically isomorphic or metrically isomorphic if there is a factor $\varphi: S_{1} \rightarrow S_{2}$ with a measurable inverse.

Theorem 4.23 (von Neumann).

Let $\phi^{t}: \Omega \rightarrow \Omega$ be a measure-preserving flow on a completely metrizable probability space (Ω, Σ, μ) with pure point spectrum. Then, Φ^{t} is metrically isomorphic to a translation on a compact abelian group \mathcal{G}. Explicitly, \mathcal{G} can be chosen as the character group of the point spectrum $\sigma_{p}(V)$.

Metric isomorphisms

Corollary 4.24.
If $\sigma_{p}(V)$ is finitely generated, then Φ^{t} is metrically isomorphism to an ergodic rotation on the d-torus, where d is the number of generating frequencies of $\sigma_{p}(V)$. Explicitly, supposing that $\left\{i \alpha_{1}, \ldots, i \alpha_{d}\right\}$ is a minimal generating set of $\sigma_{p}(V)$ with corresponding unit-norm eigenfunctions z_{1}, \ldots, z_{d} we have

$$
R^{t} \circ \varphi=\varphi \circ \Phi^{t}
$$

where $R^{t}: \mathbb{T}^{d} \rightarrow \mathbb{T}^{d}$ is the torus rotation with frequencies $\alpha_{1}, \ldots, \alpha_{d}$, and

$$
\varphi(\omega)=\left(z_{1}(\omega), \ldots, z_{d}(\omega)\right), \quad \mu \text {-a.e. }
$$

Spectral isomorphisms

Definition 4.25.
With the notation of Definition 4.22, let $U_{1}: L^{2}\left(\mu_{1}\right) \rightarrow L^{2}\left(\mu_{1}\right)$ and $U_{2}: L^{2}\left(\mu_{2}\right) \rightarrow L^{2}\left(\mu_{2}\right)$ be the Koopman operators associated with T_{1} and T_{2}, respectively. We say that T_{1} and T_{2} are spectrally isomorphic if there exists a unitary map $\mathcal{U}: L^{2}\left(\mu_{1}\right) \rightarrow L^{2}\left(\mu_{2}\right)$ such that

$$
U_{2} \circ \mathcal{U}=\mathcal{U} \circ U_{1} .
$$

Theorem 4.26 (von Neumann).

Two measure-preserving flows with pure point spectra are metrically isomorphic iff they are spectrally isomorphic.

Dynamics-invariant kernels

$$
k: \Omega \times \Omega \rightarrow \mathbb{R}, \quad G: L^{2}(\mu) \rightarrow L^{2}(\mu), \quad G f=\int_{\Omega} k(\cdot, \omega) f(\omega) d \mu(\omega)
$$

- k : Bounded, symmetric kernel.
- G is self-adjoint, compact.

Proposition 4.27.

If k is invariant under the product flow,

$$
k\left(\phi^{t}(\omega), \phi^{t}\left(\omega^{\prime}\right)\right)=k\left(\omega, \omega^{\prime}\right),
$$

then G commutes with the Koopman operator,

$$
\left[U^{t}, G\right]=U^{t} G-G U^{t}=0 .
$$

Dynamics-invariant kernels

$$
k: M \times M \rightarrow \mathbb{R}, \quad G: L^{2}(\mu) \rightarrow L^{2}(\mu), \quad G f=\int_{\Omega} k(\cdot, \omega) f(\omega) d \mu(\omega)
$$

Corollary 4.28.

Every eigenspace W of G with nonzero corresponding eigenvalue is a finite-dimensional, U^{t}-invariant subspace of H_{p}, and $\left.V\right|_{w}$ is unitarily diagonalizable.

Kernels from delay-coordinate maps

$$
S_{Q}\left(\omega, \omega^{\prime}\right)=\frac{1}{Q} \sum_{q=0}^{Q-1}\left\|X\left(\Phi^{q \Delta t}(\omega)\right)-X\left(\Phi^{q \Delta t}\left(\omega^{\prime}\right)\right)\right\|^{2} .
$$

By the mean ergodic theorem,

$$
S_{Q} \underset{Q \rightarrow \infty}{ } \bar{S}
$$

in $L^{2}(\mu \times \mu)$, where \bar{S} is a $U^{t} \otimes U^{t}$ invariant function.

Proposition 4.29.

Fix a continuous kernel shape function $h: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$. Then:
(1) $\bar{k}\left(\omega, \omega^{\prime}\right):=h\left(\bar{S}\left(\omega, \omega^{\prime}\right)\right)$ satisfies the assumptions of Proposition 4.27.
(2) $G_{Q}: L^{2}(\mu) \rightarrow L^{2}(\mu)$ with

$$
G_{Q} f=\int_{\Omega} k_{Q}(\cdot, \omega) f d \mu(\omega)
$$

converges to G in $L^{2}(\mu)$ operator norm.

Finite-difference approximation of the generator

$$
V_{\Delta t, N}: L^{2}\left(\mu_{N}\right) \rightarrow L^{2}\left(\mu_{N}\right), V_{\Delta t, N}=\frac{\tilde{V}_{\Delta t, N}-\tilde{V}_{\Delta t, N}^{*}}{2}, \tilde{V}_{\Delta t, N}=\frac{\hat{U}_{N}-I d}{\Delta t}
$$

Explicitly, we have

$$
\tilde{V}_{\Delta t, N} f\left(\omega_{n}\right)= \begin{cases}\left(f\left(\omega_{n+1}\right)-f\left(\omega_{n}\right)\right) / \Delta t, & 0 \leq n \leq N-2, \\ -f\left(\omega_{N-1}\right) / \Delta t, & n=N-1 .\end{cases}
$$

Finite-difference approximation of the generator

$$
V_{\Delta t, N}: L^{2}\left(\mu_{N}\right) \rightarrow L^{2}\left(\mu_{N}\right), V_{\Delta t, N}=\frac{\tilde{V}_{\Delta t, N}-\tilde{V}_{\Delta t, N}^{*}}{2}, \tilde{V}_{\Delta t, N}=\frac{\hat{U}_{N}-I d}{\Delta t}
$$

Lemma 4.30.

For $f \in C^{1}(\Omega)$ and $g \in C(\Omega)$,

$$
\lim _{\Delta t \rightarrow 0} \lim _{N \rightarrow \infty}\left\langle g, V_{\left.\Delta t, N^{\prime} f\right\rangle_{L^{2}\left(\mu_{N}\right)}=\langle g, V f\rangle_{L^{2}(\mu)} ~ . ~}\right.
$$

Corollary 4.31.

With the notation of Section 3, if k is C^{1}, then for every $i, j \in \mathbb{N}$ such that $\lambda_{i}, \lambda_{j} \neq 0$,

$$
\lim _{\Delta t \rightarrow 0} \lim _{N \rightarrow \infty}\left\langle\phi_{i, N} V_{N, \Delta t} \phi_{j, N}\right\rangle_{L^{2}\left(\mu_{N}\right)}=\left\langle\phi_{i}, V \phi_{j}\right\rangle_{L^{2}(\mu)} .
$$

Markov normalization

$$
\begin{gathered}
p_{\nu}\left(\omega, \omega^{\prime}\right)=\frac{\tilde{k}\left(\omega, \omega^{\prime}\right)}{\rho_{\nu}(\omega)}, \quad \tilde{k}_{\nu}\left(\omega, \omega^{\prime}\right)=\frac{k\left(\omega, \omega^{\prime}\right)}{\sigma_{\nu}\left(\omega^{\prime}\right)}, \\
\rho_{\nu}(\omega)=\int_{\Omega} \tilde{k}_{\nu}\left(\omega, \omega^{\prime}\right) d \nu\left(\omega^{\prime}\right), \quad \sigma_{\nu}\left(\omega^{\prime}\right)=\int_{\Omega} k\left(\omega^{\prime}, \omega^{\prime \prime}\right) d \nu\left(\omega^{\prime \prime}\right)
\end{gathered}
$$

- Assume: $k \geq 0, k, k^{-1} \in L^{\infty}(\nu \times \nu)$.
- p is a Markov kernel with respect to ν, i.e.,

$$
p \geq 0, \quad \int_{\Omega} p(\omega, \cdot) d \nu=1, \quad \nu \text {-a.e. } \omega \in M .
$$

Markov normalization

$$
\begin{gathered}
p_{\nu}\left(\omega, \omega^{\prime}\right)=\frac{\tilde{k}\left(\omega, \omega^{\prime}\right)}{\rho_{\nu}(\omega)}, \quad \tilde{k}_{\nu}\left(\omega, \omega^{\prime}\right)=\frac{k\left(\omega, \omega^{\prime}\right)}{\sigma_{\nu}\left(\omega^{\prime}\right)}, \\
\rho_{\nu}(\omega)=\int_{\Omega} \tilde{k}_{\nu}\left(\omega, \omega^{\prime}\right) d \nu\left(\omega^{\prime}\right), \quad \sigma_{\nu}\left(\omega^{\prime}\right)=\int_{\Omega} k\left(\omega^{\prime}, \omega^{\prime \prime}\right) d \nu\left(\omega^{\prime \prime}\right)
\end{gathered}
$$

Set: $k=k_{Q}, \nu=\mu_{N}$ or $\nu=\mu$. We get Markov operators $G_{Q, N}: L^{2}\left(\mu_{N}\right) \rightarrow L^{2}\left(\mu_{N}\right), G_{Q}: L^{2}(\mu) \rightarrow L^{2}(\mu)$ with continuous transition kernels:
$G_{Q, N} f=\int_{\Omega} p_{Q, \mu_{N}}(\cdot, \omega) f(\omega) d \mu_{N}(\omega), \quad G f=\int_{\Omega} p_{Q, \mu}(\cdot, \omega) f(\omega) d \mu_{N}(\omega)$,

Large-data limit: As $N \rightarrow \infty, G_{Q, N}$ converges spectrally to G_{Q} in the sense of Theorem 3.25.

Markov normalization

$$
\begin{gathered}
p_{\nu}\left(\omega, \omega^{\prime}\right)=\frac{\tilde{k}\left(\omega, \omega^{\prime}\right)}{\rho_{\nu}(\omega)}, \quad \tilde{k}_{\nu}\left(\omega, \omega^{\prime}\right)=\frac{k\left(\omega, \omega^{\prime}\right)}{\sigma_{\nu}\left(\omega^{\prime}\right)}, \\
\rho_{\nu}(\omega)=\int_{\Omega} \tilde{k}_{\nu}\left(\omega, \omega^{\prime}\right) d \nu\left(\omega^{\prime}\right), \quad \sigma_{\nu}\left(\omega^{\prime}\right)=\int_{\Omega} k\left(\omega^{\prime}, \omega^{\prime \prime}\right) d \nu\left(\omega^{\prime \prime}\right)
\end{gathered}
$$

Set: $k=\bar{k}, \nu=\mu$. We get a self-adjoint Markov operator $G: L^{2}(\mu) \rightarrow L^{2}(\mu)$ that commutes with the Koopman operator:

$$
G f=\int_{\Omega} \bar{p}_{\mu}(\cdot, \omega) f(\omega) d \mu(\omega) .
$$

Infinite-delay limit: As $Q \rightarrow \infty G_{Q}$ converges in operator norm, and thus spectrally, to G.

Remark.

By Corollary 4.28, every eigenfunction ϕ_{j} of G corresponding to nonzero eigenvalue lies in the domain of the generator V.

Diffusion regularization

$$
\begin{gathered}
\Delta: D(\Delta) \rightarrow \tilde{H}_{p}, \quad \Delta=(I-G)^{-1} \\
\Delta \phi_{j}=\eta_{j} \phi_{j}, \quad \eta_{j}=1-\frac{1}{\lambda_{j}}
\end{gathered}
$$

- $\tilde{H}_{p}=\overline{\operatorname{ran} G} \subseteq H_{p}$.
- $D(\Delta) \equiv \tilde{H}_{p}^{2}=\left\{f \in \tilde{H}_{p}: \sum_{j} \eta_{j}\left|\left\langle\phi_{j}, f\right\rangle_{L^{2}(\mu)}\right|^{2}<\infty\right\}$.

Proposition 4.32.
(1) For every $\epsilon>0$,

$$
\mathcal{L}_{\epsilon}=V-\epsilon \Delta,
$$

is a well-defined dissipative operator on \tilde{H}_{p}^{2}, i.e., $\operatorname{Re}\left\langle f, \mathcal{L}_{\epsilon} f\right\rangle \leq 0$.
(2) Let z be an eigenfunction of V lying in H_{p}^{2} with corresponding eigenvalue i ω. Then, we have

$$
\Delta z=\eta z, \quad L_{\epsilon} z=\gamma z, \quad \gamma=-\epsilon \eta+i \omega .
$$

Petrov-Galerkin method

Infinite-dimensional variational problem

Find $z_{j} \in \tilde{H}_{p}^{2}$ and $\gamma_{j} \in \mathbb{C}$, such that for all $f \in \tilde{H}_{p}$,

$$
\left\langle f, V_{z_{j}}\right\rangle_{L^{2}(\mu)}-\epsilon\langle f, \Delta z\rangle_{L^{2}(\mu)}=\gamma_{j}\langle f, z\rangle_{L^{2}(\mu)} .
$$

- The above is a well-defined variational eigenvalue problem, i.e., it satisfies the appropriate boundedness and coercivity conditions.
- We order the solutions z_{j} in order of increasing Dirichlet energy,

$$
E_{j}=\left\langle z_{j}, \Delta z_{j}\right\rangle_{L^{2}(\mu)}=\operatorname{Re} \gamma_{j} / \epsilon .
$$

Petrov-Galerkin method

Data-driven approximation

Find $z_{j} \in \tilde{H}_{p, L, Q, N}^{2}$ and $\gamma \in \mathbb{C}$, such that for all $f \in \tilde{H}_{p, L, Q, N}$,

$$
\left\langle f, V_{z_{j}}\right\rangle_{L^{2}\left(\mu_{N}\right)}-\epsilon\left\langle f, \Delta z_{j}\right\rangle_{L^{2}\left(\mu_{N}\right)}=\gamma_{j}\left\langle f, z_{j}\right\rangle_{L^{2}\left(\mu_{N}\right)} .
$$

- $\tilde{H}_{p, L, Q, N}=\operatorname{span}\left\{\phi_{0, Q, N}, \ldots, \phi_{L-1, Q, N}\right\} \subseteq L^{2}\left(\mu_{N}\right)$, where $\phi_{j, Q, N}$ are eigenfunctions of $G_{Q, N}$.
- $H_{p, L, Q, N}^{2}$ defined analogously to \tilde{H}_{p}^{2}.
- The data-driven scheme converges in the iterated limit

$$
\lim _{L \rightarrow \infty} \lim _{Q \rightarrow \infty} \lim _{\Delta t \rightarrow 0} \lim _{N \rightarrow \infty} .
$$

Variable-speed rotation on \mathbb{T}^{2}

$$
\begin{gathered}
\dot{\omega}(t)=\vec{V}(\omega(t)) \\
\vec{V}(\omega)=\left(V_{1}, V_{2}\right), \quad \omega=\left(\theta_{1}, \theta_{2}\right) \\
V_{1}=1+\beta \cos \theta_{1} \\
V_{2}=\alpha\left(1-\beta \sin \theta_{2}\right)
\end{gathered}
$$

$\alpha=\sqrt{30}, \beta=\sqrt{1 / 2}$

Koopman eigenfunctions

Koopman eigenfunctions from noisy data

Koopman eigenfunctions for the variable-speed flow on \mathbb{T}^{2} recovered from data from data corrupted with i.i.d. Gaussian noise in \mathbb{R}^{3} with $S N R \simeq 1$.

Approximate Koopman eigenfunctions

Definition 4.33.

An observable $z \in L^{2}(\mu)$ is said to be an ϵ-approximate Koopman eigenfunction if there exists $\nu_{t} \in \mathbb{C}$ such that

$$
\left\|U^{t} z-\nu_{t} z\right\|_{L^{2}(\mu)}<\epsilon\|z\|_{L^{2}(\mu)} .
$$

- A Koopman eigenfunction is an ϵ-approximate eigenfunction for every $\epsilon>0$.
- We seek $z \in L^{2}(\mu)$ which is an ϵ-approximate eigenfunction for "small" ϵ, and t lying in a "large" time interval.

Approximate eigenfunctions from delay-coordinate maps

Theorem 4.34.
Let ϕ and ψ be mutually-orthogonal, unit-norm, real eigenfunctions of G_{Q} corresponding to nonzero eigenvalues κ and λ, respectively, with $\kappa \geq \lambda$. Assume that κ, λ are simple if distinct and twofold-degenerate if equal. Define

$$
z=\frac{1}{\sqrt{2}}(\phi+i \psi), \quad \alpha_{t}=\left\langle z, U^{t} z\right\rangle, \quad \nu=\langle\psi, V \phi\rangle,
$$

where ω is real, and set $T=(Q-1) \Delta t, \delta_{T}=(\kappa-\lambda) / \sqrt{2}, \tilde{\delta}_{T}=\delta_{T} / \kappa$,

$$
\gamma_{T}=\min _{u \in \sigma\left(G_{Q}\right) \backslash\{\kappa, \lambda\}}\{\min \{|\kappa-u|,|\lambda-u|\}\} .
$$

Then, the following hold for every $t \geq 0$:

Approximate eigenfunctions from delay-coordinate maps

Theorem 4.34.

(1) α_{t} lies in the $\tilde{\epsilon}_{t}$-approximate point spectrum of U^{t}, and z is a corresponding $\tilde{\epsilon}_{t}$-approximate eigenfunction for the bound

$$
\tilde{\epsilon}_{t}=s_{t}+\sqrt{S_{t}}
$$

where

$$
s_{t}=\frac{1}{\gamma_{T}}\left(\frac{C_{1} t}{T}+3 \delta_{T}\right), \quad S_{t}=\frac{C_{2}\left(1+\tilde{\delta}_{T}\right)}{\lambda} \int_{0}^{t} s_{u} d u
$$

Here, C_{1} and C_{2} are constants that depend only on the observation map F and generator V.
(2) The modulus $|\nu|$ is independent of the choice of the real orthonormal basis $\{\phi, \psi\}$ for the eigenspace(s) corresponding to κ and λ. Moreover, the phase factor $e^{i \nu t}$ is related to the autocorrelation function α_{t} according to the bound

$$
\left|\alpha_{t}-e^{i \nu t}\right| \leq 2 \sqrt{S_{t}}
$$

Application to L63 system

Application to L63 system

(a) Sampling interval $\Delta t=0.01$, Delay embedding window $\mathbf{T}=\mathbf{0 . 0 0}$

$$
\phi_{1}, \lambda_{1}=0.992
$$

$$
\phi_{2}, \lambda_{\mathbf{2}}=0.984
$$

$\mathbf{u}^{\mathbf{t}}{ }_{\mathbf{1}}, \quad \mathbf{t}=\mathbf{1 . 0 0}$
$\mathbf{U}^{\mathbf{t}}{ }_{\mathbf{1}}, \mathbf{t}=\mathbf{2 . 0 0}$

$$
\mathbf{u}^{\mathbf{t}}{ }_{\phi_{2}}, \quad \mathbf{t}=\mathbf{1 . 0 0}
$$

$$
\mathbf{u}^{\mathbf{t}}{ }_{\phi_{2}}, \quad \mathbf{t}=\mathbf{2 . 0 0}
$$

Application to L63 system

(b) Sampling interval $\Delta t=\mathbf{0 . 0 1}$, Delay embedding window $\mathbf{T}=\mathbf{8 . 0 0}$

$$
\phi_{1}, \lambda_{1}=0.603
$$

$\phi_{2}, \lambda_{2}=\mathbf{0 . 6 0 2}$

$\mathbf{U}^{\mathbf{t}}{ }_{\mathbf{1}}, \mathbf{t}=\mathbf{1 . 0 0}$
$\mathbf{U}^{\mathbf{t}} \phi_{\mathbf{1}}, \mathbf{t}=\mathbf{2 . 0 0}$

$$
\mathbf{u}^{\mathbf{t}}{ }_{\phi_{2}}, \quad \mathbf{t}=\mathbf{1 . 0 0}
$$

Application to L63 system

Spectrum

Definition 4.35.

Let $A: D(A) \rightarrow F$ be a densely-define operator on a Banach space F over \mathbb{C} with domain $D(A) \subseteq F$.
(1) The spectrum of A, denoted as $\sigma(A)$ is the set of complex numbers λ such that $A-\lambda I$ has no bounded inverse.
(2) The resolvent set of A, denoted as $\rho(A)$, is the complement of $\sigma(A)$ in \mathbb{C}.
3 For every $\lambda \in \rho(A)$ the resolvent $R_{A}(\lambda)$ is the bounded operator given by $\rho(A)=(A-\lambda /)^{-1}$.
(4) The spectral radius of A is defined as $r_{\sigma}(A)=\sup _{\lambda \in \sigma(A)|\lambda|}$.

Spectrum

Theorem 4.36.
With the notation of Definition 4.35, the following hold.
(1) $\sigma(A)$ is a closed subset of \mathbb{C}.
(2) If A is not closed, then $\sigma(A)=\mathbb{C}$.

3 If $D(A)=F$ and A is bounded, then $r_{\sigma}(A) \leq\|A\|$.

Projection-valued measures

Definition 4.37.

Let $\left(H,\langle\cdot, \cdot\rangle_{H}\right)$ be a Hilbert space over \mathbb{C}. A map $E: \mathfrak{B}(\mathbb{C}) \rightarrow B(H)$ is called a projection-valued measure (PVM) if:
(1) For every $S \in \mathfrak{B}(\mathbb{C}), E(S)$ is an orthogonal projection.
(2) $E(\mathbb{C})=I$.

3 For every $f, g \in H$, the map $\varepsilon_{f g}: \mathfrak{B}(\mathbb{C}) \rightarrow \mathbb{C}$ with

$$
\varepsilon_{f g}(S)=\langle f, E(S) g\rangle_{H}
$$

is a complex measure.

Projection-valued measures

Theorem 4.38.
With the notation of Definition 4.37, let $f: \mathbb{C} \rightarrow \mathbb{C}$ be a
Borel-measurable function. Then, there exists a unique operator $E_{f}: D\left(E_{f}\right) \rightarrow H$ with domain

$$
D\left(E_{f}\right)=\left\{h \in H: \int_{\mathbb{C}}|f|^{2} d \varepsilon_{h h}<\infty\right\},
$$

such that

$$
\left\langle g, E_{f} h\right\rangle_{H}=\int_{\mathbb{C}} f d \varepsilon_{g h}, \quad \forall g \in H, \quad \forall h \in D\left(E_{f}\right)
$$

Notation.

- $\int_{\mathbb{C}} f d E \equiv E_{f}$.
- If $A=\int_{\mathbb{C}}$ Id $d E$, then $f(A) \equiv E_{f}$.

Spectral theorem for skew-adjoint operators

Theorem 4.39.
Let $A: D(A) \rightarrow H$ be skew-adjoint.
(1) $\sigma(A)$ is a subset of the imaginary line.
(2. There exists a unique $P V M E_{A}: \mathfrak{B}(\mathbb{C}) \rightarrow \mathbb{C}$ such that

$$
A=\int_{\mathbb{R}} i \alpha d E(\alpha) .
$$

3 isupp $E_{A}=\sigma(A)$.
(4) If $\left\{U^{t}: H \rightarrow H\right\}_{t \in \mathbb{R}}$ is the C_{0} unitary group generated by A, then

$$
U^{t}=e^{t A} \equiv \int_{\mathbb{R}} e^{i \alpha t} d E(\alpha) .
$$

Unitary Koopman evolution group

$$
U^{t}: L^{2}(\mu) \rightarrow L^{2}(\mu), \quad U^{t} f=f \circ \phi^{t}, \quad U^{t *}=U^{-t}
$$

Generator: $V: D(V) \rightarrow L^{2}(\mu)$,

$$
D(V) \subset L^{2}(\mu), \quad V^{*}=-V, \quad V f=\lim _{t \rightarrow 0} \frac{U^{t} f-f}{t}
$$

Spectral measure: $E: \mathfrak{B}(\mathbb{R}) \rightarrow B\left(L^{2}(\mu)\right)$,

$$
V=\int_{\mathbb{R}} i \omega d E(\alpha), \quad U^{t}=\int_{\mathbb{R}} e^{i \alpha t} d E(\omega) .
$$

Unitary Koopman evolution group

$$
U^{t}: L^{2}(\mu) \rightarrow L^{2}(\mu), \quad U^{t} f=f \circ \Phi^{t}, \quad U^{t *}=U^{-t}
$$

Theorem 4.40.

There is a U^{t}-invariant orthogonal splitting $L^{2}(\mu)=H_{p} \oplus H_{c}$ such that:
(1) H_{p} has an orthonormal basis $\left\{z_{j}\right\}$ consisting of eigenfunctions of the generator,

$$
V z_{j}=i \alpha_{j} z_{j}, \quad \alpha_{j} \in \mathbb{R}
$$

(2) For every $f \in H_{c}$ and $g \in L^{2}(\mu)$,

$$
\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T}\left|\left\langle g, U^{t} f\right\rangle_{L^{2}(\mu)}\right| d t=0
$$

(3) $E=E_{p}+E_{c}$, where:

- E_{p} is a purely atomic measure taking values in $B\left(H_{p}\right)$.
- E_{c} is a continuous measure taking values in $B\left(H_{c}\right)$.

Compactification schemes for the Koopman generator

Given:

$$
\begin{aligned}
& \text { Positive-definite, } C^{1} \text { kernel } k: \Omega \times \Omega \rightarrow \mathbb{R} \\
& \text { Integral operators } K: L^{2}(\mu) \rightarrow \mathcal{K}, G=K^{*} K
\end{aligned}
$$

Pre-smoothing:

$$
A: L^{2}(\mu) \rightarrow L^{2}(\mu), \quad A=V G .
$$

- $\operatorname{ran} G \subseteq \operatorname{ran} K^{*} \subset D(V)$.
- $A=V G$ is a Hilbert-Schmidt integral operator on $L^{2}(\mu)$ with kernel $k^{\prime} \in C(X \times X), k^{\prime}(\cdot, \omega)=V k(\cdot, \omega)$, i.e.,

$$
A f=\int_{\Omega} k^{\prime}(\cdot, \omega) f(\omega) d \mu(\omega) .
$$

Compactification schemes for the Koopman generator

Given:

> Positive-definite, C^{1} kernel $k: \Omega \times \Omega \rightarrow \mathbb{R}$. Integral operators $K: L^{2}(\mu) \rightarrow \mathcal{K}, G=K^{*} K$.

Post-smoothing:

$$
B: L^{2}(\mu) \rightarrow L^{2}(\mu), \quad B=\overline{G V} .
$$

- $G V \subset(G V)^{* *}=B=-A^{*}$.
- B is a Hilbert-Schmidt integral operator with

$$
B f=-\int_{\Omega} k^{\prime}(\cdot, \omega) f(\omega) d \mu(\omega) .
$$

Compactification schemes for the Koopman generator

Given:

$$
\begin{aligned}
& \text { Positive-definite, } C^{1} \text { kernel } k: \Omega \times \Omega \rightarrow \mathbb{R} \text {. } \\
& \text { Integral operators } K: L^{2}(\mu) \rightarrow \mathcal{K}, G=K^{*} K \text {. } \\
& \text { Skew-adjoint compactification on the } \mathrm{RKHS} \text { : }
\end{aligned}
$$

$$
W: \mathcal{K} \rightarrow \mathcal{K}, \quad W=K V K^{*} .
$$

- W is a skew-adjoint, Hilbert-Schmidt operator on \mathcal{K} satisfying

$$
W f=-\int_{\Omega} k^{\prime}(\omega, \cdot) f(\omega) d \mu(\omega) .
$$

Compactification schemes for the Koopman generator

Given:

$$
\begin{aligned}
& \text { Positive-definite, } C^{1} \text { kernel } k: \Omega \times \Omega \rightarrow \mathbb{R} \text {. } \\
& \text { Integral operators } K: L^{2}(\mu) \rightarrow \mathcal{K}, G=K^{*} K .
\end{aligned}
$$

Skew-adjoint compactification on $L^{2}(\mu)$:

$$
\tilde{V}: L^{2}(\mu) \rightarrow L^{2}(\mu), \quad \tilde{V}=G^{1 / 2} V G^{1 / 2} .
$$

- $K=\mathcal{U} G^{1 / 2}$ (polar decomposition).
- \tilde{V} is a skew-adjoint, Hilbert-Schmidt operator on $L^{2}(\mu)$ related to W by

$$
\tilde{v}=\mathcal{U}^{*} W \mathcal{U} .
$$

Eigenvalues and eigenfunctions

Proposition 4.41.

Let $k: \Omega \times \Omega \rightarrow \mathbb{R}$ be a C^{1}, L^{2}-universal, μ-Markov ergodic kernel.
(1) There exists an orthonormal basis $\tilde{z}_{0}, \tilde{z}_{1}, \ldots$, of $L^{2}(\mu)$ consisting of eigenfunctions of \tilde{V},

$$
\tilde{V}_{z_{j}}=i \alpha_{j} \tilde{z}_{j}, \quad \alpha_{j} \in \mathbb{R} .
$$

(2) In the above, $i \alpha_{0}=0$ is a simple eigenvalue corresponding to the constant eigenfunction $\tilde{z}_{0}=1$.
$3 \tilde{V}$ has an associated purely atomic PVM $\tilde{E}: \mathfrak{B}(\mathbb{R}) \rightarrow B\left(L^{2}(\mu)\right)$ such that

$$
\tilde{E}(S)=\sum_{j: \alpha \alpha_{j} \in S}\left\langle\tilde{z}_{j}, \cdot\right\rangle_{L^{2}(\mu)} \tilde{z}_{j}, \quad \tilde{V}=\int_{\mathbb{R}} i \alpha d \tilde{E}(\alpha) .
$$

Strong resolvent convergence

Definition 4.42.

(1) A one-parameter family of operators $A_{\tau}: D\left(A_{\tau}\right) \rightarrow H, \tau>0$, on a Hilbert space H is said to converge to a skew-adjoint operator $A: D(A) \rightarrow H$ in strong resolvent sense if for every $\rho \in \mathbb{C} \backslash\{i \mathbb{R}\}$ in the resolvent set of A the resolvents $\left(A_{\tau}-\rho\right)^{-1}$ converge to $(A-\rho)^{-1}$ strongly.
(2) The family A_{τ} is said to be p 2-continuous if it is uniformly bounded and $\tau \mapsto\left\|p\left(A_{\tau}\right)\right\|$ is continuous for every degree-2 polynomial p.
3 If A_{τ} is skew-adjoint, A_{τ} is said to converge to A in strong dynamical sense if for every $t \in \mathbb{R}$, $e^{t A_{T}}$ converges to $e^{t A}$ strongly.

Strong resolvent convergence

Theorem 4.43.
With the notation of Definition 4.42, suppose that A_{τ} is skew-adjoint. Then:
(1) Strong resolvent convergence is equivalent to strong dynamical convergence.
(2) A sufficient condition for strong resolvent convergence $A_{\tau} \rightarrow A$ is that A_{τ} converges to A strongly in a core, i.e., a subspace $C \subseteq D(A)$ such that $\overline{\left.A\right|_{C}}=A$.
(3) The domain $D\left(A^{2}\right)$ is a core for A.

Strong resolvent convergence

Theorem 4.44.
Let $A_{\tau}: D\left(A_{\tau}\right) \rightarrow H$ be a one-parameter family of skew-adjoint operators that converges to a skew-adjoint operator $A: D(A) \rightarrow H$ in strong resolvent sense. Let $E_{\tau}: \mathfrak{B}(R) \rightarrow B(H)$ and $E: \mathfrak{B}(R) \rightarrow B(H)$ be the PVMs associated with A_{τ} and A, respectively.
(1) For every bounded, Borel-measurable set $\Omega \subset R$ such that $E(\partial \Omega)=0, E_{\tau}(\Omega)$ converges strongly to $E(\Omega)$.
(2) For every bounded, continuous function $Z: i \mathbb{R} \rightarrow \mathbb{C}, Z\left(A_{\tau}\right)$ converges strongly to $Z(A)$.
3 If the operators A_{τ} are compact, then for every element i $\alpha \in i \mathbb{R}$ of the spectrum of A there exists a one-parameter family i α_{τ} of eigenvalues of A_{τ} such that $\lim _{\tau \rightarrow 0} \alpha_{\tau}=\alpha$. Moreover, if A_{τ} is p2-continuous, the curve $\tau \mapsto \alpha_{\tau}$ is continuous.

Spectral convergence of the compactified generators

Theorem 4.45.
Let $\left\{G_{\tau}\right\}_{\tau \geq 0}$ be a strongly continuous, ergodic semigroup of Markov operators on $L^{2}(\mu)$ such that for every $\tau>0$,

$$
G_{\tau} f=\int_{\Omega} k_{\tau}(\cdot, \omega) f(\omega) d \mu(\omega),
$$

where $k_{\tau}: \Omega \times \Omega \rightarrow \mathbb{R}$ is a C^{1}, L^{2}-universal, positive-definite kernel. Then, Theorem 4.44 holds for the compactified generators

$$
\tilde{V}_{\tau}=G_{\tau}^{1 / 2} V G_{\tau}^{1 / 2} .
$$

Construction of the semigroup G_{τ}

(1) Start from an L^{2}-universal, C^{1} kernel $\kappa: \Omega \times \Omega \rightarrow \mathbb{R}$.
(2) Normalize κ to an L^{2}-universal, C^{1}, bistochastic Markov kernel $p: \Omega \times \Omega \rightarrow \mathbb{R}$ (Coifman \& Hirn '13). Let $P: L^{2}(\mu) \rightarrow L^{2}(\mu)$ be the associated integral operator.
3 Define the Laplace-like operator $\Delta=(I-P)^{-1}$.
(4) Define $G_{\tau}=e^{-\tau \Delta}$.

Dirichlet energy

$$
\begin{gathered}
P \phi_{j}=\lambda_{j} \phi_{j}, \quad \lambda_{j}>0, \quad\left\langle\phi_{i}, \phi_{j}\right\rangle_{L^{2}(\mu)}=\delta_{i j} \\
G_{\tau} \phi_{j}=\lambda_{j, \tau} \phi_{j}, \quad \lambda_{j, \tau}=e^{-\tau \eta_{j}}, \quad \eta_{j}=1-\frac{1}{\lambda_{j}} .
\end{gathered}
$$

- $\mathcal{H}:$ RKHS associated with p.
- $f \in L^{2}(\mu)$ has a representative in \mathcal{H} iff

$$
\tilde{\mathcal{D}}(f):=\sum_{j=0}^{\infty} \frac{\left|\left\langle\phi_{j}, f\right\rangle_{L^{2}(\mu)}\right|^{2}}{\lambda_{j}}<\infty .
$$

- For every such (nonzero) f, we define the Dirichlet energy

$$
\mathcal{D}(f)=\frac{\tilde{\mathcal{D}}(f)}{\|f\|_{L^{2}(\mu)}^{2}}-1 .
$$

Coherent observables

$$
\begin{gathered}
W_{\tau}=K_{\tau} V K_{\tau}^{*} \\
W_{\tau} \zeta_{j, \tau}=i \omega_{j, \tau} \zeta_{j, \tau}, \quad z_{j, \tau}=\frac{K_{\tau}^{*} \zeta_{j, \tau}}{\left\|K_{\tau}^{*} \zeta_{j, \tau}\right\| \|^{2}(\mu)} .
\end{gathered}
$$

Proposition 4.46.

There exists a continuous function $R(\epsilon, \tau)$ that diverges as $\tau \rightarrow 0$ for every $\epsilon>0$ such that

$$
\left\|U^{t} z_{j, \tau}-e^{i \omega_{j, \tau}} z_{j, \tau}\right\|_{L^{2}(\mu)}<\epsilon, \quad|t| \leq T(\epsilon, \tau):=\frac{R(\epsilon, \tau)}{\sqrt{\mathcal{D}\left(z_{j, \tau}\right)+1}} .
$$

Moreover:
(1) If $\lim _{\tau \rightarrow 0} \omega_{j, \tau}=: \omega_{j}$ exists and $T(\epsilon, \tau)$ diverges as $\tau \rightarrow 0$ for every $\epsilon>0$, then $i \omega$ is an element of the spectrum of \tilde{V}.
(2) If $\lim _{\tau \rightarrow \omega}$ exists and $\mathcal{D}\left(z_{j, \tau}\right)$ is bounded as $\tau \rightarrow 0$, then $i \omega$ is an eigenvalue of V. Moreover, $z_{j, \tau}$ converges to the eigenspace of V corresponding to $i \omega$.

Numerical examples

Torus rotation-eigenfunctions of W_{τ}

$\zeta_{1}, \omega_{1}=1.000, \mathbf{D}\left(\zeta_{1}\right)=0.043$
$\zeta_{5}, \omega_{5}=5.473, \mathbf{D}\left(\zeta_{5}\right)=0.141$
$\zeta_{9}, \omega_{9}=7.466, D\left(\zeta_{9}\right)=0.250$

Torus rotation

Due to the density of the spectrum in the imaginary line, regularization is important, even for a system with pure point spectrum.

L63 system-eigenfunctions of W_{τ}

$$
\zeta_{1}, \omega_{1}=8.18, \mathbf{D}\left(\zeta_{1}\right)=21.1
$$

$$
\zeta_{3}, \omega_{3}=45.6, \mathbf{D}\left(\zeta_{3}\right)=34.9
$$

$$
\zeta_{19}, \omega_{19}=16, \mathbf{D}\left(\zeta_{19}\right)=65.9
$$

Rössler system—eigenfunctions of W_{τ}

Further reading

[1] F. Chatelin, Spectral Approximation of Linear Operators, ser. Classics in Applied Mathematics. Philadelphia: Society for Industrial and Applied Mathematics, 2011.
[2] S. Das and D. Giannakis, "Delay-coordinate maps and the spectra of Koopman operators," J. Stat. Phys., vol. 175, no. 6, pp. 1107-1145, 2019. DOI: 10.1007/s10955-019-02272-w.
[3] S. Das, D. Giannakis, and J. Slawinska, "Reproducing kernel Hilbert space quantification of unitary evolution groups," Appl. Comput. Harmon. Anal., vol. 54, pp. 75-136, 2021. DOI: 10.1016/j.acha.2021.02.004.
[4] D. Giannakis, "Delay-coordinate maps, coherence, and approximate spectra of evolution operators," Res. Math. Sci, vol. 8, p. 8, 2021. DOI: 10.1007/s40687-020-00239-y.
[5] C. R. de Oliveira, Intermediate Spectral Theory and Quantum Dynamics, ser. Progress in Mathematical Physics. Basel: Birkhäuser, 2009, vol. 54.

Further reading

[6] M. Rédei and C. Werndl, "On the history of the isomorphism problem of dynamical systems with special regard to von Neumann's contribution," Arch. Hist. Exact Sci., vol. 66, pp. 71-93, 2012. DOI: 10.1007/s00407-011-0089-y.

