Fun with Curves

Problem 1. Let $\mathbf{c}:[a, b] \rightarrow \mathbb{R}^{3}$ be a C^{1} curve and assume that $\mathbf{c}^{\prime}(t) \neq \mathbf{0}$ for all t. Let $s(t)$ denote the arc-length function of \mathbf{c} :

$$
s(t)=\int_{a}^{t}\left\|\mathbf{c}^{\prime}(u)\right\| d u
$$

a. Using the fundamental theorem of calculus, show that $s(t)$ is differentiable and that

$$
s^{\prime}(t)=\left\|\mathbf{c}^{\prime}(t)\right\|
$$

Conclude that $s^{\prime}(t)>0$ for all t.
Recall the following theorem from one variable calculus (which is essentially the inverse function theorem for single variable functions!): If $f:[a, b] \rightarrow \mathbb{R}$ is differentiable and $f^{\prime}(x)>0$ for all x, then f^{-1} exists and is differentiable with derivative given by

$$
\frac{d}{d y} f^{-1}(y)=\frac{-1}{d f / d x}
$$

By part (a), the arc-length function s satisfies the hypotheses of this theorem.
b. Let $\mathbf{d}(u)=\mathbf{c}\left(s^{-1}(u)\right)$, for $u \in[0, s(b)] ; \mathbf{d}(u)$ is called the arc-length reparametrization of $\mathbf{c}(t)$. Using the theorem above, show that

$$
\left\|\mathbf{d}^{\prime}(u)\right\|=1
$$

c. Show that the arc-length function of \mathbf{d} is given by

$$
s^{*}(u)=u \text {. }
$$

Why does this justify calling \mathbf{d} the arc-length reparametrization?

Problem 2. In this problem we investigate what might be called the mean value theorem for curves.
a. Let $\mathbf{c}(t)=\left(\cos \left(t^{2}\right), \sin \left(t^{2}\right)\right)$ for $0 \leq t \leq \sqrt{\pi}$. Show that there is no t in $[0, \sqrt{\pi}]$ so that $\mathbf{c}(\sqrt{\pi})-\mathbf{c}(0)=\sqrt{\pi} \mathbf{c}^{\prime}(t)$.

Part (a) shows that if we are looking for a mean value theorem for curves, it cannot (in general) take the form

$$
\begin{equation*}
\mathbf{c}^{\prime}(t)=\frac{\mathbf{c}(b)-\mathbf{c}(a)}{b-a} \tag{1}
\end{equation*}
$$

as we might hope.
b. Show that we can't salvage equation (1) just by applying $\|\cdot\|$ to both sides, by considering the path $\mathbf{c}(t)=(\cos t, \sin t)$ with $0 \leq t \leq \pi$.

The best I have been able to prove in general is that if $\mathbf{c}:[a, b] \rightarrow \mathbb{R}$ is a C^{1} path that does not cross itself, then there is a $t \in[a, b]$ so that

$$
\left\|\mathbf{c}^{\prime}(t)\right\| \cos \theta_{t}=\frac{\|\mathbf{c}(b)-\mathbf{c}(a)\|}{b-a}
$$

where θ_{t} is the angle between $\mathbf{c}^{\prime}(t)$ and the vector $\mathbf{c}(t)-\mathbf{c}(a)$. The proof doesn't use anything that we don't know, but I won't go into it here. I have no idea how to interpret this result.
b. Let $\mathbf{c}:[a, b] \rightarrow \mathbb{R}$ be a C^{1} path. Let $\ell(\mathbf{c})$ be the length of \mathbf{c} and let $s(t)$ be the arc-length function of \mathbf{c}. Show that there is a $t \in[a, b]$ so that

$$
\left\|\mathbf{c}^{\prime}(t)\right\|(b-a)=\ell(\mathbf{c})
$$

[Hint: Use the mean value theorem for integrals and Problem 1(a).] Is it reasonable to call this a mean value theorem?

