
Lagrange Multipliers and The Implicit Function

Theorem

The method of Lagrange multipliers is a consequence of the following theo-
rem.

Theorem 1. Let U ⊂ Rn be an open set and let f : U → R, g : U → R be C1

functions. Let x0 ∈ U , c = g(x0), and let S be the level set of g with value c.
Suppose that ∇g(x0) 6= 0.

If the function f |S has a local extremum at x0 then there is a λ ∈ R so that

∇f(x0) = λg(x0).

The text provides a sketch of this proof that I find to be rather confusing.
However, the primary ingredient in the proof is the Implicit Function Theorem,
which the book doesn’t prove but does state rather carefully. Here we will care-
fully prove the theorem on Lagrange multipliers by using the Implicit Function
Theorem.

We begin with a definition.

Definition 1. Let U ⊂ Rn be open and let g : U → R be a C1 function. Let
x0 ∈ U , c = g(x0) and let S be the level set of g with value c. If ∇g(x0) 6= 0
then the tangent space to S at x0 is defined to be the set of all vectors x ∈ Rn

so that ∇g(x0) · (x− x0) = 0.

The tangent space to the level set S is ”philosophically” all vectors orthogo-
nal to ∇g(x0). However, if we want to have this space sit in the correct location
in space (i.e. if we want it to actually be tangent to S) then we have to shift
each of these vectors so that they emanate from the point x0. That is, if v is
orthogonal to ∇g(x0) then we shift it to the correct location in space by adding
x0. This results in the vector v + x0, which can easily be shown to belong to
the tangent space as defined above.

The next lemma will provide us with a means to deduce when two vectors
are scalar multiples of one another. This result will be essential to our proof of
the Lagrange multipliers theorem.

Lemma 1. Let u,v ∈ Rn with u 6= 0. Let T denote the set of all vectors
x ∈ Rn so that x · u = 0. If x · v = 0 for all x ∈ T then v is a scalar multiple
of u.
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Proof. Since u 6= 0 we know that we can write

v = v1 + v2

where v1 = αu and v2 ·u = 0 (v1 is just the orthogonal projection of v onto u;
that is, α = v · u/||u||2). By our assumption on v we must have

0 = v2 · v
= v2 · (v1 + v2)
= v2 · v1 + ||v2||2

= αv2 · u + ||v2||2

= 0 + ||v2||2.

It follows that v2 = 0 so that v = v1 = αu as claimed.

Finally we can provide most of the proof of the Lagrange multiplier theorem.

Proof of Theorem 1. Let T be the tangent space to S at x0. We will show that
for every x ∈ T we have ∇f(x0) · (x − x0) = 0. Since ∇g(x0) 6= 0, the lemma
above will imply that ∇f(x0) is a scalar multiple of ∇g(x0), which is exactly
what we need to prove.

We now state a result that we won’t be able to prove until we have the
Implicit Function Theorem at our disposal. Given any vector v with∇g(x0)·v =
0, there is a C1 path c : [−a, a] → Rn so that

1. c(t) ∈ S for all t ∈ [−a, a];

2. c(0) = x0;

3. c′(0) = v.

What this is saying is that given a velocity vector v that is orthogonal to∇g(x0),
we can find a C1 path that stays entirely in the level set S and passes through
x0 with velocity v.

Now let x ∈ T . Then (x − x0) is orthogonal to ∇g(x0) so we can choose a
path c(t) as above. Let h(t) = f(c(t)). Since c and f are both C1, they are
differentiable. By the chain rule h is differentiable, too. Since c(t) ∈ S for all t
and f |S has a maximum or a minimum at x0, the function h(t) has a maximum
or a minimum at t = 0. Therefore

0 =
d

dt
h(t)

∣∣∣∣
t=0

= ∇f(c(0)) · c′(0)
= ∇f(x0) · (x− x0).

This is exactly what we sought to prove, so we are finished.
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So the proof of the Lagrange multipliers theorems is complete, provided we
can justify the unproven fact that we used. This is where we need the Implicit
Function Theorem, which we now state in a special case.

Theorem 2. Let F : Rn+1 → R be a C1 function. Denoting points in Rn+1 by
(x, z), where x ∈ Rn and z ∈ R, assume that (x0, z0) ∈ Rn+1 satisfies

F (x0, z0) = 0 and
∂F

∂z
(x0, z0) 6= 0.

Then there is a ball U ⊂ Rn containing x0, an open interval V ⊂ R containing
z0 and a unique function g : U → R, so that F (x, z) = 0 with x ∈ U and z ∈ V
if and only if z = g(x). Moreover, the function g is C1 with partial derivatives
given by

∂g

∂xi
= −∂F/∂xi

∂F/∂z

for i = 1, 2, · · · , n.

This is a slight simplification of the statement given in the text. For a proof,
take a look at the book’s internet supplement.

We should think of the equation F (x, z) = 0 as defining z implicitly as a
function of x. The theorem is just a precise formulation of this idea. It gives
conditions, in terms of F , that tell us when we can write z = g(x), and it tells
us that g is C1 if F is.

This result allows us to (finally!) finish the proof of the Lagrange multipliers
theorem. Recall, the result we need to establish is the following.

Lemma 2. Let U ⊂ Rn be open and let g : U → R be a C1 function. Let
x0 ∈ U , c = g(x0) and let S be the level set of g with value c. Assume that
∇g(x0) 6= 0. Then given any vector v with ∇g(x0) · v = 0, there is a C1 path
c : [−a, a] → Rn so that

1. c(t) ∈ S for all t ∈ [−a, a];

2. c(0) = x0;

3. c′(0) = v.

Proof. Since ∇g(x0) 6= 0, there is some xi so that ∂g/∂xi(x0) 6= 0. For con-
venience let’s assume that ∂g/∂xn(x0) 6= 0 (the other possibilities are handled
similarly). To avoid double subscripts, we write x0 = (y1, y2, . . . , yn). By the
Implicit Function Theorem (applied with F = g and z = xn), there is a ball
U ⊂ Rn−1 containing (y1, y2, . . . , yn−1), an interval V ⊂ R containing yn and a
C1 function h(x1, . . . , xn−1) defined on U so that

g(x1, x2, . . . , xn−1, xn) = c if and only if xn = h(x1, x2, . . . , xn−1). (1)

That is, for points on the level set S near x0 we can solve for xn in terms of
x1, . . . , xn−1. Hence, at least locally, S is the graph of some function.
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Let v = (v1, v2, . . . , vn) be orthogonal to ∇g(x0). Now let

c1(t) = (y1 + tv1, y2 + tv2, . . . , yn−1 + tvn−1)

and
c(t) = (c1(t), h(c1(t))).

For small t, c1(t) will lie in U and so we are guaranteed by equation (1) that

g(c(t)) = g(c1(t), h(c1(t))) = c.

Therefore, the path c(t) lies entirely in the level set S, provided we keep t small.
This gives part (1.) of the lemma.

As for part (2.), we have

c(0) = (c1(0), h(c1(0))) = (y1, y1, . . . , yn−1, h(y1, y1, . . . , yn−1)).

Again, equation (1) tells us that since c = g(x0) = g(y1, y2, . . . , yn) we must
have yn = h(y1, y1, . . . , yn−1). So the equation above becomes c(0) = x0, as
needed.

Finally, we prove part (3.). By the chain rule

d

dt
h(c1(t))|t=0 = ∇h(c1(0)) · c′1(0) (2)

= ∇h(y1, y2, . . . , yn−1) · (v1, v2, . . . , vn−1) (3)

=
∂h

∂x1
v1 +

∂h

∂x2
v2 + · · ·+ ∂h

∂xn−1
vn−1. (4)

The implicit function theorem tells us how to compute these partial derivatives
of h. It gives

∂h

∂x1
v1+

∂h

∂x2
v2+· · ·+

∂h

∂xn−1
vn−1 = − 1

∂g/∂xn

(
∂g

∂x1
v1 +

∂g

∂x2
v2 + · · ·+ ∂g

∂xn−1
vn−1

)
.

But the quantity in the parentheses is just∇g(x0)·v−(∂g/∂xn)vn = −(∂g/∂xn)vn,
since v is orthogonal to ∇g(x0). The upshot of all of this is that

d

dt
h(c1(t))|t=0 = − 1

∂g/∂xn

(
− ∂g

∂xn
(x0)vn

)
= vn.

Therefore, when we differentiate c(t) at zero we find that

c′(0) = (v1, v2, . . . , vn−1, vn) = v

which gives part (3.).
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