
More Problems

Problem 1. Let A be an m × n matrix. Show that there is a constant M
(depending on A) so that

||Ax|| ≤ M ||x||

for all x ∈ Rn. Hint: Write Ax as the sum involving the columns of A, according
to the definition. Apply the triangle inequality to this sum and then use Cauchy-
Schwarz.

Problem 2. Show that the function f : Rn → R, defined by f(x) = ||x||, is
continuous, either using the ε− δ definition or by realizing f as the composition
of two continuous functions.

For Problem 3 we will need the following fact, which is similar to Theorem
5 on p 121 of the text (compositions of continuous functions are continuous).

Lemma 1. Let f : A ⊂ Rn → Rm and g : B ⊂ Rm → Rl be functions. Assume
that f(A) ⊂ B. Furthermore, assume that limx→x0 f(x) = b and that b ∈ B.
If g is continuous then

lim
x→x0

g ◦ f(x) = g(b).

Proof. Let ε > 0. Since g is continuous at b, there exists a δ1 > 0 so that if
||y − b|| < δ1 and y ∈ B then ||g(y) − g(b)|| < ε. By the definition of the
limit, we can also find a δ > 0 so that if 0 < ||x − x0|| < δ and x ∈ A then
||f(x)−b|| < δ1. Combining these two results, we find that for 0 < ||x−x0|| < δ,
x ∈ A, we have ||f(x)− b|| < δ1, f(x) ∈ B, and so

||g(f(x))− g(b)|| < ε.

This finishes the proof.

This can be briefly stated as follows. If

lim
x→x0

f(x)

exists and g is continuous then

lim
x→x0

g(f(x)) = g

(
lim

x→x0
f(x)

)
.
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That is, we can pull the limit sign ”inside” the function.

Problem 3. Let c : [a, b] → Rn be a path, with coordinate functions
x1, x2, . . . , xn so that

c(t) = (x1(t), x2(t), . . . , xn(t)).

According to the definition, if c is differentiable at a point t0, then the derivatives
x′1(t0), x

′
2(t0), . . . , x

′
n(t0) must all exist. Show that the converse holds. That is,

show that if x′1(t0), x
′
2(t0), . . . , x

′
n(t0) all exist then c is differentiable at t0. You

will need to use Problem 2, the lemma above and part (v) of Theorem 3 on p
116.
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