Math 14 Winter 2004

Calculus of Vector-valued Functions, Honors
Homework for the week of January 5 - January 9
Due date: Friday, January 16 at the end of your section's lecture

1. Does the function

$$
F(x, y)=\frac{x^{3}+y^{3}}{x+y}
$$

have a limit as (x, y) approaches $(0,0)$? Give a proof of your answer.
2. Does the function

$$
G(x, y)=\frac{x^{3}+y^{3}}{x-y}
$$

have a limit as (x, y) approaches $(0,0)$? Give a proof of your answer.
3. Prove that $A(B+C)=A B+A C$ where A is a 2 by n matrix and B and C are n by 3 matrices.
4. Prove that the inverse of the matrix $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ is $\frac{1}{\operatorname{det} A}\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]$

Optional Riddle: Try to guess the inverse of $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & a & b \\ 0 & c & d\end{array}\right]$.
How about $A=\left[\begin{array}{lll}a & 0 & b \\ 0 & c & 0 \\ d & 0 & e\end{array}\right]$? And $A=\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & k\end{array}\right]$?
5. Exercise 2 p. 73 from the textbook. Justify your answer.
6. Exercise 3 p. 73 from the textbook. Justify your answer.

