Math 14 Winter 2004

Calculus of Vector-valued Functions, Honors
Homework for the week of January 12 - January 16
Due date: Friday, January 23 at the end of your section's lecture

1. Let $f, g: \mathbb{R}^{3} \rightarrow \mathbb{R}$ and $\varphi: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be functions defined by $f(x, y, z)=$ $\sqrt[3]{9 y^{2}}+2(x+z), \varphi(x, y, z)=\left(z^{2}-2 x z, y^{3} / 3, x^{2}-2 x z\right)$, and $g=f \circ \varphi$. Let also $F=\{(x, y, z) \mid f(x, y, z)=-2\}$ and $S=\{(x, y, z) \mid g(x, y, z)=-2\}$ be surfaces in \mathbb{R}^{3}.
a) Prove that φ maps S into F, i.e. $\varphi(S)=F$.
b) Find all points $P \in S$ such that the tangent plane to S at P and the tangent plane to F at $\varphi(P)$ are parallel. Justify your answer.
2. Exercise 16 p. 192 from the textbook.
3. Exercise 2 p. 202 from the textbook.
4. Exercise 6 p. 202 from the textbook.
5. Exercise 18 p. 223 from the textbook. Justify your answer.
6. Exercise 36 p. 224 from the textbook. Justify your answer.
7. Exercise 8 p. 254 from the textbook. Justify your answer.
8. Review exercise 3 p. 255 from the textbook. Justify your answer.
9. Review exercise 24 p. 258 from the textbook. Justify your answer.
