
Math 17
Winter 2015

Written Exercises due Friday, February 20

(1.) Describe a Turing machine that does the following:

With input coding (a,N, b1, c1, b2, c2), where (N, b1, c1) is a code for a Diophantine
set X1 ⊆ N and (N, b2, c2) is a code for another Diophantine set X2 ⊆ N:

If a ∈ X1 but a 6∈ X2, the machine will halt in state q2.

If a ∈ X2 but a 6∈ X1, the machine will halt in state q3.

If a ∈ X1 and a ∈ X2, the machine will halt, possibly in state q2 and possibly in
state q3.

If a 6∈ X1 and a 6∈ X2, the machine will never halt.

You may make use of the machines that we described in class, in particular:

DECODEX(2), when the beginning of the tape codes a sequence of at least two
numbers (a,N, . . . ) and the end of the tape codes another number x that is the
Cantor code for a sequence (x1, x2, . . . , xN), replaces the code for x with

α1β1α2β2 · · ·αN−1βN−1βN

where αi is a block X’s and βi consists of a 0 followed by xi-many 1’s.

That is, DECODEX(2) replaces the code for x with the codes for x1, x2, . . . , xN ,
interspersed with some X’s.

EVAL does the following. Suppose the tape ends with the sequence 7α7βγ,
where γ is any sequence not containing any 7’s, α codes the sequence coding
a polynomial P , interspersed with some X’s, and β codes the sequence coding
inputs a, x1, x2, . . . , xN to P , also interspersed with some X’s. Then EVAL adds
to the end of the tape a sequence of 0’s and 1’s containing P (a, x1, . . . , xN)-many
1’s. It leaves most of the original sequence α replaced by a block of X’s.

You may also use simple submachines like “go left to the third 7” (where “7” means the
symbol 7, not the sequence 01111111).

Finally, you may describe your Turing machine using a sequence of steps, as in the class
handout from today.

(2.) Show that if X ⊆ N, and both X and its complement Y = {a ∈ N | a 6∈ X} are
Diophantine, then X is Turing decidable.

Note that you can use the preceding problem to produce a decision machine, but the
input to that machine must be just one number, a.
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(3.) Show the converse, that if X ⊆ N is Turing decidable, then both X and its complement
are Diophantine.

You may want to use the fact that all Turing semidecidable sets are Diophantine.

(4.) We designed a Turing machine UD with the following property.

Every Diophantine set X ⊆ N has a code (N, b, c) such that

(∀a) [a ∈ X ⇐⇒ UD with input (a,N, b, c) halts].

If we set
U = {(a,N, b, c) |M with input (a,N, b, c) halts,

then U is a universal Diophantine set. This means

Every Diophantine set X ⊆ N has a code (N, b, c) such that

(∀a) [a ∈ X ⇐⇒ (a,N, b, c) ∈ U ].

Recall, if a = Cantor3(x, y, z), then Elem3,1(a) = x, Elem3,2(a) = y, and Elem3,1(a) = z.
The functions Cantor3, Elem3,1, Elem3,2, and Elem3,3 are Diophantine.

Define a Diophantine set by

S = {a | (a,Elem3,1(a),Elem3,2(a),Elem3,3(a)) ∈ U},

and let
S = {a | a 6∈ S}.

Show that S is not Diophantine.
Suggestion: Suppose, toward a contradiction, that S is Diophantine. Then it has a

code (M,d, e). Let a = Cantor3(M,d, e). Show that both the assumption a ∈ S and the
assumption a 6∈ S lead to contradictions.

(5.) Conclude, from (3) and (4), that Hilbert’s tenth problem is unsolvable. (That is,
assuming that we interpret Hilbert’s “process according to which it can be determined in a
finite number of operations. . . ” as something that could be carried out by a Turing machine.)
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