Math 17
Winter 2015
Monday, February 9

X C N" is a Turing semidecicable set.
M is a semidecision machine for X, using symbols

Q] = *, 042:0, 063:1, Ay ey Oy,

and states
¢ (starting state), go, . . ., G-

We wish to prove that X is Diophantine by simulating the action of M.

We code a configuration of M by a pair (p, ).

The coding we use is positional coding base b, where b is prime, b > w + w.

The number p codes a sequence that represents the head location and state of M. An ¢
in position 7 means that M is in state ¢ and the head is positioned to read cell j.

The number ¢ codes a sequence that represents the contents of the tape. An ¢ in position
j means that symbol «; is written in cell 7. A 0 in position j can mean either that cell j
contains A or that cell j is empty.

The starting configuration for running M with input (aq,...,a,) (in which the sequence
(ay,...,a,) is coded on the tape, the head is reading the leftmost cell, and the machine is
in state ¢) is coded by the pair

(p,t) = (InitP(ay,...,a,), InitT(a,...,a,)).
We showed that InitP and InitT are Diophantine functions.

If (p,t) codes a configuration, the configuration obtained by running M for one step is
coded by the pair
(NextP(p,t), NextT(p,t))

(provided (p, t) does not code a configuration in a final state), and the configuration obtained
by running M for k steps is coded by the pair

(AfterP(k,p,t), AfterT(k,p,t))

(provided a final state is not reached in fewer than k steps).

If the configuration (p,t) represents a machine in a final state, then NextP(p,t) = 0 and
NextT(p,t) =t.

If, beginning with the configuration coded by (p,t), a final state is reached in fewer than
k steps, then AfterP(k,p,t) =0, and AfterT(k,p,t) codes the contents of the tape at the
time the final state is reached.



If we can show that AfterP is a Diophantine function, then we will have shown that
X is Diophantine. That is because we will now have (ai,...,a,) € X iff M with input
(ay,...,a,) eventually halts, and M with input (ay,...,a,) eventually halts iff

(3k) [AfterP(k, InitP(ay,...,a,), InitT(a,...,a,)) = 0].

We talked about showing NextP and NextT are Diophantine, in the following way:

Suppose M has instructions Iy, I, ..., Ij.

For each instruction I, there is a Diophantine property Movel(p,t,p’,t"), which means
that instruction I applies to the configuration coded by (p,t), and when the machine acts
according to that instruction, the resulting configuration is coded by (p/,t).

Now we have

p' = NeatP(p,t) < (3t")[Movel,(p,t,p',t',)V Movely(p,t,p',t',) V---V Movely(p, t,p',t',)]

' = NextT(p,t) < (3p')[Movel\(p,t,p',t',)V Movely(p,t,p',t',) V-V Movely(p,t,p',t', )]

Now we will show that AfterP and AfterT are Diophantine. We will not use the fact
that NextP and NextT are Diophantine in this proof, so since NextP(p,t) = After P(1,p,t)
and NextT(p,t) = AfterT(1,p,t), this will constitute another proof that NextP and NextT
are Diophantine.



