
Math 17
Winter 2015

Monday, February 9

X ⊆ Nn is a Turing semidecicable set.
M is a semidecision machine for X, using symbols

α1 = ∗, α2 = 0, α3 = 1, α4, . . . , αw

and states
q1 (starting state), q2, . . . , qw.

We wish to prove that X is Diophantine by simulating the action of M .

We code a configuration of M by a pair (p, t).
The coding we use is positional coding base b, where b is prime, b ≥ w + w.
The number p codes a sequence that represents the head location and state of M . An i

in position j means that M is in state i and the head is positioned to read cell j.
The number t codes a sequence that represents the contents of the tape. An i in position

j means that symbol αi is written in cell j. A 0 in position j can mean either that cell j
contains λ or that cell j is empty.

The starting configuration for running M with input (a1, . . . , an) (in which the sequence
(a1, . . . , an) is coded on the tape, the head is reading the leftmost cell, and the machine is
in state q1) is coded by the pair

(p, t) = (InitP (a1, . . . , an), InitT (a1, . . . , an)) .

We showed that InitP and InitT are Diophantine functions.

If (p, t) codes a configuration, the configuration obtained by running M for one step is
coded by the pair

(NextP (p, t), NextT (p, t))

(provided (p, t) does not code a configuration in a final state), and the configuration obtained
by running M for k steps is coded by the pair

(AfterP (k, p, t), AfterT (k, p, t))

(provided a final state is not reached in fewer than k steps).
If the configuration (p, t) represents a machine in a final state, then NextP (p, t) = 0 and

NextT (p, t) = t.
If, beginning with the configuration coded by (p, t), a final state is reached in fewer than

k steps, then AfterP (k, p, t) = 0, and AfterT (k, p, t) codes the contents of the tape at the
time the final state is reached.

1



If we can show that AfterP is a Diophantine function, then we will have shown that
X is Diophantine. That is because we will now have (a1, . . . , an) ∈ X iff M with input
(a1, . . . , an) eventually halts, and M with input (a1, . . . , an) eventually halts iff

(∃k) [AfterP (k, InitP (a1, . . . , an), InitT (a1, . . . , an)) = 0] .

We talked about showing NextP and NextT are Diophantine, in the following way:
Suppose M has instructions I1, I2, . . . , Iθ.
For each instruction I, there is a Diophantine property MoveI(p, t, p′, t′), which means

that instruction I applies to the configuration coded by (p, t), and when the machine acts
according to that instruction, the resulting configuration is coded by (p′, t′).

Now we have

p′ = NextP (p, t) ⇐⇒ (∃t′)
[
MoveI1(p, t, p

′, t′, )∨MoveI2(p, t, p
′, t′, )∨· · ·∨MoveIθ(p, t, p

′, t′, )
]

t′ = NextT (p, t) ⇐⇒ (∃p′)
[
MoveI1(p, t, p

′, t′, )∨MoveI2(p, t, p
′, t′, )∨· · ·∨MoveIθ(p, t, p

′, t′, )
]

Now we will show that AfterP and AfterT are Diophantine. We will not use the fact
that NextP and NextT are Diophantine in this proof, so since NextP (p, t) = AfterP (1, p, t)
and NextT (p, t) = AfterT (1, p, t), this will constitute another proof that NextP and NextT
are Diophantine.

2


