
Math 17
Winter 2015

Wednesday, February 11

The remaining step in proving that all Turing semidecidable sets are Diophantine is
proving the functions AfterP and AfterT are Diophantine.

To do this, we defined a k, ` superconfiguration to be, loosely speaking, a concatenation
of (k+ 1)-many configurations of length at most `, in each of which the tape head is reading
some cell to the left of cell `.

More precisely, if (p0, t0), (p1, t1), . . . , (pk, tk) are configuration codes, where pi codes a
sequence xi of length ` whose last entry is 0, and ti codes a sequence yi (whose first element
is, necessarily 1, since ∗ is always the first symbol on a Turing machine tape), we let p∗ code
x_

0 x
_
1 · · ·_ xk and t∗ code y_

0 y
_
1 · · ·_ yk. The pair (p∗, t∗) is a k, ` superconfiguration code.

The ith block of the superconfiguration coded by (p∗, t∗) is the configuration coded by (pi, ti).

Now AfterP (k, p, t) = p′ and AfterT (k, p, t) = t′ if and only if there are some large
number ` and some k, ` superconfiguration code (p∗, t∗) with blocks (p0, t0), (p1, t1), . . . ,
(pk, tk) such that (p0, t0) = (p, t), (pk, tk) = (p′, t′), and for every i < k,

(pi+1, ti+1) = (NextP (pi, ti), NextT (pi, ti)).

The number ` must be larger than the length of the sequences coded by p and t, and also
large enough so that the tape head will remain to the left of cell ` when Turing machine M
acts on the configuration coded by (p, t) for k-many steps. It will do to take ` = t+p+k+1.

We are defining functions NextT ∗(k, `, p∗, t∗) and NextP ∗(k, `, p∗, t∗) such that if (p∗, t∗)
is a k, ` superconfiguration code with blocks (p0, t0), (p1, t1), . . . , (pk, tk), then

(NextP ∗(k, `, p∗, t∗), NextT ∗(k, `, p∗, t∗))

is a k, ` superconfiguration code with blocks (NextP (pi, ti), NextT (pi, ti)).

To define NextT ∗, in a Diophantine way, we use the following lemma (proof to come
later):

Lemma: For every u < b and v < b, there is a Diophantine function hu,v(N, x, y)
such that if x codes the sequence (x1, . . . , xN) and y codes the sequence (y1, . . . , yN),
then hu,v(N, x, y) codes the sequence (z1, . . . , zN), where

zi =

{
1 if xi = u & yi = v;

0 if not.

We note that if x and y code sequences of length N , then∑
u<b, v<b

auvhu,v(N, x, y)

codes a sequence (w1, . . . , wN) such that if xj = u and yj = v then wj = auv.

1

To define NextT ∗(k, `, p∗, t∗), we choose coefficients auv such that if p∗ and t∗ have u and
v (respectively) in position j, then NextT ∗(k, `, p∗, t∗) should have auv in position j. Then
we set

NextT ∗(k, `, p∗, t∗) =
∑

u<b, v<b

auvhu,v((k + 1)`, p∗, t∗).

Suppose there is an instruction (qu αv ⇒ αr D q) in M (where D is any direction and q
any state). Now suppose that p∗ has a u in position j and t∗ has a v in position j. That
indicates a tape head on cell j reading symbol αv while the machine is state qu. The machine
should then write αr, so NextT ∗(k, `, p∗, t∗) should have r in position j. For these pairs we
set

auv = r.

Suppose there is no such instruction. That could happen because u = 0 (indicating that the
tape head is in another location), or because qu is a final state, or because u is not actually
the index of a state. (If (p∗, t∗) is actually a superconfiguration, this won’t happen, but we
must define our coefficient anyway.) In these cases, the machine will not write on this cell,
so the symbol will be unchanged. For these pairs we set

auv = v.

This finishes the Diophantine definition of NextT ∗.

Note: If (p∗, t∗) is not actually a superconfiguration code, but its ith block is a configu-
ration code, NextT ∗ will nevertheless do the appropriate thing to the ith block.

The definition of NextP ∗ is done in almost exactly the same way. The difference is that
the value in the jth position of NextP ∗(k, `, p∗, t∗) depends not only on the jth positions of
p∗ and t∗, but on the positions to the left and right.

We can define Diophantine functions L andR such that iff x codes the sequence (x1, . . . , xN)
then L(x,N) codes (0, x1, . . . , xN−1) (the sequence of elements to the left of the elements of
x) and R(x,N) codes (x2, . . . , xN , 0) (the sequence of elements to the right of the elements
of x):

L(x,N) = rem(bx, bN) R(x,N) = div(x, b).

Then we can define functions hu,v,u′,v′,u′′,v′′ in the same way as the hu,v, and set

NextP ∗(k, `, p∗, t∗) =
∑

u<b, v<b,u′<b, v′<b,u′′<b, v′′<b

cuvu′v′u′′v′′hu,v,u′,v′,u′′,v′′((k+1)`, p∗, t∗, L(p∗, (k+1)`), L(t∗, (k+1)`), R(p∗, (k+1)`), R(t∗, (k+1)`)),

where the coefficients cuvu′v′u′′v′′ are chosen to give the correct values.

2

Now we have Diophantine functions NextP ∗ and NextT ∗ that, applied to a k, ` super-
configuration code, correctly apply NextP and NextT to each block. If we apply them to
p∗ and t∗ that are not superconfiguration codes, but have an ith block that is a configuration
code, they still correctly apply NextP and NextT to the ith block, provided two things are
true:

1. The configuration coded by the ith block has the tape head to the left of cell `. (Oth-
erwise, the tape head will, loosely speaking, run into the next block.)

2. The symbol in position `(i + 1) + 1 of t∗ is a 1. (That is, interpreting the (i + 1)th

block as a configuration code, the first symbol on the tape is ∗. Otherwise, the tape
head from the next block could move backward into this block.)

We can say in a Diophantine way that t∗ has a 1 in every position `(j) + 1:
The sequence of length (k+1)` with a 1 in every position `(j)+1 is coded by the number

k∑
j=0

bj` = Repeat(1, b`, k + 1).

The entries of t∗ in every position `(j) + 1 are 1 or greater if

PNotGreater(Repeat(1, b`, k + 1), t∗, b).

The entries of t∗ in every position `(j) + 1 are 1 or less if

PNotGreater(t∗, Repeat(b− 1, b, (k + 1)`)− (b− 2)Repeat(1, b`, k + 1), b).

We say (p∗, t∗) is a k, ` pseudo-superconfiguration (PSC), if p∗ and t∗ code sequences of
length (at most) (k + 1)` (which we can say in a Diophantine way as Code(p∗, b, (k + 1)`)
and Code(t∗, b, (k + 1)`)), and when we divide them into (k + 1)-many blocks of length `,
each block of t∗ begins with 1 (which we can also say in a Diophantine way).

We can now say

p′ = AfterP (k, p, t) & t′ = AfterT (k, p, t)

in a Diophantine way:
There is ` such that ` = p + t + k + 1, and there are p∗ and t∗ forming a k, ` PSC, such

that:

1. The first block is (p, t):

rem(p∗, b`) = p & rem(t∗, b`) = t.

2. The last block is (p′, t′):

div(p∗, bk`) = p & div(t∗, bk`) = t.

3

3. Each block is the Next of the previous block:

p∗ and t∗ with the first block removed equal NextP ∗(k, `, p∗, t∗) and NextT ∗(k, `, p∗, t∗)
with the last block removed:

div(p∗, b`) = rem(NextP ∗(k, `, p∗, t∗), bk`) & div(t∗, b`) = rem(NextT ∗(k, `, p∗, t∗), bk`).

The one remaining task is to prove the Lemma.
Let wuv be variables for all u, v < b. LetHuv(N, x, y) be the statement wuv = hu,v(N, x, y),

and H(N, x, y) be the conjunction (connection with “and”) of all the Huv(N, x, y). If we can
show H(N, x, y) can be written in a Diophantine way, then we can say

hu,v(N, x, y) = e

in a Diophantine way, as

(∃w00)(∃w01) · · · (∃w(b−1)(b−1)[H(N, x, y) & e = wuv].

We can write H(N, x, y) as the conjunction of the following statements:
For every (u, v),

PNotGreater(wuv, Repeat(1, N, b), b).

This says that every wuv codes a sequence of 0’s and 1’s of length N .
For every (u, v) and (u′, v′) 6= (u, v),

PNotGreater(wuv + wu′v′ , Repeat(1, N, b), b).

This says no two sequences coded by the wuv have 1’s in the same position.∑
u<b v<b

wuv = Repeat(1, N, b).

This says, for every position j between 1 and N , exactly one of the wuv sequences has a 1 in
position j. ∑

u<b, v<b

uwuv = x &
∑

u<b, v<b

vwuv = y.

This says that, in the positions where the wuv sequence has a 1, x has a u and y has a v.
This completes the proof.

4

