
Exponential Functions

A Review of Exponents and Logarithms

In this lecture, we introduce the exponential functions, which is the third major type of function we will study
in this class. Before we can study the exponential functions, we need to review the rules of exponentiation
and taking logarithms.

Let a and b be two real numbers with a > 0. If b is a natural number, then we define ab to be the number
we get by multiplying a with itself b times. It turns out that we can define the number ab when b is any real
number. The value of ab is not as important as the rules we use to evaluate exponents. They are:

• ab · ac = ab+c. (example: 2−2 · 25 = 2−2+5 = 23 = 8)

• (ab)c = abc. (example: (27)4 = (33)4 = 312)

• a0 = 1. (example: π5−5 = π0 = 1)

• 1b = 1. (example: 1π = 1.)

• a1 = a. (example: 2.3741 = 2.374)

• a−b = 1
ab . (example: 6−2 = 1

62 = 1
36 )

• a
1
b = b

√
a. (example: 3

1
2 =

√
3)

You must become familiar with all of these rules if you are not already.
Now let a and b be two real numbers, both greater than zero, with a 6= 1. We define the number loga b,

which is called the logarithm base a of b, to be the number c such that b = ac. In other words,

aloga b = b.

For example, log2 8 = 3, because 23 = 8. It is very difficult to calculate most logarithms, so the most
important part of understanding logarithms is knowing the rules of taking logarithms. Those rules are listed
below:

• loga(bc) = loga b + loga c. (example: log5 6 = log5(2 · 3) = log5 2 + log5 3.)

• loga(bc) = c loga b. (example: log7 9 = log7(32) = 2 log7 3.)

• loga 1 = 0. (example: log4.379 1 = 0.)

• log1 b is undefined.

• loga a = 1. (example: log0.04 0.04 = 1.)

• loga

(
1
b

)
= − loga b. (example: log3

(
1
2

)
= − log3 2.)

Again, you need to learn all of these rules immediately if you do not already know them.
Finally, we note that there is a special number, e = 2.7182818284590..., which plays an important role in

exponential functions and in calculus in general. For a real number b > 0, we define the natural logarithm
of b to be the logarithm base e of b:

ln b = loge b.

So, for example,
ln(e2) = loge(e

2) = 2 loge e = 2 · 1 = 2.

We will use this notation for natural logarithm when we discuss the derivatives of exponential functions later
in this lecture.
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Generalized Exponential Functions

We define the exponential function by the formula

f(x) = ex.

So the exponential function is the function we get by taking a real number x as the input and, as the output,
getting e raised to the power of x.

For a real number a > 0, we define the generalized exponential function by the formula

f(x) = ax.

So in this case, for every input x, we get back a raised to the power of x.
The graphs of the generalized exponential functions, including ex, all have roughly the same shape. We

plot the functions f(x) = 2x and g(x) = 4x using the numerical tables below:

x 2x

−3 0.125
−2 0.25
−1 0.5
0 1
1 2
2 4
3 8

x 4x

−3 0.015625
−2 0.0625
−1 0.25
0 1
1 4
2 16
3 64

First, we note that both graphs are always above the x-axis. This is because for all positive a and for all
x, ax is a positive number. Next we see that, for both graphs, the vertical intercept of the graph is 1. This
is because one of the rules of exponentiation is that a0 = 1 for all values of a. The slope of 4x is greater
than the slope of 2x at x = 0, and at all values of x. For both graphs, when x > 0, the graph quickly rises,
illustrating that as x increases, ax becomes very large very quickly. As we would expect, the quantity 4x

rises faster than the quantity 2x, so we have that for x > 0 the graph of the function f(x) = 2x is lower
than the graph of the function g(x) = 4x. When x < 0, both functions get smaller and smaller as x becomes
more and more negative. In both cases, neither graph touches the x-axis, even though both functions are
approaching zero as x becomes very negative. This is our first example of a horizontal asymptote, which is
illustrated in a graph by the curve of that graph getting closer and closer to a horizontal line (in this case
y = 0) as x becomes very positive or very negative. We will discuss horizontal asymptotes a little more
below, but first we remark that the graph of f(x) = 4x is higher than that of g(x) = 4x when x < 0. This
should make sense to you, and if it does not, you need to review the rules of exponentiation above to figure
out why 4x < 2x when x < 0.

Now let us plot the function h(x) =
(

1
2

)x using the numerical table below:

x
(

1
2

)x

−3 8
−2 4
−1 2
0 1
1 0.5
2 0.25
3 0.125

We see that the graph of h(x) =
(

1
2

)x is the mirror image along the y-axis of the graph of f(x) = 2x. The
graph of h(x) is still always above the x-axis, and it intersects the y-axis at (0, 1), but now it has a horizontal
asymptote off to the right. This exemplifies a general phenomenon: when a > 1, the horizontal asymptote is
off to the left, and when 0 < a < 1, if is off to the right. Question: what happens to the shape of the graph
of ax when a = 1?
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Properties of Generalized Exponential Functions

The major properties of generalized exponential functions f(x) = ax, written algebraically, are listed below:

• Positive Function: If f(x) = ax for some positive real number a, then f(x) > 0 for all x. In other
words, f(x) is always positive, no matter what value of x we choose. As we stated above, this tells
us that the graph of f(x) = ax will never touch the x-axis, although it will approach it (see the third
property below).

• Vertical Intercept: We recall that the vertical intercept of a function is its value at x = 0, its height
when it touches the y-axis. For generalized exponential functions we have for all real numbers a > 0
that

f(0) = a0 = 1

by the rules of exponentiation. Therefore we get that the vertical intercept of all generalized exponential
functions is equal to 1, which we write as f(0) = 1. This also tells us, as we saw when we plotted 2x

and 4x, that the graphs of all generalized exponential functions pass through the point (0, 1).

• Horizontal Asymptote: We stated above that, when a > 1, as x becomes more and more negative,
the value of f(x) = ax becomes closer and closer to zero, but it always remains positive. One way to
state the idea of x becoming more and more negative is to imagine x approaching negative infinity,
which is written x → −∞. It is important to note that x can never be −∞, since −∞ is not a real
number, but we can make x very, very negative, which is what we mean by x approaching negative
infinity. As x approaches negative infinity, the value of f(x) becomes very close to zero. What we
mean here is that, no matter how close we want the value of f(x) to be to zero, we can always find a
sufficiently large value of x so that f(x) is that close to zero. We write this property with the following
algebraic notation:

lim
x→−∞

f(x) = lim
x→−∞

ax = 0.

(We wrote the notation twice, first with f(x), then with ax, to emphasize that f(x) is a generalized
exponential function. You do not have to write the notation twice in practice.) We verbalize this
notation by saying “the limit of f(x) as x approaches negative infinity is zero.” Another way to
verbalize this is to say “ax has a left horizontal asymptote at y = 0” when a > 1. In general, we say
that a function f(x) has a left horizontal asymptote at y = b if

lim
x→−∞

f(x) = b,

In other words, as x gets more and more negative, the value of f(x) gets closer and closer to b.

Likewise, when 0 < a < 1, as x becomes more and more positive, f(x) gets closer and closer to zero.
Thus we write that

lim
x→∞

f(x) = lim
x→−∞

ax = 0

and say that f(x) has a right horizontal asymptote at y = 0 when 0 < a < 1. In general, we say that
f(x) has a right horizontal asymptote at y = b if

lim
x→∞

f(x) = b.

This means that, as x gets more and more positive, the value of f(x) gets closer and closer to b.

Finally, we note that, when a = 1, we have that

f(x) = ax = 1x = 1,

so f(x) is the constant function 1. Technically, f(x) has both a left horizontal asymptote and a right
horizontal asymptote at y = 1, but since the graph of f(x) is the line y = 1, we usually do not talk
about its asymptotes.
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Differentiating Exponential Functions

Let f(x) be a generalized exponential function, that is, let f(x) = ax for some positive real number a. Then
the formula for the derivative of f(x) is

df

dx
=

d
dx

(ax) = (ln a)ax.

So, to get the derivative of ax, we simply multiply it by ln a. In particular, we have that the derivative of
the exponential function ex is itself:

d
dx

(ex) = ex.

This is a very special property, because the only functions for which the derivative of the function equals
itself are ex and its constant multiples. If you continue on to higher calculus classes, you will find that the
function ex comes up all the time in the solutions of differential equations. This is also the main reason why
the number e is so important in mathematics.

Let us do some examples of differentiating generalized exponential functions. First, let f(x) = 7x. Then

f ′(x) = (ln 7)7x.

There is a second way to get this result. First, we change the formula of f(x) by noticing that 7 = eln 7:

f(x) = 7x = (eln 7)x = e(ln 7)x.

This is a very useful trick to remember, and you should try to remember it. Next, we evaluate our new
formula for f(x) using the Chain Rule: the outer function is ex, and the inner function is (ln 7)x, so we get
that

f ′(x) = e(ln 7)x · (ln 7) = (ln 7)e(ln 7)x = (ln 7)7x,

which is exactly what we got before. Notice that now, instead of remembering the formula for the derivative
of all generalized exponential functions, all we have to know is that the derivative of ex is itself, and how to
apply the Chain Rule. How you choose to remember how to differentiate f(x) = 7x, either by formula or by
Chain Rule, is your choice.

Let us do a harder example of using the Chain Rule with exponential functions. Let f(x) = e2x3−4x−7.
The inner function is 2x3 − 4x − 7, and its derivative is 6x2 − 4. The outer function, the function applied
last, is ex, and its derivative is ex. So the derivative of ex at 2x3 − 4x − 7 is e2x3−4x−7. Putting all of this
together with the Chain Rule, we get that

f ′(x) = e2x3−4x−7 · (6x2 − 4) = (6x2 − 4)e2x3−4x−7.

Finally, let us take

f(x) =
1√
2π

e−
1
2 x2

.

This is the equation for the Normal Distribution, also known as the Bell Curve. Roughly speaking, the Bell
Curve tells us the distribution of results for processes of chance. The uses of the function f(x) are not the
concerns of this class; what we want to be able to do is differentiate f(x). First, we recognize that we can
pull a constant multiple out of the derivative:

df

dx
=

d
dx

(
1√
2π

e−
1
2 x2

)
=

1√
2π

d
dx

(
e−

1
2 x2

)
.

Next, we use the Chain Rule: the outer function is ex, and the inner function is − 1
2x2. The derivative of

the inner function is therefore −x. Putting this all together using the Chain Rule, we get that

df

dx
=

1√
2π

d
dx

(
e−

1
2 x2

)
=

1√
2π

· e− 1
2 x2 · (−x) = − x√

2π
e−

1
2 x2

.

On your own, find the second derivative of f(x), and find the critical points of f(x) (there should be only
one). Is the critical point a local maximum or a local minimum? Does your answer make sense given the
shape of the Bell Curve?
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