
Tangent, Cotangent, Secant, and Cosecant

The Quotient Rule

In our last lecture, among other things, we discussed the function 1
x , its domain and its derivative. We also

showed how to use the Chain Rule to find the domain and derivative of a function of the form

k(x) =
1

g(x)
,

where g(x) is some function with a derivative. Today we go one step further: we discuss the domain and the
derivative of functions of the form

h(x) =
f(x)
g(x)

,

where f(x) and g(x) are functions with derivatives. The rule of differentiation we will derive is called the
quotient rule. We will then define the remaining trigonometric functions, and we will use the quotient rule
to find formulae for their derivatives.

The quotient rule has the following statement: let f(x) and g(x) be two functions with derivatives. Then
we can define a function

h(x) =
f(x)
g(x)

which has domain
Dom(h) = {x ∈ R : g(x) 6= 0}

and which is differentiable everywhere on its domain, with the formula

h′(x) =
g(x)f ′(x)− f(x)g′(x)

(g(x))2
.

We usually call f(x) the top function, and g(x) the bottom function, and so the formula for the derivative
of the quotient h(x) is given by “bottom times the derivative of the top minus top times the derivative of
the bottom all over bottom squared.” Try to remember this phrase, or one like it.

Let us study the quotient rule. First, we can rewrite the function h(x) as

h(x) =
f(x)
g(x)

= f(x) · 1
g(x)

.

Thus, we can think of the quotient h(x) as being a product, with the first function being f(x) and the second
the composition of x−1 after g(x).

To find the domain of h(x), we first note that since f(x) presumably has full domain (all real numbers),
the domain of h(x) will be precisely the same as that of (g(x))−1 (since, wherever (g(x))−1 is defined, f(x)
will also be defined, and so their product will be defined there as well). We find the domain of (g(x))−1,
a composition, by first looking at the domain of its outside function, x−1: the domain of x−1 is all real
numbers except 0. This tells us that, presuming g(x) is defined everywhere, (g(x))−1 is defined at all real
numbers except those x for which g(x) = 0. Thus the domain of h(x), which is the domain of (g(x))−1, is
the set of all real numbers x such that g(x) 6= 0, which is precisely what the quotient rule tells us.

Now, we can see that h(x) can be written as a product. This means that, wherever h(x) is defined, we
can apply the product rule to find its derivative:

h′(x) =
d
dx

(
f(x) · 1

g(x)

)
= f ′(x) · 1

g(x)
+ f(x) · d

dx

(
1

g(x)

)
.

To find the derivative of (g(x))−1, we apply the Chain Rule:

d
dx

(
1

g(x)

)
= −(g(x))−2 · g′(x) = − g′(x)

(g(x))2
.
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Combining the two fractions under a common denominator, we get the derivative formula for the quotient
rule:

h′(x) = f ′(x) · 1
g(x)

+ f(x) · d
dx

(
1

g(x)

)
=

f ′(x)
g(x)

− f(x)g′(x)
(g(x))2

=
g(x)f ′(x)
(g(x))2

− f(x)g′(x)
(g(x))2

=
g(x)f ′(x)− f(x)g′(x)

(g(x))2
.

Let us do an example of the quotient rule. Let

h(x) =
x + 3

x2 − 4x + 5
.

The domain of h(x) is all real numbers x such that the denominator, x2− 4x+5, is not 0. The denominator
is 0 precisely when x = 1 or x = 5, so this gives us that

Dom(h) = {x ∈ R : x 6= 1, x 6= 5}.

For any x in the domain of h, the function h(x) has a derivative given by the quotient rule. That derivative
is

h′(x) =
(x2 − 4x + 5) · 1− (x + 3) · (2x− 4)

(x2 − 4x + 5)2
=

x2 − 4x + 5− 2x2 − 2x + 12
(x2 − 4x + 5)2

=
−x2 − 6x + 17
(x2 − 4x + 5)2

.

The function h(x) is an example of a rational polynomial function. We will be studying rational polynomial
functions later in the course.

The Other Trigonometric Functions

So far in this course, the only trigonometric functions which we have studied are sine and cosine. Today
we discuss the four other trigonometric functions: tangent, cotangent, secant, and cosecant. Each of these
functions are derived in some way from sine and cosine. The tangent of x is defined to be its sine divided
by its cosine:

tan x =
sin x

cosx
.

The cotangent of x is defined to be the cosine of x divided by the sine of x:

cot x =
cos x

sin x
.

The secant of x is 1 divided by the cosine of x:

sec x =
1

cosx
,

and the cosecant of x is defined to be 1 divided by the sine of x:

csc x =
1

sin x
.

If you are not in lecture today, you should use these formulae to make a numerical table for each of these
functions and sketch out their graphs. Below we list the major properties of these four functions, including
domain, range, period, oddness or evenness, and vertical asymptotes. None of these functions have horizontal
asymptotes. You should verify that your sketches reflect these properties:

• Tangent: The function tan x is defined for all real numbers x such that cos x 6= 0, since tangent is the
quotient of sine over cosine. Thus tan x is undefined for

x = . . . ,−3π

2
,−π

2
,
π

2
,
3π

2
, . . .
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Its range is all real numbers, that is, for any number y, you can always find a number x such that
y = tan x. The period of tanx is π. This is a departure from sin x and cos x, which have periods of
2π. The reason is simple: opposite angles on the unit circle (like π

4 and 5π
4 ) have the same tangent

because of the signs of their sines and cosines. For example:

tan
π

4
=

sin π
4

cos π
4

=

√
2

2√
2

2

= 1 =
−
√

2
2

−
√

2
2

=
sin 5π

4

cos 5π
4

= tan
5π

4
.

The function tan x is an odd function, which you should be able to verify on your own. Finally, at the
values of x at which tan x is undefined, tan x has both left and right vertical asymptotes. Specifically,
if a is a value of x outside the domain of tan x, then

lim
x→a−

tan x = +∞ and lim
x→a+

tanx = −∞.

• Cotangent: The function cot x is a lot like tan x. It is defined at all values of x for which sin x 6= 0.
In other words, the domain of cot x is all real numbers x except

x = . . . ,−2π,−π, 0, π, 2π, . . .

Just as in the case of tan x, the range of cot x is all real numbers, and this should not be surprising,
since essentially cot x is 1 divided by the tangent of x. For this same reason, the period of cot x is also
π instead of 2π. You can also verify that it is an odd function. Finally, like tanx, the function cot x
has left and right vertical asymptotes at each point at which it is undefined. If a is a value of x at
which cot x is undefined, then we have that

lim
x→a−

tan x = −∞ and lim
x→a+

tanx = +∞.

• Secant: The function sec x is defined to be the multiplicative inverse of cosine, so it is defined precisely
where cos x is not equal to 0. So the domain of sec x is all real numbers x except

x = . . . ,−3π

2
,−π

2
,
π

2
,
3π

2
, . . .

Thus, sec x and tanx have the same domains. The range of sec x is a bit more complicated: remember
that the bounds on cosx are −1 ≤ cosx ≤ 1. So, we see that if the secant of x is positive, then it can
be no smaller than 1, and if it is negative, it can be no larger than −1. Thus the range of sec x is made
up of two intervals:

sec x ≥ 1 or sec x ≤ −1.

The period of sec x is precisely the same as that of cos x, which means that the period of sec x is
2π. The function sec x is an even function, and this is because cosx is an even function. Finally, at
every value of x not in the domain of sec x, the function has both left and right vertical asymptotes.
If a = . . . ,− 3π

2 , π
2 , 5π

2 , . . . then the left vertical asymptote at a goes to positive infinity and the right
vertical asymptote goes to negative infinity:

lim
x→a−

sec x = +∞ and lim
x→a+

sec x = −∞.

If, on the other hand, b = . . . ,− 5π
2 ,−π

2 , 3π
2 , . . ., then the left vertical asymptote at b goes to negative

infinity and the right vertical asymptote goes to positive infinity:

lim
x→b−

sec x = −∞ and lim
x→b+

sec x = +∞.

• Cosecant: Similar to the case of sec x, the function csc x is defined precisely when sin x is not equal
to 0. Thus the values of x at which csc x is undefined are

x = . . . ,−2π,−π, 0, π, 2π, . . .
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The range of csc x is the same as that of sec x, for the same reasons (except that now we are dealing
with the multiplicative inverse of sine of x, not cosine of x). Therefore the range of csc x is

csc x ≥ 1 or csc x ≤ −1.

The period of csc x is the same as that of sin x, which is 2π. Since sinx is an odd function, cscx is
also an odd function. Finally, at all of the points where cscx is undefined, the function has both left
and right vertical asymptotes, but just as in the case of sec x, the behavior of the vertical asymptotes
depends on the point. If a = . . . ,−2π, 0, 2π, . . ., then the left vertical asymptote at a goes to negative
infinity, and the right vertical asymptote goes to positive infinity:

lim
x→a−

csc x = −∞ and lim
x→a+

csc x = +∞.

If, on the other hand, b = −3π,−π, π, 3π, . . ., then the left vertical asymptote at b goes to positive
infinity, and the right vertical asymptote goes to negative infinity:

lim
x→b−

csc x = +∞ and lim
x→b+

csc x = −∞.

Derivatives of Trigonometric Functions

Now that we know the properties of all of the trigonometric functions, we should take their derivatives. All
of the trigonometric functions are differentiable wherever they are defined. To find their derivatives, we use
the quotient rule and the Chain Rule:

d
dx

(tan x) =
d
dx

(
sin x

cosx

)
=

(cos x) · (cosx)− (sinx) · (− sin x)
cos2 x

=
cos2 x + sin2 x

cos2 x
=

1
cos2 x

= sec2 x

d
dx

(cotx) =
d
dx

(cosx

sin x

)
=

(sinx) · (− sin x)− (cos x) · (cos x)
sin2 x

= − sin2 x + cos2 x

sin2 x
= − 1

sin2 x
= − csc2 x

d
dx

(secx) =
d
dx

(
1

cosx

)
= − 1

cos2 x
· (− sin x) =

sinx

cos2 x
=

1
cos x

· sin x

cos x
= sec x tan x

d
dx

(cscx) =
d
dx

(
1

sin x

)
= − 1

sin2 x
· (cosx) = − cos x

sin2 x
= − 1

sin x
· cos x

sin x
= − csc x cot x.

Now that we have these formulae for the derivatives of trigonometric functions, let us do some examples
of using these formulae. Let f(x) = tan(1 + x2). Then, where f(x) is defined, we have that

f ′(x) = sec2(1 + x2) · 2x = 2x sec2(1 + x2).

As another example, let g(x) = esec x tan x. Then, by the Chain Rule, we get that where g(x) is defined
its derivative is

g′(x) = esec x tan x · ((sec x tanx) · tan x + sec x · sec2 x) = (secx tan2 x + sec3 x)esec x tan x.

Finally, let h(x) = 1
sec x . Where h(x) is defined, it should be equal to cos x. Let us verify that, in the

domain of h, the derivative of h(x) is − sin x:

h′(x) = − 1
sec2 x

· sec x tan x = − tanx

sec x
= −

sin x
cos x

1
cos x

= − sinx.

Technically, cos x and h(x) are not the same function. Can you think of a reason why? (Hint: What are the
domains of these functions?)
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