1. In this problem we will play around with exponential functions (such as $f(x)=a^{x}$ ). Pay special attention to them as they will come up later.
(a.) Find the slope of the secant line of the graph of $g(x)=2^{x}$ through the points $(0, g(0))$ and $(1, g(1))$. You may use a calculator.
(b.) Repeat part a with the pairs of points $\{(0, g(0))$ and $(.1, g(.1))\},\{(0, g(0))$ and $(.01, g(.01))\}$, and $\{(0, g(0))$ and $(.0001, g(.0001))\}$. Again you may use a calculator.
(c.) What do you think the slope of the tangent line of $g(x)$ at the point $x=0$ is? What is $\ln (2)$ ?
(d.) Repeat parts a and b with the function $h(x)=3^{x}$ instead of the function $g(x)=2^{x}$. What do you think the slope of the tangent line of $h(x)$ at the point $x=0$ is? What is $\ln (3)$ ?
(e.) Repeat parts a and b with the function $k(x)=e^{x}$. Use the button on your calculator for the number $e$ (NOT an approximation for $e$ you may have learned). If you wish to use google's built in calculator to calculate powers of $e$, for example $e^{2}$, simply enter:
$\mathrm{e}^{\wedge} 2$
(f.) What do you think the slope of the tangent line to $e$ at $x=0$ is? What is $\ln (e)$ ?
(g.) Do you think there are any other numbers $a$ such that slope of the tangent line of $m(x)=a^{x}$ at $x=0$ is $\ln (e)$ ? Speak from your gut.
2. In this problem you will investigate continuity and tangent lines further. Consider the following function:

$$
f(x)= \begin{cases}x-1, & \text { if } x \leq 0 \\ x+1, & \text { if } x>0\end{cases}
$$

(a.) Graph the function $f$.
(b.) Calculate $\lim _{x \rightarrow 0^{+}} f(x)$ and $\lim _{x \rightarrow 0^{-}} f(x)$. What is $\lim _{x \rightarrow 0} f(x)$, and why?
(c.) Now let's try calculating the slope of a tangent line to this function. For example find the slope of the tangent line to $f$ at $x=1$ and $x=-1$. Remember to find the slope of the tangent line to $f$ at $x=-1$ you need to calculate the limit

$$
\lim _{h \rightarrow 0} \frac{f(-1+h)-f(-1)}{h}
$$

The limit you need to calculate to find the slope of the tangent line to $f$ at $x=1$ is similar.
(d.) If $a<0$ what is

$$
\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h} ?
$$

(e.) If $a>0$ what is

$$
\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h} ?
$$

(f.) Explain why you know that your answers in parts d and e are correct. Use graphical evidence (from the graph you drew in part a) to support your argument.
(g.) Calculate

$$
\lim _{h \rightarrow 0^{-}} \frac{f(0+h)-f(0)}{h}
$$

Note: This is LEFT limit.
(h.) Take a shot at calculating

$$
\lim _{h \rightarrow 0^{+}} \frac{f(0+h)-f(0)}{h}
$$

Note: This is a RIGHT limit. Also note that $f(0)=-1$.
(i.) Why do you think the right limit in part e is what it is? Again use graphical evidence (from the graph you drew in part a) to support your argument.
(j.) What do you think the continuity the function $f$ at the point $x=a$ has to do with evaluating the limit

$$
\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h} ?
$$

(k.) Consider the function

$$
w(x)= \begin{cases}x, & \text { if } x \neq 0 \\ 1, & \text { if } x=0\end{cases}
$$

Graph it quickly. Can you evaluate:

$$
\lim _{h \rightarrow 0^{-}} \frac{w(0+h)-w(0)}{h}
$$

or

$$
\lim _{h \rightarrow 0^{+}} \frac{w(0+h)-w(0)}{h} ?
$$

What goes wrong? Explain this graphically.Note carefully that $w(0)=1$ !
(l.) Consider the function $v(x)=x$. Using what you've learned above

$$
\lim _{h \rightarrow 0} \frac{v(0+h)-v(0)}{h} ?
$$

What goes right as compared to the function $w$ ? Explain graphically.
(m.) What property do you think a function $q(x)$ needs to have at the point $x=0$ in order to have a chance at being able to evaluate the limit

$$
\lim _{h \rightarrow 0} \frac{q(0+h)-q(0)}{h} ?
$$

(n.) What property do you think a function $q(x)$ needs to have at the point $x=a$ in order to have a chance at being able to evaluate the limit

$$
\lim _{h \rightarrow 0} \frac{q(a+h)-q(a)}{h} ?
$$

(o.) Do you think that this property is enough to ensure that the limit

$$
\lim _{h \rightarrow 0} \frac{q(a+h)-q(a)}{h}
$$

exists? Examine the function

$$
p(x)=\left\{\begin{array}{lr}
-x, & \text { if } x \leq 0 \\
x, & \text { if } x>0
\end{array}\right.
$$

at the point $x=0$ function before you say anything too bold. This function is often called the absolute value function, and is often written $p(x)=|x|$ for short. It was featured on the first midterm exam.

