Review: Properties of Graphs - 9/14/16

1 Increasing/Decreasing

Definition 1.0.1 A function f is *increasing* on an interval I if f(b) > f(a) whenever b > a for all points a and b in I that are in the domain of f.

Definition 1.0.2 A function f is **decreasing** on an interval I if f(b) < f(a) whenever b > a for all points a and b in I that are in the domain of f.

Example 1.0.3 The following graph is increasing on $(0, \infty)$. It is decreasing on $(-\infty, 0)$.

Definition 1.0.4 A function f is weakly increasing on an interval I if $f(b) \ge f(a)$ whenever b > a for all points a and b in I that are in the domain of f.

Definition 1.0.5 A function f is weakly decreasing on an interval I if $f(b) \leq f(a)$ whenever b > a for all points a and b in I that are in the domain of f.

Example 1.0.6 *The following function is weakly increasing:*

2 Intercepts

Definition 2.0.7 A function has a y intercept at the point where it crosses the y axis. A point on a function is a y-intercept if and only if the x coordinate is 0.

Definition 2.0.8 A function has an x intercept at the point where it crosses the x axis. A point on a function is an x-intercept if and only if the y coordinate is 0.

Example 2.0.9 Let $f(x) = x^2 + 2$. What are the x and y intercepts? To find the y intercept, plug 0 in for x: $y = 0^2 + 2 = 2$, so y intercept is at (0, 2).

To find the x intercept, plug 0 in for y: $0 = x^2 + 2$, so $x^2 = -2$. This is impossible, so we don't have an x intercept.

Example 2.0.10 Let $f(x) = x^2 - 5x + 4$. What's the y intercept? We plug 0 in for x to get that y = 4, so the intercept is at (0, 4). What about the x intercept? We plug 0 in for y to get $0 = x^2 - 5x + 4 = (x - 1)(x - 4)$, so we have two x intercepts, (1, 0) and (4, 0).

Practice Problems

Find the x and y intercepts for $g(x) = x^2 + 15x + 56$.

3 Relative Maxima and Minima

Definition 3.0.11 A function f has a relative maximum (or local maximum) at c if f(c) > f(x) when x is in an open interval around c (i.e. x is near c). It has a relative minimum at c if f(c) < f(x) when x is near c.

A function f has an **absolute maximum** (or **global maximum**) at c if f(c) > f(x) for all x in the domain of f. It has an **absolute minimum** at c if f(c) < f(x) for all x in the domain of f.

Things to notice: a hole in the graph cannot be a max or min. Neither can endpoints.

4 Sequences

Definition 4.0.12 A sequence $\{a_n\}_{n=1}^{\infty}$ is *increasing* if $a_{n+1} > a_n$ for all n.

Example 4.0.13 $\{1, 2, 3, ...\}$ is an increasing sequence.

Definition 4.0.14 A sequence $\{a_n\}_{n=1}^{\infty}$ is decreasing if $a_{n+1} < a_n$ for all n.

Example 4.0.15 $\{-1, -2, -3, ...\}$ is decreasing.

Definition 4.0.16 A sequence $\{a_n\}_{n=1}^{\infty}$ is **bounded** if there exists a number M such that $|a_n| \leq M$ for all n. The number M is called a **bound** on the sequence.

Example 4.0.17 $\{\frac{1}{n^2}\}_{n=1}^{\infty}$ is bounded by 1. It is also bounded by anything bigger than 1. $\{1, 2, 3, ...\}$ is NOT bounded, since it keeps increasing towards infinity. $\{-1, -2, -3, ...\}$ is NOT bounded, since it keep decreasing towards $-\infty$.

Practice Problems

Are the following sequences increasing, decreasing, or neither? Are they bounded? If so, find a bound.

- 1. $\{\frac{1}{n^3}\}_{n=1}^{\infty}$
- 2. $\left\{\frac{n^3}{n^2+2}\right\}_{n=1}^{\infty}$
- 3. $\{2n\}_{n=1}^5$