Review: Properties of Graphs - 9/14/16

1 Increasing/Decreasing

Definition 1.0.1 A function f is increasing on an interval I if $f(b)>f(a)$ whenever $b>a$ for all points a and b in I that are in the domain of f.

Definition 1.0.2 A function f is decreasing on an interval I if $f(b)<f(a)$ whenever $b>a$ for all points a and b in I that are in the domain of f.

Example 1.0.3 The following graph is increasing on $(0, \infty)$. It is decreasing on $(-\infty, 0)$.

Definition 1.0.4 A function f is weakly increasing on an interval I if $f(b) \geq f(a)$ whenever $b>a$ for all points a and b in I that are in the domain of f.

Definition 1.0.5 A function f is weakly decreasing on an interval I if $f(b) \leq f(a)$ whenever $b>a$ for all points a and b in I that are in the domain of f.

Example 1.0.6 The following function is weakly increasing:

2 Intercepts

Definition 2.0.7 A function has a \boldsymbol{y} intercept at the point where it crosses the y axis. A point on a function is a y-intercept if and only if the x coordinate is 0 .

Definition 2.0.8 A function has an \boldsymbol{x} intercept at the point where it crosses the x axis. A point on a function is an x-intercept if and only if the y coordinate is 0 .

Example 2.0.9 Let $f(x)=x^{2}+2$. What are the x and y intercepts?
To find the y intercept, plug 0 in for x :
$y=0^{2}+2=2$, so y intercept is at $(0,2)$.
To find the x intercept, plug 0 in for y :
$0=x^{2}+2$, so $x^{2}=-2$. This is impossible, so we don't have an x intercept.
Example 2.0.10 Let $f(x)=x^{2}-5 x+4$. What's the y intercept? We plug 0 in for x to get that $y=4$, so the intercept is at $(0,4)$. What about the x intercept? We plug 0 in for y to get $0=x^{2}-5 x+4=(x-1)(x-4)$, so we have two x intercepts, $(1,0)$ and $(4,0)$.

Practice Problems

Find the x and y intercepts for $g(x)=x^{2}+15 x+56$.

3 Relative Maxima and Minima

Definition 3.0.11 A function f has a relative maximum (or local maximum) at c if $f(c)>$ $f(x)$ when x is in an open interval around c (i.e. x is near c). It has a relative minimum at c if $f(c)<f(x)$ when x is near c.

A function f has an absolute maximum (or global maximum) at c if $f(c)>f(x)$ for all x in the domain of f. It has an absolute minimum at c if $f(c)<f(x)$ for all x in the domain of f.

Things to notice: a hole in the graph cannot be a max or min. Neither can endpoints.

4 Sequences

Definition 4.0.12 A sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ is increasing if $a_{n+1}>a_{n}$ for all n.
Example 4.0.13 $\{1,2,3, \ldots\}$ is an increasing sequence.
Definition 4.0.14 A sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ is decreasing if $a_{n+1}<a_{n}$ for all n.
Example 4.0.15 $\{-1,-2,-3, \ldots\}$ is decreasing.
Definition 4.0.16 A sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ is bounded if there exists a number M such that $\left|a_{n}\right| \leq M$ for all n. The number M is called a bound on the sequence.

Example 4.0.17 $\left\{\frac{1}{n^{2}}\right\}_{n=1}^{\infty}$ is bounded by 1. It is also bounded by anything bigger than 1 .
$\{1,2,3, \ldots\}$ is NOT bounded, since it keeps increasing towards infinity.
$\{-1,-2,-3, \ldots\}$ is NOT bounded, since it keep decreasing towards $-\infty$.

Practice Problems

Are the following sequences increasing, decreasing, or neither? Are they bounded? If so, find a bound.

1. $\left\{\frac{1}{n^{3}}\right\}_{n=1}^{\infty}$
2. $\left\{\frac{n^{3}}{n^{2}+2}\right\}_{n=1}^{\infty}$
3. $\{2 n\}_{n=1}^{5}$
