Taylor Polynomial Practice
1. Consider the function
f(z) = cos(x)
Compute the 5" degree Taylor polynomial of f(x) centered at 0.
Answer:

We need to know the first 5 derivatives of cos(z), which are
— sin(x), — cos(z), sin(x), cos(z), and — sin(z),

respectively.

Thus the 5" degree Taylor polynomial of f(z) centered at 0 is
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which can be reduced to
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2. Consider the function
g(z) = In(x)

Compute the 5" degree Taylor polynomial of g(z) centered at 1.
Answer:

We need to know the first 5 derivatives of In(z), which are
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respectively.

Thus the 5 degree Taylor polynomial of g(z) centered at 1 is
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which can be reduced to
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3. Consider the function
h(z) = €®
Compute the 5% degree Taylor polynomial of h(x) centered at 0. How could you use this to
approximate e?
Answer:
We need to know the first 5 derivatives of ¢*. But the derivative of e* is itself. So
dn
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Thus the 5 degree Taylor polynomial of h(x) centered at 0 is
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which can be reduced to
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If we want to approximate e, we know that h(1) = e' = 1. So we know that
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