MATH 1: INTRODUCTION TO CALCULUS MIDTERM EXAM \#1 SOLUTIONS

Problem 1. [12 points]
(a) Simplify $2 \ln \left(e^{3}\right)$.

$$
2 \ln \left(e^{3}\right)=2(3)=6
$$

(b) Let $f(x)=\cos (x)$ and $g(x)=e^{x^{2}}$. Find $(g \circ f)(x)$ and $(f \circ g)(x)$.

$$
\begin{aligned}
& (g \circ f)(x)=g(\cos (x))=e^{\cos (x)^{2}}=e^{\cos ^{2}(x)} \\
& (f \circ g)(x)=f\left(e^{x^{2}}\right)=\cos \left(e^{x^{2}}\right)
\end{aligned}
$$

(c) Solve the equation $\ln (\sqrt{x-5})=1$ for x.

$$
\begin{aligned}
\ln (\sqrt{x-5}) & =1 \\
\sqrt{x-5} & =e^{1} \\
x-5 & =e^{2} \\
x=e^{2}+5 &
\end{aligned}
$$

(d) Solve the equation $9^{\left(3^{x}\right)}=3^{\left(27^{x}\right)}$ for x.

$$
\begin{aligned}
9^{\left(3^{x}\right)} & =3^{\left(27^{x}\right)} \\
3^{\left(2 * 3^{x}\right)} & =3^{27^{x}} \\
2 \cdot 3^{x} & =27^{x} \\
2 \cdot 3^{x} & =3^{3 x} \\
\log _{3} 2+x & =3 x \\
\log _{3} 2 & =2 x \\
x=\frac{1}{2} \log _{3} 2 &
\end{aligned}
$$

Problem 2. [9 points]
(a) Find all solutions of $2 \cos ^{2}(\theta) \tan (\theta)=\sin (\theta)$ for θ in the interval $[0,2 \pi]$.

$$
\begin{aligned}
& 2 \cos ^{2}(\theta) \tan (\theta)=\sin (\theta) \\
& 2 \cos ^{2}(\theta) \frac{\sin (\theta)}{\cos (\theta)}=\sin (\theta) \\
& 2 \cos (\theta) \sin (\theta)=\sin (\theta) \\
& 2 \cos (\theta) \sin (\theta)-\sin (\theta)=0 \\
& \sin (\theta)(2 \cos (\theta)-1)=0 \\
& \sin (\theta)=0 \text { or } 2 \cos (\theta)-1=0 \\
& \sin (\theta)=0 \text { or } \cos (\theta)=\frac{1}{2} \\
& \theta=0, \frac{\pi}{3}, \pi, \frac{5 \pi}{3}
\end{aligned}
$$

(b) Let $f(x)=(x-3)^{2}$ for $x \leq 3$. Find $f^{-1}(x)$.

$$
\begin{aligned}
y & =(x-3)^{2} \\
y & =(x-3)^{2} \\
\sqrt{y} & = \pm(x-3) \\
3 \pm \sqrt{y} & =x \\
f^{-1}(x)=3-\sqrt{x} &
\end{aligned}
$$

(c) Solve the equation $\log _{2}(\sqrt{x})+\log _{2}(\sqrt[3]{x})=2$ for x.

$$
\begin{aligned}
\log _{2}(\sqrt{x})+\log _{2}(\sqrt[3]{x}) & =2 \\
\log _{2}(\sqrt{x} \cdot \sqrt[3]{x}) & =2 \\
\sqrt{x} \cdot \sqrt[3]{x} & =2^{2} \\
x^{\frac{5}{6}} & =4 \\
x=4^{\frac{6}{5}} & =
\end{aligned}
$$

Problem 3. [8 points] Mark the following statements as true or false.

False $\quad \ln \left(e^{-2}\right)=e^{\ln (-2)}$

False If k is positive, 10^{-k} is negative.

False $\quad \log _{5}(x y)=\log _{5}(x) \log _{5}(y)$

True If a is a positive, constant, then $\ln \left(a^{r}\right)=r \ln (a)$.

False $\quad \log _{3} 0=1$

False \quad The domain of $f(x)=2^{x}+1$ is $(2, \infty)$.

False \quad The graph of $y=e^{\ln x}$ is a parabola.

True The slope of a secant line passing through the point ($a, f(a)$) and a nearby point on the graph of $f(x)$ approximates the instantaneous rate of change of $f(x)$ at a.

Problem 4. [7 points]
(1) Match the transformations of $f(x)$ with their graphs.

Options: $-2 f(x), f(x / 2), f(1-x)$

(2) Is $f(x)$ even, odd, or neither? neither

Problem 5. [12 points]
(a) Plot the graph of $f(x)=e^{x}$ and its inverse function $f^{-1}(x)=\ln (x)$.
(b) Let $g(x)=e^{2 x}$ and $h(x)=e^{x+1}$. What are $g^{-1}(x)$ and $h^{-1}(x)$?

$$
\begin{aligned}
& g^{-1}(x)=\frac{1}{2} \ln x \\
& h^{-1}(x)=\ln x-1
\end{aligned}
$$

(c) Describe which basic transformation we need to

- transform the graph of $f(x)=e^{x}$ into the graph of $g(x)=e^{2 x}$. horizontal compression by a factor of 2
- transform the graph of $f^{-1}(x)=\ln (x)$ into the graph of $g^{-1}(x)$, as found above. vertical compression by a factor of 2
(d) Describe which basic transformation we need to
- transform the graph of $f(x)=e^{x}$ into the graph of $h(x)=e^{x+1}$. shift left by 1
- transform the graph of $f^{-1}(x)=\ln (x)$ into the graph of $h^{-1}(x)$ as found above. shift down by 1
(e) Fill in the blanks below with options from the bank of terms.

If we horizontally compress the original function by a factor of a, its corresponding inverse function will be vertically compressed by a factor of $a(a>1)$.
(There are other correct answers)
Term Bank: horizontally compress, horizontally stretch, vertically compress, vertically stretch

If we horizonally shift left the original function $a(a>0)$ units, its corresponding inverse function will be vertically shifted down a units ($a>0$).
(There are other correct answers)
Term Bank: horizontally shift left, horizontally shift right, vertically shift up, vertically shift down

Problem 6. [8 points]
The number of hours of daylight in a northeastern city is modeled by the function

$$
N(t)=12+3 \sin \left[\frac{2 \pi}{365}(t-79)\right]
$$

where t is the number of days after January 1 .
(a) Find the amplitude and period of $N(t)$.

The amplitude is 3 , and the period is 365 .
(b) How many hours of sunlight does the model predict on the longest day of the year? The sine function fluctuates between -1 and 1 , so the maximum value of $\sin (x)$ is 1. Therefore, the maximum value of $N(t)$ is $12+3(1)=15$. On the longest day of the year, the model predicts 15 hours of sunlight.
(c) How many hours of sunlight does the model predict 90 days after January 1?

$$
\begin{aligned}
N(90) & \left.=12+3 \sin \left[\frac{2 \pi}{365}(90-79)\right]=12+3 \sin \left[\frac{2 \pi}{365} \cdot 11\right)\right] \\
& =12+3 \sin \left[\frac{22 \pi}{365}\right]
\end{aligned}
$$

Problem 7. [9 points]
The figure below shows a track of the Green-Red Mountain. The first part of the mountain is linear, while the rest is part of the quadratic curve $-\frac{1}{2} x^{2}+5 x-6$.

(a) Suppose the figure depicts the entire mountain, modeled by a function $f(x)$. Using the given coordinates and the formula of the quadratic curve, write down a piecewise definition of $f(x)$.

$$
f(x)= \begin{cases}x+2 & x \leq 4 \\ -\frac{1}{2} x^{2}+5 x-6 & x \geq 4\end{cases}
$$

(b) Engineers are working to decide if it is safe for a train to travel on the mountain or if they need to build a tunnel through the mountain. If the absolute value of the slope at the foot of the mountain, which is the point $(8,2)$, is greater than 2 , it is too dangerous to run a train, and they need to build a tunnel. Compute the slope of the secant line through $\left(7, \frac{9}{2}\right)$ and $(8,2)$, and the slope of the secant line through $\left(\frac{15}{2}, \frac{27}{8}\right)$ and $(8,2)$. Use these slopes to estimate the slope of the tangent line at $(8,2)$ and help the engineers make the decision.

$$
\begin{aligned}
& m_{1}=\frac{2-\frac{9}{2}}{8-7}=\frac{-\frac{5}{2}}{1}=-\frac{5}{2} \\
& m_{2}=\frac{2-\frac{27}{8}}{8-\frac{15}{2}}=\frac{-\frac{11}{8}}{\frac{1}{2}}=-\frac{22}{8}=-\frac{11}{4}
\end{aligned}
$$

Based on these two slopes, we estimate that the slope of the tangent line at $(8,2)$ is around -3 , or at least steeper than -2 , and thus not safe for the train.

Problem 8. [6 points]
Show algebraically whether the following functions are even, odd, or neither:
(a) $f(x)=e^{|x|}$

$$
f(-x)=e^{|-x|}=e^{|x|}=f(x)
$$

Therefore, f must be even.
(b) $g(x)=\sin x \cos x$

$$
g(-x)=\sin (-x) \cos (-x)=-\sin (x) \cos (x)=-g(x)
$$

Therefore, g must be odd.
(c) $h(x)=x \sin x$

$$
h(-x)=(-x) \sin (-x)=(-x) \cdot(-\sin (x))=x \sin (x)=h(x)
$$

Therefore, h must be even.

