Limit Laws

1 Finite Limits

If $\lim _{x \rightarrow a} f(x)=L$ and $\lim _{x \rightarrow a} g(x)=M$, then limits (including one-sided limits) obey the following laws:

1. Constant Law: $\lim _{x \rightarrow a} c=c$
2. I-don't-have-a-name-for-this Law: $\lim _{x \rightarrow a} x=a$
3. Sum/Difference Law: $\lim _{x \rightarrow a}(f(x) \pm g(x))=\lim _{x \rightarrow a} f(x) \pm \lim _{x \rightarrow a} g(x)=L \pm M$
4. Product Law: $\lim _{x \rightarrow a}(f(x) \cdot g(x))=\lim _{x \rightarrow a} f(x) \cdot \lim _{x \rightarrow a} g(x)=L \cdot M$
5. Quotient Law: $\lim _{x \rightarrow a}\left(\frac{f(x)}{g(x)}\right)=\frac{\lim _{x \rightarrow a} f(x)}{\lim _{x \rightarrow a} g(x)}=\frac{L}{M}$, (as long as $\left.M \neq 0\right)$
6. Power Law: $\lim _{x \rightarrow a} f(x)^{n}=\left(\lim _{x \rightarrow a} f(x)\right)^{n}=L^{n}$, (if n is a positive integer)
7. Root Law: $\lim _{x \rightarrow a} \sqrt[n]{f(x)}=\sqrt[n]{\lim _{x \rightarrow a} f(x)}=\sqrt[n]{L}$, (for all L if n is odd and for $L \geq 0$ if n is even)

2 Infinite Limits

If one (or both) of $\lim _{x \rightarrow a} f(x)$ and $\lim _{x \rightarrow a} g(x)$ are \pm, then many limits still obey the above laws, with the following conventions. Let $c>0$ be a positive real number; then:

- $\infty \pm c=\infty$
- $\infty \cdot c=\infty$
- $\infty \cdot-1=-\infty$
- $\frac{1}{\infty}=0$
- $\infty+\infty=\infty$
- $\infty \cdot \infty=\infty$

Indeterminate forms are expressions that cannot be assigned a value. Encountering one of these while solving a limit problem indicates that you should find a different way to evaluate the limit.

$$
\frac{0}{0}, \frac{\infty}{\infty}, 0 \cdot \infty, 1^{\infty}, \infty-\infty, 0^{0}, \infty^{0}
$$

3 Practice

Evaluate the following limits:
a.

$$
\lim _{x \rightarrow 2} 5
$$

b.

$$
\lim _{x \rightarrow 0^{-}}\left(x+\frac{1}{x}\right)
$$

c.

$$
\lim _{x \rightarrow 0^{+}}\left(x \cdot \frac{1}{x}\right)
$$

d.

$$
\lim _{x \rightarrow 0}\left(\frac{x+1}{x-2} \cdot \frac{-1}{x^{2}}\right)
$$

e.

$$
\lim _{x \rightarrow 0^{+}}\left(\frac{x}{\ln x}\right)
$$

