MATH 1 FALL 2019 : LECTURE 13 MON 10-14-19

SAMUEL TRIPP

Contents

I. Big Idea Of The Day 1
II. Defining the Derivative 1
III. The Derivative as a Function 2

I. Big Idea Of The Day

Remarks

Functions describe the world! Now that we have limits and continuous functions, we turn our attention to the central topic of this course: derivatives! We need to define what they are, discuss their physical interpretation, and figure out how to compute them.

II. Defining the Derivative

Definition

Let $f(x)$ be a function defined in an open interval containing a. The tangent line to $f(x)$ at a is the line passing through $(a, f(a))$ with slope

$$
m_{\tan }=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}
$$

provided the limit exists.
Equivalently, we may define the tangent line to $f(x)$ at a as the line passing through ($a, f(a)$) with slope

$$
m_{\mathrm{tan}}=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h} .
$$

Definition

This is the derivative. Let $f(x)$ be a function defined on an open interval containing a. Then the derivative of $f(x)$ at a, which we write $f^{\prime}(a)$, is the slope of the tangent line to $f(x)$ at a, if it exists. Equivalently, $f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}$, provided this limit exists.

III. The Derivative as a Function

Remarks

Functions are just a set of inputs, a set of outputs, and a rule for assigning exactly one output to each input. The derivative function for $f(x)$ takes as input real numbers, and gives as output $f^{\prime}(a)$, wherever it is defined.

Definition

Let f be a function. Then the derivative function, f^{\prime}, is the function whose domain consists of the values of x for which the following limit exists:

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} .
$$

Definition

- A function f is said to be differentiable at a if $f^{\prime}(a)$ exists.
- A function f is said to be differentiable on S if it is differentiable at every point in an open set S.
- A function f is said to be differentiable if it is differentiable at every point in it's domain.

Example

Find the derivative function of $f(x)=x^{2}+3 x+2 . \quad$ We know $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{x^{2}+2 x h+h^{2}+3 x+3 h+2-x^{2}-3 x-2}{h}=$ $\lim _{h \rightarrow 0} \frac{h(2 x+h+3)}{h}=\lim _{h \rightarrow 0} 2 x+h+3=2 x+3$.

Example

Find the derivative function of $g(x)=\sqrt{x}$. We know $g^{\prime}(x)=\lim _{h \rightarrow 0} \frac{g(x+h)-g(h)}{h}=$ $\lim _{h \rightarrow 0} \frac{\sqrt[2]{x+h}-\sqrt[2]{x}}{h}=\lim _{h \rightarrow 0} \frac{x+h-x}{h(\sqrt{x+h}+\sqrt{x})}=\lim _{h \rightarrow 0} \frac{1}{\sqrt{x+h}+\sqrt{x}}=\frac{1}{2 \sqrt{x}}$

Content

There is a ton of notation we use to all mean the derivative. If we write $f(x)$ for the function, we can denote the derivative function by $\frac{d}{d x}(f(x))$ or $f^{\prime}(x)$. If we write y for the function, we can denote the derivative function by y^{\prime} or $\frac{d y}{d x}$. This is all just notation that means the same exact thing.

IV. Graph of the Derivative Function

Remarks

The derivative of a function tells us the instantaneous rate of change of the function; thus we can figure out it's sign without even knowing the original function. Either by direct computation, or by approximation, we can graph the derivative of a function.

Example

Let's graph a few of the functions and derivatives we have computed, $f(x)=x^{2}+3 x+2$ and $g(x)=\sqrt{x}$, and see what the relationship between the function and its derivative tells us.

Example

Let's look at another example: $r(x)=10 x(x-1)(x+1)$. Can we graph the derivative function, r^{\prime} ? Can we compute the derivative? Let's: $\lim _{h \rightarrow 0} \frac{r(x+h)-r(x)}{h}=$

$$
\begin{aligned}
& \lim _{h \rightarrow 0} \frac{\left(10 h^{3}+30 h^{2} x+30 h x^{2}-10 h+10 x^{3}-10 x\right)-\left(10 x^{3}-10 x\right)}{h}= \\
& \lim _{h \rightarrow 0} \frac{h\left(10 h^{2}+30 h x+30 x^{2}-10\right)}{h}=\lim _{h \rightarrow 0} 10 h^{2}+30 h x+30 x^{2}-10=30 x^{2}-10
\end{aligned}
$$

