MATH 1 FALL 2019 : LECTURE 19 MON 10-28-19

SAMUEL TRIPP

## Contents

I. Big Idea Of The Day ..... 1
II. Constant Rule ..... 1
III. Power Rule ..... 1
IV. Sum and Difference Rules ..... 2
V. Differentiable Functions are Continuous ..... 3
VI. Product Rule ..... 3
VII. Quotient Rule ..... 4

## I. Big Idea Of The Day

## Remarks

Derivatives are just limits, and limits are hard to compute. Can we figure out the derivatives of a bunch of common functions, and how to combine them, so that we can compute a bunch of limits of harder functions without doing limits.

## II. Constant Rule

## Content

Consider the function $f(x)=c$. What is the rate of change of this function at any point? 0 ! So we should have $f^{\prime}(x)=0$. Let's check. We can compute $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{c-c}{h}=\lim _{h \rightarrow 0} \frac{0}{h}=\lim _{h \rightarrow 0} 0=0$, as desired. This is the constant rule: if $c$ is some constant real number and $f(x)=c$, then $f^{\prime}(x)=0$.

## III. Power Rule

## Content

We have found that for $f(x)=x^{2}, f^{\prime}(x)=2 x$. Let's compute $g^{\prime}(x)$ for $g(x)=$ $x^{3}$. We get $g^{\prime}(x)=\lim _{h \rightarrow 0} \frac{g(x+h)-g(x)}{h}=\lim _{h \rightarrow 0} \frac{x^{3}+3 x^{2} h+3 x h^{2}+h^{3}-x^{3}}{h}=$ $\lim _{h \rightarrow 0} \frac{h\left(3 x^{2}+3 x h+h^{2}\right)}{h}=3 x^{2}$. This suggests what we hope the derivative of a power function.

## Content

Let $f(x)=x^{n}$. Let's first compute $(x+h)^{n}=x^{n}+n x^{n-1} h+$ $h^{2}(\ldots$ other terms $\ldots) . \quad$ Then $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=$ $\lim _{h \rightarrow 0} \frac{x^{n}+n x^{n-1} h+h^{2}(\ldots \text { other terms } \ldots)-x^{n}}{h}=\lim _{h \rightarrow 0} n x^{n-1}+h(\ldots$ other terms $\ldots)=$ $n x^{n-1}$. So we have derived the power rule: if $n$ is a positive integer, and $f(x)=x^{n}$, then $f^{\prime}(x)=n x^{n-1}$.

## IV. Sum and Difference Rules

## Remarks

There are many different notations for the derivative. To avoid writing the derivative of a sum function as $(f+g)^{\prime}(x)$, we will write $\frac{\mathrm{d}}{\mathrm{dx}}(f(x)+g(x))$. But these are just different notation for the same thing: $f+g$ is some function, and $(f+g)^{\prime}(x)$ and $\frac{\mathrm{d}}{\mathrm{dx}}(f(x)+g(x))$ are both the derivative function to this function.

## Content

Let's compute $\frac{\mathrm{d}}{\mathrm{dx}}(f(x)+g(x))$. By plugging in to the definition and simplifying and applying limit laws, we get that $\frac{\mathrm{d}}{\mathrm{dx}}(f(x)+g(x))=$ $\lim _{h \rightarrow 0} \frac{f(x+h)+g(x+h)-(f(x)+g(x))}{h}=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)+g(x+h)-g(x)}{h}=$ $\lim _{h \rightarrow 0}\left(\frac{f(x+h)-f(x)}{h}+\frac{g(x+h)-g(x)}{h}\right) \quad=\quad \lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}+$ $\lim _{h \rightarrow 0} \frac{g(x+h)-g(x)}{h}=\frac{\mathrm{d}}{\mathrm{dx}}(f(x))+\frac{\mathrm{d}}{\mathrm{dx}}(g(x))=f^{\prime}(x)+g^{\prime}(x)$. This is the sum rule: $\frac{\mathrm{d}}{\mathrm{dx}}(f(x)+g(x))=\frac{\mathrm{d}}{\mathrm{dx}} f(x)+\frac{\mathrm{d}}{\mathrm{dx}} g(x)$. This is how we would expect sums to interact with derivatives, and is exactly how differences work too. The difference rule is that $\frac{\mathrm{d}}{\mathrm{dx}}(f(x)-g(x))=\frac{\mathrm{d}}{\mathrm{dx}} f(x)-\frac{\mathrm{d}}{\mathrm{dx}} g(x)$.

## Example

For $f(x)=x^{5}+x^{2}-3$, compute $f^{\prime}(x)$.

## Content

Let's do one more derivative rule then figure out the derivative of any polynomial. We see for some constant $c, \frac{\mathrm{~d}}{\mathrm{dx}} c f(x)=\lim _{h \rightarrow 0} \frac{c f(x+h)-c f(x)}{h}=\lim _{h \rightarrow 0} c \frac{f(x+h)-f(x)}{h}=$ $c \lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=c \frac{\mathrm{~d}}{\mathrm{dx}} f(x)$, which is the constant multiple rule.

## Example

Now we can compute the derivative of any polynomial: if $f(x)=4 x^{3}-2 x^{2}+19 x-3$, what is $f^{\prime}(x)$ ? If $g(x)=\pi x^{4}+x^{3}-\frac{3}{5} x^{2}-9$, what is $g^{\prime}(x)$ ?

## V. Differentiable Functions are Continuous

## Remarks

While we are in the mood of proving things, let's prove that differentiable functions are continuous.

## Content

Suppose $f(x)$ is differentiable at $a$. Then $f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}$ exists. We want to show $f(x)$ is continuous $a$, or $\lim _{x \rightarrow a} f(x)=f(a)$. By adding 0 and multiplying by 1 we get

$$
\begin{aligned}
\lim _{x \rightarrow a} f(x) & =\lim _{x \rightarrow a}(f(x)-f(a)+f(a)) \\
& =\lim _{x \rightarrow a}\left(\frac{f(x)-f(a)}{x-a} \cdot(x-a)+f(a)\right) \\
& =\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a} \cdot \lim _{x \rightarrow a}(x-a)+\lim _{x \rightarrow a} f(a) \\
& =f^{\prime}(a) \cdot 0+f(a)=f(a)
\end{aligned}
$$

## VI. Product Rule

## Remarks

This is the first rule that we have learned this whole class that doesn't work the way we want! Let's look at $\frac{\mathrm{d}}{\mathrm{dx}}\left(x^{2}\right)=2 x$. We want to have that $\frac{\mathrm{d}}{\mathrm{dx}}(f(x) g(x))=$ $\frac{\mathrm{d}}{\mathrm{dx}} f(x) \frac{\mathrm{d}}{\mathrm{dx}} g(x)$, but this would mean $2 x=\frac{\mathrm{d}}{\mathrm{dx}}\left(x^{2}\right)=\frac{\mathrm{d}}{\mathrm{dx}}(x) \cdot \frac{\mathrm{d}}{\mathrm{dx}}(x)=1 \cdot 1=1$, which it doesn't. So our product rule must be more complicated.

## Content

Let's just compute, in a clever way by adding zero. We get $\frac{\mathrm{d}}{\mathrm{dx}}(f(x) \cdot g(x))=\lim _{h \rightarrow 0} \frac{f(x+h) g(x+h)-f(x) g(x)}{h}=$ $\lim _{h \rightarrow 0} \frac{f(x+h) g(x+h)-f(x) g(x+h)+f(x) g(x+h)-f(x) g(x)}{h}=$
$\lim _{h \rightarrow 0} \frac{(f(x+h)-f(x)) g(x+h)+f(x)(g(x+h)-g(x))}{h}=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} g(x+$
$h)+\frac{g(x+h)-g(x)}{h} f(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \lim _{h \rightarrow 0} g(x+h)+$ $\lim _{h \rightarrow 0} \frac{g(x+h)-g(x)}{h} \lim _{h \rightarrow 0} f(x)=f^{\prime}(x) g(x)+g^{\prime}(x) f(x)=\frac{\mathrm{d}}{\mathrm{dx}}(f(x)) \cdot g(x)+\frac{\mathrm{d}}{\mathrm{dx}}(g(x))$. $f(x)$. This is the product rule: $\frac{\mathrm{d}}{\mathrm{dx}} f(x) g(x)=\frac{\mathrm{d}}{\mathrm{dx}}(f(x)) \cdot g(x)+\frac{\mathrm{d}}{\mathrm{dx}}(g(x)) \cdot f(x)$.

## VII. Quotient Rule

## Content

Again we see that $\frac{\mathrm{d}}{\mathrm{dx}} f(x) / g(x)$ is not equal to $\frac{\mathrm{d}}{\mathrm{dx}} f(x) / \frac{\mathrm{d}}{\mathrm{dx}} g(x)$, by considering $\frac{\mathrm{d}}{\mathrm{dx}} x^{3} / x=\frac{\mathrm{d}}{\mathrm{dx}} x^{2}=2 x$, but $\frac{\mathrm{d}}{\mathrm{dx}} x^{3} / \frac{\mathrm{d}}{\mathrm{dx}} x=3 x^{2} / 1=3 x^{2}$. We need a more complicated rule! We get the quotient rule: $\frac{\mathrm{d}}{\mathrm{dx}} \frac{f(x)}{g(x)}=\frac{\frac{\mathrm{d}}{\mathrm{dx}}(f(x)) \cdot g(x)-f(x) \cdot \frac{\mathrm{d}}{\mathrm{dx}}(g(x))}{(g(x))^{2}}$.

## Content

With this, we can extend the power rule to the negative integers too. The extended power rule: if $n$ is any integer, $\frac{\mathrm{d}}{\mathrm{dx}} x^{n}=n x^{n-1}$.

