MATH 1 FALL 2019 : LECTURE 19 MON 10-28-19

SAMUEL TRIPP

Contents

I.	Big Idea Of The Day	1
II.	Constant Rule	1
III.	Power Rule	1
IV.	Sum and Difference Rules	2
ν.	Differentiable Functions are Continuous	3
VI.	Product Rule	3
VII	. Quotient Rule	4

I. BIG IDEA OF THE DAY

Remarks

Derivatives are just limits, and limits are hard to compute. Can we figure out the derivatives of a bunch of common functions, and how to combine them, so that we can compute a bunch of limits of harder functions without doing limits.

II. CONSTANT RULE

Content
Consider the function $f(x) = c$. What is the rate of change of this function at any point? 0! So we should have $f'(x) = 0$. Let's check. We can compute $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{c-c}{h} = \lim_{h \to 0} \frac{0}{h} = \lim_{h \to 0} 0 = 0$, as desired. This is the constant rule : if c is some constant real number and $f(x) = c$, then $f'(x) = 0$.

III. POWER RULE

Content We have found that for $f(x) = x^2$, f'(x) = 2x. Let's compute g'(x) for $g(x) = x^3$. We get $g'(x) = \lim_{h \to 0} \frac{g(x+h) - g(x)}{h} = \lim_{h \to 0} \frac{x^3 + 3x^2h + 3xh^2 + h^3 - x^3}{h} = \lim_{h \to 0} \frac{h(3x^2 + 3xh + h^2)}{h} = 3x^2$. This suggests what we hope the derivative of a power function.

Content

Let $f(x) = x^n$. Let's first compute $(x + h)^n = x^n + nx^{n-1}h + h^2(\dots$ other terms...). Then $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{x^n + nx^{n-1}h + h^2(\dots$ other terms...) $-x^n}{h} = \lim_{h \to 0} nx^{n-1} + h(\dots$ other terms...) $= nx^{n-1}$. So we have derived the **power rule**: if n is a positive integer, and $f(x) = x^n$, then $f'(x) = nx^{n-1}$.

IV. SUM AND DIFFERENCE RULES

Remarks

There are many different notations for the derivative. To avoid writing the derivative of a sum function as (f + g)'(x), we will write $\frac{d}{dx}(f(x) + g(x))$. But these are just different notation for the same thing: f + g is some function, and (f + g)'(x) and $\frac{d}{dx}(f(x) + g(x))$ are both the derivative function to this function.

Content

Let's compute $\frac{d}{dx}(f(x) + g(x))$. By plugging in to the definition and simplifying and applying limit laws, we get that $\frac{d}{dx}(f(x) + g(x)) =$ $\lim_{h \to 0} \frac{f(x+h) + g(x+h) - (f(x) + g(x))}{h} = \lim_{h \to 0} \frac{f(x+h) - f(x) + g(x+h) - g(x)}{h} =$ $\lim_{h \to 0} \left(\frac{f(x+h) - f(x)}{h} + \frac{g(x+h) - g(x)}{h}\right) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} +$ $\lim_{h \to 0} \frac{g(x+h) - g(x)}{h} = \frac{d}{dx}(f(x)) + \frac{d}{dx}(g(x)) = f'(x) + g'(x)$. This is the sum rule: $\frac{d}{dx}(f(x) + g(x)) = \frac{d}{dx}f(x) + \frac{d}{dx}g(x)$. This is how we would expect sums to interact with derivatives, and is exactly how differences work too. The **difference rule** is that $\frac{d}{dx}(f(x) - g(x)) = \frac{d}{dx}f(x) - \frac{d}{dx}g(x)$.

Example

For $f(x) = x^5 + x^2 - 3$, compute f'(x).

Content

Let's do one more derivative rule then figure out the derivative of any polynomial. We see for some constant c, $\frac{d}{dx}cf(x) = \lim_{h \to 0} \frac{cf(x+h) - cf(x)}{h} = \lim_{h \to 0} c\frac{f(x+h) - f(x)}{h} = c \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = c \frac{d}{dx}f(x)$, which is the **constant multiple rule**.

Example

Now we can compute the derivative of any polynomial: if $f(x) = 4x^3 - 2x^2 + 19x - 3$, what is f'(x)? If $g(x) = \pi x^4 + x^3 - \frac{3}{5}x^2 - 9$, what is g'(x)?

V. DIFFERENTIABLE FUNCTIONS ARE CONTINUOUS

Remarks

While we are in the mood of proving things, let's prove that differentiable functions are continuous.

Content

Suppose f(x) is differentiable at a. Then $f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$ exists. We want to show f(x) is continuous a, or $\lim_{x \to a} f(x) = f(a)$. By adding 0 and multiplying by 1 we get

$$\lim_{x \to a} f(x) = \lim_{x \to a} (f(x) - f(a) + f(a))$$

= $\lim_{x \to a} (\frac{f(x) - f(a)}{x - a} \cdot (x - a) + f(a))$
= $\lim_{x \to a} \frac{f(x) - f(a)}{x - a} \cdot \lim_{x \to a} (x - a) + \lim_{x \to a} f(a)$
= $f'(a) \cdot 0 + f(a) = f(a)$

VI. PRODUCT RULE

Remarks

This is the first rule that we have learned this whole class that doesn't work the way we want! Let's look at $\frac{d}{dx}(x^2) = 2x$. We want to have that $\frac{d}{dx}(f(x)g(x)) = \frac{d}{dx}f(x)\frac{d}{dx}g(x)$, but this would mean $2x = \frac{d}{dx}(x^2) = \frac{d}{dx}(x) \cdot \frac{d}{dx}(x) = 1 \cdot 1 = 1$, which it doesn't. So our product rule must be more complicated.

Content

Let's just compute, in a clever way by adding zero. We
get $\frac{\mathrm{d}}{\mathrm{dx}}(f(x) \cdot g(x)) = \lim_{h \to 0} \frac{f(x+h)g(x+h) - f(x)g(x)}{h} =$
$\lim_{h \to \infty} \frac{f(x+h)g(x+h) - f(x)g(x+h) + f(x)g(x+h) - f(x)g(x)}{h} = $
$\lim_{h \to 0} \frac{(f(x+h) - f(x))g(x+h) + f(x)(g(x+h) - g(x))}{\lim_{h \to 0} \frac{(f(x+h) - f(x))g(x+h) + f(x)(g(x+h) - g(x))}{\lim_{h \to 0} \frac{(f(x+h) - f(x))g(x+h) + f(x)(g(x+h) - g(x))}{\lim_{h \to 0} \frac{(f(x+h) - f(x))g(x+h) + f(x)(g(x+h) - g(x))}{\lim_{h \to 0} \frac{(f(x+h) - f(x))g(x+h) + f(x)(g(x+h) - g(x))}{\lim_{h \to 0} \frac{(f(x+h) - f(x))g(x+h) + f(x)(g(x+h) - g(x))}{\lim_{h \to 0} \frac{(f(x+h) - f(x))g(x+h) + f(x)(g(x+h) - g(x))}{\lim_{h \to 0} \frac{(f(x+h) - f(x))g(x+h) + f(x)(g(x+h) - g(x))}{\lim_{h \to 0} \frac{(f(x+h) - f(x))g(x+h) + f(x)(g(x+h) - g(x))}{\lim_{h \to 0} \frac{(f(x+h) - f(x))g(x+h) + f(x)(g(x+h) - g(x))}{\lim_{h \to 0} \frac{(f(x+h) - f(x))g(x+h) + f(x)(g(x+h) - g(x))}{\lim_{h \to 0} \frac{(f(x+h) - f(x))g(x+h) + f(x)(g(x+h) - g(x))}{\lim_{h \to 0} \frac{(f(x+h) - f(x))g(x+h) + f(x)(g(x+h) - g(x))}{\lim_{h \to 0} \frac{(f(x+h) - f(x))g(x+h) + f(x)(g(x+h) - g(x))}{\lim_{h \to 0} \frac{(f(x+h) - f(x))g(x+h) + f(x)(g(x+h) - g(x))}{\lim_{h \to 0} \frac{(f(x+h) - f(x))g(x+h) + f(x)(g(x+h) - g(x))}{\lim_{h \to 0} \frac{(f(x+h) - f(x))g(x+h) + f(x)(g(x+h) - g(x))}{\lim_{h \to 0} \frac{(f(x+h) - f(x))g(x+h) + f(x)(g(x+h) - g(x))}{\lim_{h \to 0} \frac{(f(x+h) - f(x))g(x+h) + f(x)(g(x+h) - g(x))}{\lim_{h \to 0} \frac{(f(x+h) - f(x))g(x+h) + f(x)(g(x+h) - g(x))}{\lim_{h \to 0} \frac{(f(x+h) - f(x))g(x+h) + f(x)(g(x+h) - g(x))}{\lim_{h \to 0} \frac{(f(x+h) - f(x))g(x+h) + f(x)(g(x+h) - g(x))}{\lim_{h \to 0} \frac{(f(x+h) - f(x))g(x+h) + f(x)(g(x+h) - g(x))}{\lim_{h \to 0} \frac{(f(x+h) - f(x))g(x+h) + f(x)(g(x+h) - g(x))}{\lim_{h \to 0} \frac{(f(x+h) - f(x)}{h(x+h) + f(x)(x+h)}}{\lim_{h \to 0} \frac{(f(x+h) - f(x)}{h(x+h) + f(x)(x+h)}}{\lim_{h \to 0} \frac{(f(x+h) - f(x)}{h(x+h) + f(x)(x+h)}}}$
$\lim_{h \to 0} \frac{(f(x+h) - f(x))g(x+h) + f(x)(g(x+h) - g(x))}{h} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}g(x+h) + \frac{g(x+h) - g(x)}{h}f(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}\lim_{h \to 0} g(x+h) + \frac{g(x+h) - g(x)}{h}g(x+h) + \frac{g(x+h) - g(x+h) - g(x)}{h}g(x+h) + \frac{g(x+h) - g(x)}{h}g(x+h) + g(x+h) - g($
$\lim_{h \to 0} \frac{g(x+h) - g(x)}{h} \lim_{h \to 0} f(x) = f'(x)g(x) + g'(x)f(x) = \frac{d}{dx}(f(x)) \cdot g(x) + \frac{d}{dx}(g(x)) \cdot g(x) + \frac{d}{$
$\lim_{h \to 0} \frac{g(x) - g(x)}{h} = \frac{g'(x)g(x) + g'(x)f(x)}{d} = \frac{g'(x)g(x) + g'(x)f(x)}{dx} = \frac{g'(x)g(x) + g'(x)f(x)}{dx} = \frac{g'(x)g(x)}{dx} + \frac{g'(x)g(x)g(x)}{dx} + \frac{g'(x)g(x)g(x)}{dx} + \frac{g'(x)g(x)g(x)}{dx} + \frac{g'(x)g(x)g(x)}{dx} + \frac{g'(x)g(x)g(x)}{dx} + \frac{g'(x)g(x)g(x)g(x)}{dx} + g'(x)g(x)g(x)g(x)g(x)g(x)g(x)g(x)g(x)g(x)g$
$f(x)$. This is the product rule : $\frac{\mathrm{d}}{\mathrm{dx}}f(x)g(x) = \frac{\mathrm{d}}{\mathrm{dx}}(f(x))\cdot g(x) + \frac{\mathrm{d}}{\mathrm{dx}}(g(x))\cdot f(x)$.

VII. QUOTIENT RULE

Content

Again we see that $\frac{d}{dx} f(x)/g(x)$ is not equal to $\frac{d}{dx} f(x)/\frac{d}{dx} g(x)$, by considering $\frac{d}{dx} x^3/x = \frac{d}{dx} x^2 = 2x$, but $\frac{d}{dx} x^3/\frac{d}{dx} x = 3x^2/1 = 3x^2$. We need a more complicated rule! We get the **quotient rule**: $\frac{d}{dx} \frac{f(x)}{g(x)} = \frac{\frac{d}{dx}(f(x)) \cdot g(x) - f(x) \cdot \frac{d}{dx}(g(x))}{(g(x))^2}$.

Content

With this, we can extend the power rule to the negative integers too. The **extended** power rule: if n is any integer, $\frac{d}{dx}x^n = nx^{n-1}$.