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I. Big Idea Of The Day

Remarks

We can compute derivatives of polynomial and rational functions without using the
limit definition, and trig functions, and sums, differences, products, quotients and
compositions of these. Let’s compute derivatives of inverse functions, and extend our
power rule.

II. Summary of What We Can Differentiate

Content

• Constant rule: if c is some constant real number, and f(x) = c, then f ′(x) =
0.
• Power rule: if n is a positive integer, and f(x) = xn, then f ′(x) = nxn−1.

• Sum and Difference rule:
d

dx
(f(x)±g(x)) =

d

dx
(f(x))± d

dx
(g(x)) = f ′(x)±

g′(x)

• Product rule:
d

dx
(f(x)g(x)) = f(x)

d

dx
(g(x)) +

d

dx
(f(x))g(x) = f(x)g′(x) +

f ′(x)g(x)

• Quotient rule:
d

dx
(
f(x)

g(x)
) =

g(x) d
dx

(f(x))− f(x) d
dx

(g(x))

(g(x))2
=

g(x)f ′(x)− f(x)g′(x)

(g(x))2

• Chain rule: If h(x) = f(g(x)), then h′(x) = f ′(g(x))g′(x).

• Inverse Function Theorem: (f−1)′(a) =
1

f ′(f−1(a)
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We also learned that
d

dx
sin(x) = cos(x) and

d

dx
cos(x) = − sin(x), so we can compute

the derivatives of all trigonometric functions using the quotient rule (or can memorize
them!). For posterity:

• d

dx
(tan(x)) = sec2(x)

• d

dx
(cot(x)) = − csc2(x)

• d

dx
(sec(x)) = sec(x) tan(x)

• d

dx
(csc(x)) = − csc(x) cot(x)

Finally, we have some derivatives of inverse trig functions:

• d

dx
sin−1(x) =

1√
1− x2

• d

dx
cos−1(x) =

−1√
1− x2

• d

dx
tan−1(x) =

1

1 + x2

• d

dx
cot−1(x) =

−1

1 + x2

• d

dx
sec−1(x) =

1

|x|
√
x2 − 1

• d

dx
csc−1(x) =

−1

|x|
√
x2 − 1

III. Implicit Differentiation

Content

Some equations clearly define y in terms of x. Other equations just have both variables
in there, and implicitly define y in terms of x. Often times we can solve for y in terms
of x, but not always. Look at the circle of radius 5, x2 +y2 = 25. We can kind of solve
for y in terms of x, and get y =

√
25− x2, and differentiate this. If we do this, we get

d

dx
y = − x√

25− x2
.

On the other hand, we can do implicit differentiation. This just means differentiating
the whole equation with respect to x, remembering everywhere that y is a function of

x so we need to use the chain rule whenever we see it, and multiply by
dy

dx
.
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Example

Assuming that y is defined implicitly by the equation x2 + y2 = 25, find
dy

dx
. Well we

just differentiate both sides! And we get
d

dx
(x2 + y2) =

d

dx
(25), so 2x + 2y

dy

dx
= 0,

or
dy

dx
= −x/y. This matches up with what we have above, but works more generally!

For the whole equation, not just the top half.

Example

Assuming that y is defined implicitly by the equation sin(y) = x, find
dy

dx
. Differ-

entiating both sides gives us cos(y)
dy

dx
= 1, so

dy

dx
= 1/ cos(y) = 1/ cos(sin−1(x)) =

1/
√

1− x2, which is good, because y = sin−1(x), so we know that is the derivative!

Content

How to perform implicit differentiation:

(1) Differentiate both sides, taking care to use the chain rule any time you run into

a y, so you get a
dy

dx
.

(2) Collect terms with
dy

dx
on one side of the equals sign, and the terms without

on the other side.

(3) Factor out
dy

dx
from the appropriate side, and divide through by what is left to

solve for
dy

dx
as a fraction of functions.

Example

Let’s find
dy

dx
for y sin(xy) = y2 + 2. Well differentiating both sides gives

y
d

dx
sin(xy) +

dy

dx
sin(xy) = 2y

dy

dx
. With the chain rule and product rule, we see

d

dx
sin(xy) = cos(xy)(x

dy

dx
+y), so y(cos(xy)x

dy

dx
+ cos(xy)y) +

dy

dx
sin(xy) = 2y

dy

dx
.

Collecting terms with
dy

dx
, we get cos(xy)y2 =

dy

dx
(2y − sin(xy) − xy cos(xy)), so

dy

dx
=

cos(xy)y2

2y − sin(xy)− xy cos(xy)
.

Example

Let’s find the equation of the tangent line to xy2 + sin(πy) − 2x2 = 10 at the point
(2,−3).
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First implicitly differentiate to get 2xy
dy

dx
+y2 + cos(πy)π

dy

dx
−4x = 0, so

dy

dx
(2xy +

cos(πy)π) = 4x − y2, or
dy

dx
=

4x− y2

2xy + cos(πy)π
. Evaluating at the point (2,−3) gives

dy

dx
|(2,−3)=

−1

−12 + cos(−3π)
=

−1

−12− π
. Then the equation of our tangent line is

y + 3 =
1

12 + π
(x− 2).

Example

We can do the same for xy + sin(x) = 1 at (π/2, 0).

IV. Derivatives of Exponential and Log Functions

Content

Consider the function f(x) = ex. We want to figure out
d

dx
ex = f ′(x). Using the limit

definition, we get that f ′(x) = lim
h→0

ex+h − ex

h
= lim

h→0

ex(eh − 1)

h
= ex lim

h to0

eh − 1

h
=

exf ′(0). We talked a long time ago about how one of the nice properties of ex is that
its derivative at 0 is 1, i.e. the slope of the tangent line at x = 0 is 1. This means that

f ′(0) = 1, and we get that f ′(x) =
d

dx
ex = ex. This is a function whose derivative is

the same function! It is the only function with this property.

Content

We know f−1(x) = ln(x) is the inverse function to f(x) = ex. Thus we have by the

inverse function theorem that
d

dx
ln(x) = (f−1)′(x) =

1

f ′(f−1(x))
=

1

f ′(lnx)
=

1

elnx
=

1

x
. This is a really nice use of the inverse function theorem to compute the derivative

of ln(x).

Content

We need to figure out the derivative of a general exponential function, f(x) = bx for
b > 0, b 6= 1. Well we know f(x) = eln bx = ex ln b, so by the chain rule, f ′(x) =

ex ln b d

dx
x ln b = ex ln b ln b = bx ln b.
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