
What is the rate of change of a function?
$=$ How $f(x)$ changes when x changes
When the graph $y=f(x)$ is a line, the rate of change is given by the slope of the line.
Remark: Linear function days have a constant slope.

What can we say about the rate of change of functions that arenit linear?
egg.

$$
f(0)=0
$$

$$
f(1)=1
$$

$$
n(n)-11
$$

y rate of dinge is
$x 11$
$f(2)=4$$\quad$ rate of change is
$f(3)=9>$ big change
not constant!
Idea: we can approximate the rate of change of a function near some point ($a, f(a))$ by taking another point ($x, f(x)$) on the graph, drawing a line through the points, and calculating the slope.

This kind of line is called a secant line.
The closer x is to a_{1}
the better the slope of the secant approximates the rate of change.
The secant lines approach the tangent line to f at a the slope of the tangent line measures the rate of change of fat. We can define a function

$$
f^{\prime}(a)=(\text { the slope of the tangent line to } f \text { at } a)
$$ called the derivative of f.

Physics
Idea: Velocity = rate of change of position
Average velocity: If $s(t)$ is the position of an object at time t, then the object's average velocity on " $[a, b]$ is
velocity on ' $[a, b]$ is

$$
V_{\text {avg }}=\frac{s(b)-s(a)}{b-a}
$$

(a) $t=a$

The instantaneous velocity is then defined as the
value that the average velocity approaches as $b \rightarrow a$.
This idea of "approaching" a value is called a limit.

Practice:

$$
f(x)=9-4 x^{2}
$$

Estimate the rate of change near $a=1$ using the points
$\left.\left.\begin{array}{c|c}x & f(x) \\ \hline-2 & -7 \\ -1 & 5 \\ 0 & 9 \\ 1 & 5 \\ 2 & -7-4\end{array}\right] 0\right] 4$

$$
\{-2,-1,0,1,2\}
$$

