Week 3. Sequences
A sequence is a list of numbers like $1,3,5,7,9, \ldots \leftarrow$ if it ends, its a finite sequence if not, it's an infinite sequence terms

If we want to write a generic sequence in variables:

$$
a_{1}, a_{2}, a_{3}, a_{4}, \ldots=\left\{a_{n}\right\}_{n=1}^{\infty} \text {, also written }\left\{a_{n}\right\}
$$

We can write formica formulas for the $n^{\text {th }}$ term in a sequence like

$$
a_{n}=2 n-1 \text { or }\{2 n-1\}_{n=1}^{\infty} \longleftarrow \text { same sequence }
$$

Or recursively as $a_{1}=1, a_{n}=a_{n-1}+2$
called a recurrence relation
How can we write $2,4,8,16,32, \ldots$ in 3 different ways?

$$
a_{n}=2^{n}, \quad\left\{2^{n}\right\}_{n=1}^{\infty}, \quad a_{1}=2, a_{n}=2 a_{n-1}
$$

Types of Sequences
In an arithmetic sequence,
the difference between consecutive terms is the same.
e.g. $5,8,11,14, \ldots \quad a_{n}=3 n+2$ in general,
e.g. $5,8,11,14, \ldots$
$2,1,0,-1,-2 \ldots$$\quad \begin{aligned} & a_{n}=3 n+2 \\ & a_{n}=3-n\end{aligned} \quad$ in general,

What recurrence relations describe the above?
What explicit formulas describe the above?
In a geometric sequence,
the ratio of consecutive terms is the same.
e.g. $3,9,27,81$, $a_{n}=3^{n}$
in general,

$$
5,10,20,40,80, \ldots \quad a_{n}=5 \cdot 2^{n-1}
$$

$$
a_{n}=c r^{n}
$$

Recurrence relations? Explicit formulas?
Practice
Find an explicit formula for each sequence and say if it is arith metic and/or geometric.

1) $3,-1, \frac{1}{3},-\frac{1}{9}, \frac{1}{27}, \ldots \quad a_{n}=3 \cdot\left(-\frac{1}{3}\right)^{n-1}$ geo
2) $\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \frac{5}{6}, \ldots \quad a_{n}=\frac{n}{n+1} \quad$ neither
3) $-2,-2,-2,-2,-2, \ldots \quad a_{n}=-2$ both
