Week 5 -Limit Laws
Tuesday, October 8, 2019 3:40 PM
Earlier, we talked about rules that help us find limits of sequences. Now, we have rules to help os find limits of functions.
Limit Laws $\left(\lim _{x \rightarrow a} f(x)=L, \lim _{x \rightarrow a} g(x)=M\right)$

1) $\lim _{x \rightarrow a} c=c$
2) $\lim _{x \rightarrow a} x=a$
3) $\lim _{x \rightarrow a} f(x) \pm g(x)=\lim _{x \rightarrow a} f(x) \pm \lim _{x \rightarrow a} g(x)=L \pm M$
sum/difference
4) $\lim _{x \rightarrow a} f(x) \cdot g(x)=\lim _{x \rightarrow a} f(x) \cdot \lim _{x \rightarrow a} g(x)=L \cdot M$ "product"
5) $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow a} f(x)}{\lim _{x \rightarrow a} g(x)}=\frac{L}{m}, m \neq 0$ "quotient"
6) $\lim _{x \rightarrow a} f(x)^{n}=\left(\lim _{x \rightarrow a} f(x)\right)^{n}=L^{n}, \begin{gathered}l \geq 0 \text { if "power /root" } \\ \text { neven }\end{gathered}$

Ex.

$$
\lim _{x \rightarrow 1}(4 x+5)=\lim _{x \rightarrow 1} 4 x+\lim _{x \rightarrow 1} 5=4 \lim _{x \rightarrow 1} x+\lim _{x \rightarrow 1} 5=4(1)+5=9
$$

Fact: If $f(a)$ exists, then $\lim _{x \rightarrow a} f(x)=f(a)$ as long as f is a rational function.
T is a rational function.
What if $f(a)$ doesit exist?

More Limit Techniques
If $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{0}{0}$, we can try cancelling factors from the numerator and denominator.
e.g. 1) $\lim _{x \rightarrow 1} \frac{x^{2}-1}{x-1}=\lim _{x \rightarrow 1} \frac{(x+1)(x-1)}{(x-1)}=\lim _{x \rightarrow 1} x+1=2$.
2)

$$
\begin{aligned}
& \lim _{x \rightarrow-1} \frac{\sqrt{x+2}-1}{x+1}=\lim _{x \rightarrow-1} \frac{x+2-1}{(x+1)(\sqrt{x+2}+1)}=\frac{x+1}{(x+1)(\sqrt{x+2}+1)} \\
& =\lim _{x \rightarrow-1} \frac{1}{\sqrt{x+2}+1}=\frac{1}{\sqrt{1}+1}=\frac{1}{2} .
\end{aligned}
$$

Practice
Evaluate: 1) $\lim _{x \rightarrow 0}\left(\frac{1}{x}+\frac{5}{x(x-5)}\right)$ terms first
2) $\lim _{x \rightarrow 5} \frac{\sqrt{x-1}-2}{x-5}$
3) $\lim _{x \rightarrow 5^{-}} \sqrt{x-5}$
4) $\lim \sqrt{x-5}$
4) $\lim _{x \rightarrow 5^{+}} \sqrt{x-5}$

