Week 5 - Continuity
$f(x)$ is continuous at a if:

1) $f(a)$ is defined
2) $\lim _{x \rightarrow a} f(x)$ exists
3) $\lim _{x \rightarrow a} f(x)=f(a)$

Idea: $y_{\text {oo }}$ an draw the graph of a continuous function without lifting your pen.

Otherwise, we say $f(x)$ is discontinuous at a.
Examples:

Fact: Polynomials and rational functions are continuous at every point in their domain.

Types of Discontinuities

eg. Check if the function is continuous (©) the given point

$$
\left.\begin{array}{l}
f(x)=\left\{\begin{array}{lll}
x^{2}+2 & x<3 \\
x+5 & x \geq 3
\end{array}\right. \\
\text { @ } x=3
\end{array}\right\} \begin{array}{lll}
-x+1 & x<0 \\
x+1 & x \geq 0 & \text { a } x=0
\end{array} ~ . ~(x)= \begin{cases}-1\end{cases}
$$

$f(x)$ is continuous from the right at a if $\lim _{x \rightarrow a^{+}} f(x)-f(a)$
$f(x)$ is continuous from the left at a if $\lim _{x \rightarrow \infty^{-}} f(x)=f(a)$
$f(x)$ is continuous from the left at a if $\lim _{x \rightarrow a^{-}} f(x)=f(a)$
$f(x)$ is continuous over an interval $[a, b]$ if

$$
\left\{\begin{array}{l}
: f(x) \text { is right-continuous at } a \\
0 f(x) \text { is continuous at } x \text { while } a<x<b \\
\cdot f(x) \text { is leff-continuous at } b
\end{array}\right.
$$

eg.
$f(x)=\sqrt{x}$ is continuous on $[0, \infty)$
$g(x)=\frac{1}{\sqrt{x}}$ is continuous on $(0, \infty)$

The Composite Function Theorem
If $f(x)$ is continuous at L and $\lim _{x \rightarrow a} g(x)=L$, then

$$
\lim _{x \rightarrow a}(f \circ g)(x)=\lim _{x \rightarrow a} f(g(x))=f\left(\lim _{x \rightarrow a} g(x)\right)=f(L) .
$$

Fact: All trig functions are continuous at all pts. in their domain.
e.g. $\lim _{x \rightarrow \pi} \sin \left(\frac{x}{2}\right)=\sin \left(\frac{\pi}{2}\right)=1$.
2) $\lim _{x \rightarrow 0^{+}} \tan \left(\frac{x}{\ln x}\right)=\tan (0)=0$

Practice

1) Classify all discontinuities:

$$
A \Gamma\left[L_{n}-\frac{1}{\sim} \quad \sim=2 \cdot C \cdot L_{n}\right.
$$

a) $f(x)=\frac{1}{x^{2}+4 x+4} \quad x=-2$: infinite
b) $g(x)=\frac{x}{|x|} \quad x=0$: jump
c) $n(x)=\sin (x) \csc (x) \quad x=0, \pi, 2 \pi, 3 \pi, \ldots$: removable

