Week 5-Theorems
The Squeeze Theorem (for functions)
Let $f(x), g(x)$, and $h(x)$ be functions.
If $f(x) \leq g(x) \leq h(x)$ for all $x \neq a$ in an open interval around a, and $\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} h(x)=L$,
then

$$
\lim _{x \rightarrow a} g(x)=L
$$

eg.

$$
\begin{aligned}
& \lim _{x \rightarrow 0} x \cos x: \quad \text { Since }-1 \leq \cos x \leq 1, \\
& -|x| \leq x \cos x \leq|x| \text {, and } \\
& \lim _{x \rightarrow 0}-|x|=\lim _{x \rightarrow 0}|x|=0 \text {, so } \lim _{x \rightarrow 0} x \cos x=0 \text { as well. }
\end{aligned}
$$

We already knew how to find $\lim _{x \rightarrow 0} x \cos x$ though: just ploy in $x=0$! Better example:

$$
\lim _{x \rightarrow 0} x^{2} \sin \left(\frac{1}{x}\right): \quad \text { Since }-1 \leq \cos x \leq 1 \text {, }
$$

$-x^{2} \leq x^{2} \sin \left(\frac{1}{x}\right) \leq x^{2}$, and since $\lim _{x \rightarrow 0}-x^{2}=\lim _{x \rightarrow 0} x^{2}=0$, $\lim _{x \rightarrow 0} x^{2} \sin \left(\frac{1}{x}\right)=0$ as well.

Recall: $f(x)$ is continuous at a if

1) $f(a)$ exists
2) $\lim _{x \rightarrow a} f(x)$ exists
3) $f(a)=\lim _{x \rightarrow a} f(x)$
$f(x)$ continuas over $[a, b]$ if

- $f(x)$ continuous on (a, b)
- $f(x)$ left-continuors at b
- $f(x)$ right -continuous at a

The Intermediate Value Theorem
Let $f(x)$ be continuous over $[a, b]$.
If z is any real number between $f(a)$ and $f(b)$, then there is some c in $[a, b]$ such that $f(c)=z$.

Q.g.

Prove that $f(x)=x-\cos (x)=0$ for some x.

$$
\begin{array}{ll}
x=0: & f(0)=0-\cos 0=0-1=-1 \\
x=\frac{\pi}{2}: \quad f\left(\frac{\pi}{2}\right)=\frac{\pi}{2}-\cos \frac{\pi}{2}=\frac{\pi}{2}-0=\frac{\pi}{2} \quad 1 \text { since } z=0 \text { is between } \\
-1 \text { and } \frac{\pi}{2}, x-\cos x=0 \text { for }
\end{array}
$$

some $x=c$ by the IVI.

When not to use IVT:

- $f(x)=\frac{1}{x}$. Since $f(-1)=-1$ and $f(1)=1$, does that mean that $f(c)=0$ for some $-1<c<1$?

Practice:

1) Find $\lim _{x \rightarrow 0} x \cos \left(\frac{1}{x}\right) \sin \left(\frac{1}{x}\right)$
2) Prove that $\theta=\cos \theta$ for some angle θ.
