Week 6-The Derivative

Now that we know how to find limits, we can finally compute the slope of the tangent line!
Recall the slope formula:

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

If we want to find the slope of the secant line between some point $(a, f(a))$ and $(x, f(x)$

$$
m=\frac{f(x)-f(a)}{x-a}
$$

This quantity is called a "difference quotient"

The slope of the secant line, m, approcks the slope of the tangent line at a when x is close to a. Therefor:
The slope of the tangent line to $f(x)$ at a is:

$$
\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}
$$

If we let $x=a+h$, then

$$
m=\frac{f(a+h)-f(a)}{a+h-a}=\frac{f(a+h)-f(a)}{h}
$$

Alternatively, the slope of the tangent line to $f(x)$ at a is:

$$
\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

This value is called the derivative of $f(x)$ at a.
Written:

$$
f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

"f-prime of a "
egg.

$$
\begin{aligned}
& f(x)=3 x, a=5 \leadsto f^{\prime}(5)=\lim _{h \rightarrow 0} \frac{3(5+h)-3(5)}{n}=\lim _{h \rightarrow 0} \frac{15+3 n-15}{h}=3 \\
& \begin{aligned}
g(x)=x^{2}+x, a=2 \leadsto g^{\prime}(2) & =\lim _{h \rightarrow 0} \frac{f(2+n-f(2)}{n}=\frac{(2+h)^{2}+(2+n)-\left(2^{2}+2\right)}{n} \\
& =\frac{2^{2}+4 h+h^{2}+2+h-6}{h}=\frac{5 h+h^{2}}{n}=5+h=5
\end{aligned} \\
& h(x)=|x|, a=-1 \leadsto h^{\prime}(-1)=\lim _{h \rightarrow 0} \frac{|-1+h|-1-1 \mid}{h}=\frac{1-h-1}{n}=\frac{-h}{h}=-1
\end{aligned}
$$

Recall:
If $s(t)$ represents the position of some abies then
'Recall:
If $s(t)$ represents the position of some objed, then slopes of secant lines average rate of change of sit) (average velocity of object)
slope of tangent line \rightarrow instantaneas rate of change of $s(t)$ instantaneous velocity of object
So, we can find the instantaneous velocity at time a by finding $S^{\prime}(a)$.
egg.

$$
\begin{aligned}
s(t) & =10-5 t^{2}(\mathrm{~m} / \mathrm{s}), \quad t=1 \quad(\mathrm{~s}) \\
s^{\prime}(1) & =\lim _{h \rightarrow 0} \frac{s(n+1)-s(1)}{h}=\frac{10-5(n+1)^{2}-(10-5)}{n} \\
& =\frac{10-5\left(n^{2}+2 n+1\right)-5}{n}=\frac{10-5 n^{2}-10 n-5-5}{n} \\
& =\frac{-5 h^{2}-10 n}{n}=-5 h-10=-10 . \quad(\mathrm{n} / \mathrm{s})
\end{aligned}
$$

Practice
Compute:

1) $f^{\prime}(3)$, if $f(x)=x^{2}+1$
2) $g^{\prime}(2)$, if $g(x)=\frac{1}{x}$
