Week 6-More Derivatives
Recall that a function $f(x)$ is continuous at a if

1) $f(a)$ is defined
2) $\lim _{x \rightarrow a} f(x)$ exists
3) $\lim _{x \rightarrow a} f(x)=f(a)$
$f(x)$ is differentiable at a if

$$
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h} \text { exists. }
$$

Theorem: If $f(x)$ is differentiable at a, then $f(x)$ is also continuous at a.
Q. Are there continuous functions that areit differentiable?

Try $f(x)=\sqrt[3]{x}$:

$$
f^{\prime}(0)=\lim _{h \rightarrow 0} \frac{\sqrt[3]{0+n}-\sqrt{0}}{n}=\frac{\sqrt[3]{n}}{n}=\frac{1}{h^{2 / 3}}=+\infty
$$

So $f(x)$ not differentiable at $x=0$.
(Also, piecewise functions like $|x|$.)
Exercise: Find the value of c that makes $f(x)$ differentiable:

$$
f(x)=\int x^{2}+2 \quad x<1
$$

$$
f(x)= \begin{cases}x^{2}+2 & x \leq 1 \\ c(x-1)+3 & x \geq 1\end{cases}
$$

what is $f^{\prime}(x)$? Is $f^{\prime}(x)$ differentiable?

Practice

1) Find $f^{\prime}(x)$ when $f(x)=\sqrt{x}$

Another way to view the derivative is that it measures how much the function "Stretches" or "compress" points on the real number line.

\rightarrow See visualization on the website under Links.

