$\omega_{\text {eek }}$ 7- Differentiation Rules
The Constant Rule: C

$$
\frac{d}{d x}(c)=\lim _{n \rightarrow 0} \frac{c-c}{n}=\lim _{n \rightarrow 0} \frac{0}{n}=\lim _{n \rightarrow 0} 0=0
$$

So $\frac{d}{d x}(c)=0$
The Power Rule: x^{n}

$$
\begin{aligned}
\frac{d}{d x}\left(x^{n}\right) & =\lim _{n \rightarrow 0} \frac{(x+h)^{n}-x^{n}}{h}=\lim _{h \rightarrow 0} \frac{x^{n}+n h x^{n-1}+h^{2}(\cdots)-x^{n}}{h} \\
& =\lim _{h \rightarrow 0} n x^{n-1}+h(\ldots)=n x^{n-1}
\end{aligned}
$$

So $\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}$
The Sum/Difference Role: $f(x)+g(x)$

$$
\begin{aligned}
\frac{d}{d x}(f(x)+g(x)) & =\lim _{h \rightarrow 0} \frac{f(x+h)+g(x+h)-f(x)-g(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)+g(x+h)-g(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}+\lim _{h \rightarrow 0} \frac{g(x+h)-g(x)}{h} \\
& =f^{\prime}(x)+g^{\prime}(x)
\end{aligned}
$$

So $\frac{d}{d x}(f(x)+g(x))=\frac{d}{d x}(f(x))+\frac{d}{d x}(g(x))$
The Constant Multiple Rule: $c f(x)$

$$
\begin{aligned}
\frac{d}{d x}(c f(x)) & =\lim _{h \rightarrow 0} \frac{c f(x+h)-c f(x)}{h}=\lim _{h \rightarrow 0} c\left(\frac{f(x+h)-f(x)}{h}\right) \\
& =c \lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=c f^{\prime}(x)
\end{aligned}
$$

So $\frac{d}{d x}(e f(x))=e \frac{d}{d x}(f(x))$
Tangent Lines
If we want to find the equation of the tangent line

- The slope $m=f^{\prime}(a)$
- It passes through the point (a,f(a))

So we can use pont-slope form:

$$
\begin{aligned}
& y-y_{0}=m\left(x-x_{0}\right) \\
& y-f(a)=f^{\prime}(a)(x-a) \rightarrow y=f^{\prime}(a)(x-a)+f(a)
\end{aligned}
$$

Example
Find the equation of the tangent line to

$$
f(x)=x^{3}-x \quad \text { at } 1
$$

$f(x)=x^{3}-x$ at 1 .
$f^{\prime}(x)=3 x^{2}-1 \quad$ (power and difference rules)

$$
f^{\prime}(1)=3(1)^{2}-1=3-1=2, \quad f(1)=1^{3}-1=0
$$

So $\quad y=2(x-1)+0=2 x-2$ is the equation of the tangent line!

