Week 7-More Differentiation Rules (s.s.3)
The Product Rule: $j(x)=f(x) \cdot g(x)$

$$
\begin{aligned}
j^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h) g(x+h)-f(x) g(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{f(x+h) g(x+h)-f(x) g(x+h)+f(x) g(x+h)-f(x) g(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{f(x+h) g(x+h)-f(x) g(x+h)}{h}+\lim _{h \rightarrow 0} \frac{f(x) g(x+h)-f(x) g(x)}{h} \\
& =\lim _{h \rightarrow 0} g(x+h) \cdot \lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}+\lim _{h \rightarrow 0} f(x) \cdot \lim _{h \rightarrow 0} \frac{g(x+h)-g(x)}{h} \\
& =g(x) \cdot \quad f^{\prime}(x)+f(x) \cdot g^{\prime}(x) \\
& =f^{\prime}(x) g(x)+f(x) g^{\prime}(x) \\
\text { e.g. } & f(x)=x^{2}+1, g(x)=x^{6}-5 x^{3}+2, j(x)=f(x) g(x) \\
j^{\prime}(x) & =f^{\prime}(x) g(x)+f(x) g^{\prime}(x) \\
& =(2 x)\left(x^{6}-5 x^{3}+2\right)+\left(x^{2}+1\right)\left(6 x^{5}-15 x^{2}\right)
\end{aligned}
$$

The Quotient Role: $j(x)=\frac{f(x)}{g(x)}$

$$
i^{\prime}(x)=\lim \frac{f(x+n)}{n-2-14}-\frac{f(x)}{-1} \quad \lim f(x+1) g(x)-f(x) g(x+h)
$$

$$
\left.\begin{array}{rl}
j^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{\frac{f(x+h)}{g(x+h)}-\frac{f(x)}{g(x)}}{h}=\lim _{h \rightarrow 0} \frac{\frac{f(x+h) g(x)-f(x) g(x+h)}{g(x) g(x+h)}}{h} \\
& =\lim _{h \rightarrow 0} \frac{f(x+h) g(x)-f(x) g(x)+f(x) g(x)-f(x) g(x+h)}{h \cdot g(x) g(x+h)} \\
& =\lim _{h \rightarrow 0} \frac{1}{g(x) g(x+h)}\left(\lim _{h \rightarrow 0} g(x) \cdot \frac{f(x+n)-f(x)}{h}-\lim _{h \rightarrow 0} f(x) \cdot g(x+h)-g(x)\right. \\
h
\end{array}\right)
$$

egg.

$$
\begin{aligned}
& f(x)=x^{2}+1, \quad g(x)=x^{3}, j(x)=\frac{f(x)}{g(x)} \\
& j^{\prime}(x)=\frac{(2 x)\left(x^{3}\right)-\left(x^{2}+1\right)\left(3 x^{2}\right)}{\left(x^{3}\right)^{2}}=\frac{2 x^{4}-3 x^{4}-3 x^{2}}{x^{6}}=\frac{-x^{4}-3 x^{2}}{x^{6}} \\
&=\frac{-x^{2}-3}{x^{6}}
\end{aligned}
$$

Practice:
Find:

$$
\text { 1) } d\left(x^{3} \cdot x^{2}\right)=\left(3 x^{2}\right)\left(x^{2}\right)+\left(x^{3}\right)\left(2 x^{1}\right)=3 x^{4}+2 x^{4}=5 x^{4}
$$

Find:

1) $\frac{d}{d x}\left(x^{3} \cdot x^{2}\right)=\left(3 x^{2}\right)\left(x^{2}\right)+\left(x^{3}\right)\left(2 x^{1}\right)=3 x^{4}+2 x^{4}=5 x^{4}$
2) $\frac{d}{d x}\left(\frac{3 x+1}{x}\right)=\frac{(3)(x)-(3 x+1)(1)}{x^{2}}=\frac{3 x-3 x-1}{x^{2}}=\frac{-1}{x^{2}}$
3) $\frac{d}{d x}\left(x^{-5}\right)=\frac{(0)\left(x^{5}\right)-(1)\left(5 x^{4}\right)}{x^{10}}=\frac{-5 x^{4}}{x^{10}}=-5 x^{-6}$

The Power Rule (Again)

$$
\begin{aligned}
\frac{d}{d x}\left(x^{-n}\right) & =\frac{d}{d x}\left(\frac{1}{x^{n}}\right)=\frac{(0)\left(x^{n}\right)-\left(n\left(n x^{n-1}\right)\right.}{\left(x^{n}\right)^{2}}=\frac{-n x^{n-1}}{x^{2 n}}=\frac{-n}{x^{n+1}} \\
& =-n x^{-n-1}
\end{aligned}
$$

So $\frac{d}{d x}\left(x^{n}\right)-n x^{n-1}$ is trove even it n is negative!

Practice:
Find:

1) $\frac{d}{d x}\left(\frac{x(x+1)}{x+2}\right)$

Let

$$
\begin{aligned}
& \text { Let } \begin{aligned}
f(x) & =x(x+1) \quad f^{\prime}(x) \\
g(x)=(1)(x+1)+(x)(1)=2 x+1 & g^{\prime}(x)
\end{aligned}=1 \\
& \text { So } j^{\prime}(x)=\frac{(2 x+1)(x+2)-x(x+1)(1)}{(x+2)^{2}}=\frac{2 x^{2}+5 x+2-x^{2}-x}{(x+2)^{2}} \\
&=\sqrt{x^{2}+4 x+2}
\end{aligned}
$$

いいー

$$
=\frac{x^{2}+4 x+2}{(x+2)^{2}}
$$

