Discrete Probabilities

Marius Ionescu

Fall 2005

Random Variables and Sample Spaces

- We represent the outcome of the experiment by a capital Roman letter, such as X, called a random variable.
- The sample space of the experiment is the set of all possible outcomes. If the sample space is either finite or countably infinite, the random variable is said to be discrete.
- The elemnts of a sample space are called outcome.
- A subset of the sample space is called an event.

Distribution Functions

Let X be a random variable which denotes the value of the outcome of a certain experiment, and assume that this experiment has only finitely many possible outcomes. Let Ω be the sample space of the experiment (i.e., the set of all possible values of X, or equivalently, the set of all possible outcomes of the experiment.) A distribution function for X is a real-valued function m whose domain is Ω and which satisfies:

1. $m(\omega) \geq 0, \quad$ for all $\omega \in \Omega$, and
2. $\sum_{\omega \in \Omega} m(\omega)=1$.

For any subset E of Ω, we define the probability of E to be the number $P(E)$ given by

$$
P(E)=\sum_{\omega \in E} m(\omega)
$$

Examples

Three people, A, B, and C, are running for the same office, and we assume that one and only one of them wins. Suppose that A and B have the same chance of winning, but that C has only $1 / 2$ the chance of A or B . What is the probability to win for each of the three people?

Basic Set Operations

- Then the union of A and B is the set

$$
A \cup B=\{x \mid x \in A \text { or } x \in B\} .
$$

- The intersection of A and B is the set

$$
A \cap B=\{x \mid x \in A \text { and } x \in B\} .
$$

- The difference of A and B is the set

$$
A-B=\{x \mid x \in A \text { and } x \notin B\} .
$$

- The complement of A is the set

$$
\tilde{A}=\{x \mid x \in \Omega \text { and } x \notin A\} .
$$

Properties

The probabilities assigned to events by a distribution function on a sample space Ω satisfy the following properties:

1. $P(E) \geq 0$ for every $E \subset \Omega$.
2. $P(\Omega)=1$.
3. If $E \subset F \subset \Omega$, then $P(E) \leq P(F)$.
4. If A and B are disjoint subsets of Ω, then $P(A \cup B)=$ $P(A)+P(B)$.
5. $P(\tilde{A})=1-P(A)$ for every $A \subset \Omega$.

- For any two events A and B,

$$
P(A)=P(A \cap B)+P(A \cap \tilde{B})
$$

- If A and B are subsets of Ω, then

$$
P(A \cup B)=P(A)+P(B)-P(A \cap B)
$$

Uniform Distribution

The uniform distribution on a sample space Ω containing n elements is the function m defined by

$$
m(\omega)=\frac{1}{n}
$$

for every $\omega \in \Omega$.

Example

Consider the experiment that consists of rolling a pair of dice. We take as the sample space Ω the set of all ordered pairs (i, j) of integers with $1 \leq i \leq 6$ and $1 \leq j \leq 6$. Thus,

$$
\Omega=\{(i, j): 1 \leq i, j \leq 6\} .
$$

Odds

If $P(E)=p$, the odds in favor of the event E occurring are $r: s(r$ to $s)$ where $r / s=p /(1-p)$. If r and s are given, then p can be found by using the equation $p=r /(r+s)$.

Infinite Sample Space

If

$$
\Omega=\left\{\omega_{1}, \omega_{2}, \omega_{3}, \ldots\right\}
$$

is a countably infinite sample space, then a distribution function is defined exactly as before, except that the sum must be convergent.

Examples

A coin is tossed until the first time that a head turns up. Let the outcome of the experiment, ω, be the first time that a head turns up. Then the possible outcomes of our experiment are

$$
\Omega=\{1,2,3, \ldots\} .
$$

What is the probability that the coin eventually turns up heads.

