Central Limit Theorem Bernoulli Trials

11/01/2005

Continuous Probability Densities

- Let us construc a spinner, which consists of a circle of unit circumference and a pointer.

- The experiment consists of spinning the pointer and recording the label of the point at the tip of the pointer.
- We let the random variable X denote the value of this outcome.
- The sample space is clearly the interval $[0,1)$.
- It is necessary to assign the probability 0 to each outcome.
- The probability

$$
P(0 \leq X \leq 1)
$$

should be equal to 1 .

- We would like the equation

$$
P(c \leq X<d)=d-c
$$

to be true for every choice of c and d.

- If we let $E=[c, d]$, then we can write the above formula in the form

$$
P(E)=\int_{E} f(x) d x
$$

where $f(x)$ is the constant function with value 1 .

Density Functions of Continuous Random Variables

Let X be a continuous real-valued random variable. A density function for X is a real-valued function f which satisfies

$$
P(a \leq X \leq b)=\int_{a}^{b} f(x) d x
$$

for all $a, b \in \mathbf{R}$.

- It is not the case that all continuous real-valued random variables possess density functions.
- In terms of the density $f(x)$, if E is a subset of \mathbb{R}, then

$$
P(X \in E)=\int_{E} f(x) d x
$$

Example

- In the spinner experiment, we choose for our set of outcomes the interval $0 \leq x<1$, and for our density function

$$
f(x)= \begin{cases}1, & \text { if } 0 \leq x<1 \\ 0, & \text { otherwise }\end{cases}
$$

- If E is the event that the head of the spinner falls in the upper half of the circle, then $E=\{x: 0 \leq x \leq 1 / 2\}$, and so

$$
P(E)=\int_{0}^{1 / 2} 1 d x=\frac{1}{2}
$$

- More generally, if E is the event that the head falls in the interval $[a, b]$, then

$$
P(E)=\int_{a}^{b} 1 d x=b-a
$$

Example: Continuous Uniform Density

- The simplest density function corresponds to the random variable U whose value represents the outcome of the experiment consisting of choosing a real number at random from the interval $[a, b]$.

$$
f(w)= \begin{cases}1 /(b-a), & \text { if } a \leq \omega \leq b \\ 0, & \text { otherwise }\end{cases}
$$

Normal Density

- The normal density function with parameters μ and σ is defined as follows:

$$
f_{X}(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-(x-\mu)^{2} / 2 \sigma^{2}}
$$

- The parameter μ represents the "center" of the density.
- The parameter σ is a measure of the "spread" of the density, and thus it is assumed to be positive.

Central Limit Theorem for Bernoulli Trials

- We deal only with the case that $\mu=0$ and $\sigma=1$.
- We will call this particular normal density function the standard normal density, and we will denote it by $\phi(x)$:

$$
\phi(x)=\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2}
$$

- Consider a Bernoulli trials process with probability p for success on each trial.
- Let $X_{i}=1$ or 0 according as the i th outcome is a success or failure, and let $S_{n}=X_{1}+X_{2}+\cdots+X_{n}$.
- Then S_{n} is the number of successes in n trials.
- We know that S_{n} has as its distribution the binomial probabilities $b(n, p, j)$.

Standardized Sums

- We can prevent the drifting of these spike graphs by subtracting the expected number of successes $n p$ from S_{n}.
- We obtain the new random variable $S_{n}-n p$.
- Now the maximum values of the distributions will always be near 0.
- To prevent the spreading of these spike graphs, we can normalize $S_{n}-n p$ to have variance 1 by dividing by its standard deviation $\sqrt{n p q}$

Definition

The standardized sum of S_{n} is given by

$$
S_{n}^{*}=\frac{S_{n}-n p}{\sqrt{n p q}}
$$

S_{n}^{*} always has expected value 0 and variance 1 .

- We plot a spike graph with the spikes placed at the possible values of $S_{n}^{*}: x_{0}, x_{1}, \ldots, x_{n}$, where

$$
x_{j}=\frac{j-n p}{\sqrt{n p q}}
$$

- We make the height of the spike at x_{j} equal to the distribution value $b(n, p, j)$.
- We plot a spike graph with the spikes placed at the possible values of $S_{n}^{*}: x_{0}, x_{1}, \ldots, x_{n}$, where

$$
x_{j}=\frac{j-n p}{\sqrt{n p q}}
$$

- We make the height of the spike at x_{j} equal to the distribution value $b(n, p, j)$.

- Let ε be the distance between consecutive spikes.
- to change the spike graph so that the area under this curve has value 1 , we need only multiply the heights of the spikes by $1 / \epsilon$.
- We see that

$$
\varepsilon=\frac{1}{\sqrt{n p q}}
$$

- Let us fix a value x on the x-axis and let n be a fixed positive integer.
- Then the point x_{j} that is closest to x has a subscript j given by the formula

$$
j=\langle n p+x \sqrt{n p q}\rangle
$$

- Thus the height of the spike above x_{j} will be

$$
\sqrt{n p q} b(n, p, j)=\sqrt{n p q} b\left(n, p,\left\langle n p+x_{j} \sqrt{n p q}\right\rangle\right)
$$

Central Limit Theorem for Binomial Distributions

Theorem. For the binomial distribution $b(n, p, j)$ we have

$$
\lim _{n \rightarrow \infty} \sqrt{n p q} b(n, p,\langle n p+x \sqrt{n p q}\rangle)=\phi(x),
$$

where $\phi(x)$ is the standard normal density.

Approximating Binomial Distributions

- To find an approximation for $b(n, p, j)$, we set

$$
j=n p+x \sqrt{n p q}
$$

- Solve for x

$$
\begin{aligned}
& x=\frac{j-n p}{\sqrt{n p q}} \\
b(n, p, j) & \approx \frac{\phi(x)}{\sqrt{n p q}} \\
& =\frac{1}{\sqrt{n p q}} \phi\left(\frac{j-n p}{\sqrt{n p q}}\right) .
\end{aligned}
$$

Example

- Let us estimate the probability of exactly 55 heads in 100 tosses of a coin.
- For this case $n p=100 \cdot 1 / 2=50$ and $\sqrt{n p q}=$ $\sqrt{100 \cdot 1 / 2 \cdot 1 / 2}=5$.
- Thus $x_{55}=(55-50) / 5=1$ and

$$
\begin{aligned}
P\left(S_{100}=55\right) \sim \frac{\phi(1)}{5} & =\frac{1}{5}\left(\frac{1}{\sqrt{2 \pi}} e^{-1 / 2}\right) \\
& =.0484
\end{aligned}
$$

